Carrageenans and Their Oligosaccharides from Red Seaweeds Ahnfeltiopsis flabelliformis and Mastocarpus pacificus (Phyllophoraceae) and Their Antiproliferative Activity
Abstract
:1. Introduction
2. Results
2.1. Extraction, Fractionation and Chemical Analysis of Polysaccharides
2.2. Structural Analysis of Afg and Mp Polysaccharides
2.2.1. IR and NMR Spectroscopy Analysis
2.2.2. Mass Spectrometry Analysis of Mp and Af
2.3. Preparation and Characterization of Afg and Mp Oligosaccharides and Polysaccharides with a Lower Molecular Weight
2.4. Cytotoxic and Antiproliferative Effect
2.5. Oligosaccharides Inhibited HCT-116 Cell Migration
2.6. Oligosaccharides Reduced Number of Colonies Forming in HCT-116 Cells
2.7. Oligosaccharides Induced Apoptosis in HCT-116 Cells
2.8. Oligosaccharides Induced Cell Cycle Arrest in HCT-116 Cells
3. Discussion
4. Materials and Methods
4.1. Algal Material
4.2. Isolation and Fractionation of Polysaccharides
4.3. Structural Analysis
4.3.1. Analytical Methods
4.3.2. Partial Reductive Hydrolysis
4.3.3. Alkaline Treatment of Mp
4.3.4. Fourier Transform–Infrared Spectroscopy (FT-IR)
4.3.5. NMR Spectroscopy
4.3.6. Preparation and Analysis of Oligosaccharides
Mild Acid Hydrolysis
Enzymatic Hydrolysis
High-Performance Liquid Chromatography (HPLC)
Mass Spectrometry
4.4. Preparation of Afg and Mp Oligosaccharides and Polysaccharides with a Lower Molecular Weight
4.5. Molecular Weight Measurement
4.5.1. Polysaccharides
4.5.2. Oligosaccharides
4.6. Biological Activity
4.6.1. Cell Culture
4.6.2. MTT Assay to Determine the Effect of Oligosaccharides on Cell Viability
4.6.3. Wound Scratch Migration Assay
4.6.4. Colony Formation Assay to Determine the Effect on Cell Proliferation
4.6.5. Annexin V Assay
4.6.6. Hoechst 33342 Staining
4.6.7. Cell Cycle Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Craigie, J.S. Cell walls. In Biology of the Red Algae; Cole, K.M., Sheath, R.Y., Eds.; Cambridge University Press: Cambridge, UK, 1990; pp. 221–257. [Google Scholar]
- Usov, A.I. Polysaccharides of the red algae. Adv. Carbohydr. Chem. Biochem. 2011, 65, 115–217. [Google Scholar]
- Knutsen, S.H.; Myslabodski, D.E.; Larsen, B.; Usov, A.I. A modified system of nomenclature for red algal galactans. Bot. Mar. 1994, 37, 163–169. [Google Scholar] [CrossRef]
- Piculell, L. Gelling carrageenans. In Food Polysaccharides and Their Applications; Stephen, A.M., Ed.; Marcel Dekker Inc.: New York, NY, USA, 1995; pp. 205–244. [Google Scholar]
- Campo, V.L.; Kawano, D.F.; Silva, D.B.; Carvalho, I. Carrageenans: Biological properties, chemical modifications and structural analysis—A review. Carbohydr. Polym. 2009, 77, 167–180. [Google Scholar] [CrossRef]
- Caceres, P.J.; Carlucci, M.J.; Damonte, E.B.; Matsuhiro, B.; Zuniga, E.A. Carrageenans from chilean samples of Stenogramme interrupta (Phyllophoraceae): Structural analysis and biological activity. Phytochemistry 2000, 53, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Hilliou, L.; Larotonda, F.D.S.; Abreu, P.; Abreu, M.H.; Sereno, A.M.; Goncalves, M.P. The impact of seaweed life phase and postharvest storage duration on the chemical and reological properties of hybrid carrageenans isolated from Portuguese Mastocarpus stellatus. Carbohydr. Polym. 2012, 87, 2655–2663. [Google Scholar] [CrossRef]
- Kumar, S.; Mehta, G.K.; Prasad, K.; Meena, R.; Siddhanta, A.K. Chemical investigation of carrageenan from the red alga Sarconema filiforme (Gigartinales, Rhodophyta) of Indian waters. Nat. Prod. Commun. 2011, 5, 1327–1332. [Google Scholar] [CrossRef]
- Recalde, M.P.; Canelon, D.J.; Compagnone, R.S.; Matulewicz, M.C.; Cerezo, A.S.; Ciancia, M. Carrageenan and agaran structures from the red seaweed Gymnogongrus tenuis. Carbohydr. Polym. 2016, 136, 1370–1378. [Google Scholar] [CrossRef]
- Kravchenko, A.O.; Anastyuk, S.D.; Sokolova, E.V.; Isakov, V.V.; Glazunov, V.P.; Helbert, W.; Yermak, I.M. Structural analysis and cytokine-induced activity of gelling sulfated polysaccharide from the cystocarpic plants of Ahnfeltiopsis flabelliformis. Carbohydr. Polym. 2016, 151, 523–534. [Google Scholar] [CrossRef]
- Rodriguez, M.C.; Merino, E.R.; Pujol, C.A.; Damonte, E.B.; Cerezo, A.S.; Matulewicz, M.C. Galactans from cystocarpic plants of the red seaweed Callophyllis variegate (Kallymeniaceae, Gigartinales). Carbohydr. Res. 2005, 340, 2742–2751. [Google Scholar] [CrossRef]
- Rajasulochana, N.; Gunasekaran, S. Analysis on the seasonal variations in carrageenans of Hypnea flagelliformis and Sarconema filiforme by FTIR spectroscopy. Asian J. Chem. 2009, 21, 4547–4552. [Google Scholar]
- Véliz, K.; Chandía, N.; Karsten, U.; Lara, C.; Thiel, M. Geographic variation in biochemical and physiological traits of the red seaweeds Chondracanthus chamissoi and Gelidium lingulatum from the south east Pacific coast. J. Appl. Phycol. 2019, 31, 665–682. [Google Scholar] [CrossRef]
- Freile-Pelegrin, Y.; Robledo, D. Carrageenan of Eucheuma isiforme (Solieriaceae, Rhodophyta) from Yucatan, Mexico. II. Seasonal variations in carrageenan and biochemical characteristics. Bot. Mar. 2006, 49, 72–78. [Google Scholar] [CrossRef]
- Tasende, M.G.; Cid, M.; Fraga, M.I. Qualitative and quantitative analysis of carrageenan content in gametophytes of Mastocarpus stellatus (Stackhouse) Guiry along Galician coast (NW Spain). J. Appl. Phycol. 2013, 25, 587–596. [Google Scholar] [CrossRef]
- Pereira, L.; Critchley, A.T.; Amado, A.M.; Ribeiro-Claro, P.J.A. A comparative analysis of phycocolloids produced by underutilized versus industrially utilized carrageenophytes (Gigartinales, Rhodophyta). J. Appl. Phycol. 2009, 21, 599–605. [Google Scholar] [CrossRef]
- Neill, K.; Nelson, W.; Hurd, C.; Falshaw, R. Growth and carrageenan composition of two populations of the New Zealand carrageenophyte Sarcothalia lanceata (Gigartinaceae, Rhodophyta). J. Appl. Phycol. 2018, 30, 2485–2497. [Google Scholar] [CrossRef]
- Amimi, A.; Mouradi, A.; Givernaud, T.; Chiadmi, N.; Lahaye, M. Structural analysis of Gigartina pistillata carrageenans (Gigartinaceae, Rhodophyta). Carbohydr. Res. 2001, 333, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Bui, V.T.N.T.; Nguyen, B.T.; Renou, F.; Nicolai, T. Structure and rheological properties of carrageenans extracted from different red algae species cultivated in Cam Ranh Bay, Vietnam. J. Appl. Phycol. 2019, 31, 1947–1953. [Google Scholar] [CrossRef]
- Guiry, M.D. World Register of Marine Species. Available online: https://www.marinespecies.org/imis.php?module=ref&refid=282468 (accessed on 19 February 2023).
- Hillou, L.; Larotonda, F.D.S.; Abreu, P.; Ramos, A.M.; Sereno, A.M.; Goncalves, M.P. Effect of extraction parameters on the chemical structure and gel properties of κ/ι-hybrid carrageenans obtained from Mastocarpus stellatus. Biomol. Eng. 2006, 23, 201–208. [Google Scholar] [CrossRef]
- Estevez, J.M.; Ciancia, M.; Cerezo, A.S. The system of sulfated galactans from the red seaweed Gymnogongrus torulosus (Phyllophoraceae, Rhodophyta): Location and structural analysis. Carbohydr. Polym. 2008, 73, 594–605. [Google Scholar] [CrossRef]
- Tuvikene, R.; Truus, K.; Robal, M.; Pehk, T.; Kailas, T.; Vaher, M.; Paalme, T. Structure and thermal stability of pyruvated carrageenans from the red alga Coccotylus truncates. Carbohydr. Res. 2009, 344, 788–794. [Google Scholar] [CrossRef]
- Pereira, L.; Van de Velde, F. Portuguese carrageenophytes: Carrageenan composition and geographic distribution of eight species (Gigartinales, Rhodophyta). Carbohydr. Polym. 2011, 84, 614–623. [Google Scholar] [CrossRef]
- Kravchenko, A.O.; Anastyuk, S.D.; Isakov, V.V.; Sokolova, E.V.; Glazunov, V.P.; Yermak, I.M. Structural peculiarities of polysaccharide from sterile form of Far Eastern red alga Ahnfeltiopsis flabelliformis. Carbohydr. Polym. 2014, 111, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kravchenko, A.O.; Anastyuk, S.D.; Glazunov, V.P.; Sokolova, E.V.; Isakov, V.V.; Yermak, I.M. Structural characteristics of carrageenans of red alga Mastocarpus pacificus from sea of Japan. Carbohydr. Polym. 2020, 229, 115518. [Google Scholar] [CrossRef] [PubMed]
- McHugh, D.J. A guide to the seaweed industry. FAO Fish. Tech. Pap. 2003, 441, 105. [Google Scholar]
- Cosenza, V.A.; Navarro, D.A.; Ponce, N.M.A.; Stortz, C.A. Seaweed polysaccharides: Structure and applications. In Industrial Applications of Renewable Biomass Products: Past, Present and Future; Goyanes, S., D’Accorso, N., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 75–89. [Google Scholar]
- Buck, C.B.; Thompson, C.D.; Roberts, J.N.; Muller, M.; Lowy, D.R.; Schiller, J.T. Carrageenan is a potent inhibitor of papilloma virus infection. PLoS Pathog. 2006, 2, 0671–0680. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, S.-X.; Guan, H.-S. The antiviral activities and mechanism of marine polysaccharides: An overview. Mar. Drugs 2012, 10, 2795–2816. [Google Scholar] [CrossRef]
- Luo, M.; Shao, B.; Nie, W.; Wei, X.-W.; Li, Y.-L.; Wang, B.-L.; He, Z.-Y.; Liang, X.; Ye, T.-H.; Wei, Y.-Q. Antitumor and adjuvant activity of lambda-carrageenan by stimulating immune response in cancer immunotherapy. Sci. Rep. 2015, 5, 11062. [Google Scholar] [CrossRef]
- Souza, R.B.; Frota, A.F.; Silva, J.; Alves, C.; Neugebauer, A.Z.; Pinteus, S.; Rodrigues, J.A.G.; Cordeiro, E.M.S.; de Almeida, R.R.; Pedrosa, R.; et al. In vitro activities of kappa-carrageenan isolated from red marine alga Hypnea musciformis: Antimicrobial, anticancer and neuroprotective potential. Int. J. Biol. Macromol. 2018, 112, 1248–1256. [Google Scholar] [CrossRef]
- Cotas, J.; Marques, V.; Afonso, M.B.; Rodrigues, C.M.P.; Pereira, L. Antitumour potential of Gigartina pistillata carrageenans against colorectal cancer stem cell-enriched tumourspheres. Mar. Drugs 2020, 18, 50. [Google Scholar] [CrossRef]
- Yermak, I.M.; Khotimchenko, Y.S. Chemical properties, biological activities and application of carrageenan from red algae. In Recent Advances in Marine Biotechnology; Fingerman, M., Nagabhushanam, R., Eds.; Science Publishing Inc.: New York, NY, USA, 2003; pp. 207–255. [Google Scholar]
- Sun, L.; Wang, C.; Shi, Q.; Ma, C. Preparation of different molecular weight polysaccharides from Porphyridium cruentum and their antioxidant activities. Int. J. Biol. Macromol. 2009, 45, 42–47. [Google Scholar] [CrossRef]
- Sokolova, E.V.; Barabanova, A.O.; Homenko, V.A.; Solov’eva, T.F.; Bogdanovich, R.N.; Yermak, I.M. In vitro and ex vivo studies of antioxidant activity of carrageenans, sulfated polysaccharides from red algae. Bull. Exp. Biol. Med. 2011, 150, 426–428. [Google Scholar] [CrossRef] [PubMed]
- Wijesekara, I.; Pangestuti, R.; Kim, S.-K. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr. Polym. 2011, 84, 14–21. [Google Scholar] [CrossRef]
- Liang, W.; Mao, X.; Peng, X.; Tang, S. Effects of sulfate group in red seaweed polysaccharides on anticoagulant activity and cytotoxicity. Carbohydr. Polym. 2014, 101, 776–785. [Google Scholar] [CrossRef] [PubMed]
- Ariffin, S.H.Z.; Yeen, W.W.; Abidin, I.Z.Z.; Wahab, R.M.A.; Ariffin, Z.Z.; Senafi, S. Cytotoxicity effect of degraded and undegraded kappa and iota carrageenan in human intestine and liver cell lines. BMC Complement. Alter. Med. 2014, 14, 508. [Google Scholar]
- Murad, H.; Ghannam, A.; AL-Ktaifani, M.; Abbas, A.; Hawat, M. Algal sulfated carrageenan inhibits proliferation of MDA-MB-231 cells via apoptosis regulatory genes. Mol. Med. Rep. 2015, 11, 2153–2158. [Google Scholar] [CrossRef]
- Prasedya, E.S.; Miyake, M.; Kobayashi, D.; Hazama, A. Carrageenan delays cell cycle progression in human cancer cells in vitro demonstrated by FUCCI imaging. BMC Complement. Alter. Med. 2016, 16, 270. [Google Scholar] [CrossRef]
- Meeuse, B.J.D.; Andries, M.; Wood, J.A. Floriden starch. J. Exp. Bot. 1960, 11, 129–140. [Google Scholar] [CrossRef]
- Rees, D.A. Estimation of the relative amount of isomeric sulphate esters in some sulphated polysaccharides. J. Chem. Soc. 1961, 5168–5171. [Google Scholar] [CrossRef]
- Miller, I.J.; Blunt, J.W. New 13C NMR methods for determining the structure of algal polysaccharides, part 1. The effect of substitution on the chemical shifts of simple diad galactans. Bot. Mar. 2000, 43, 239–250. [Google Scholar] [CrossRef]
- Van de Velde, F.; Knutsen, S.H.; Usov, A.I.; Rollema, H.S.; Cerezo, A.S. 1H and 13C high resolution NMR spectroscopy of carrageenans: Application in research and industry. Food Sci. Technol. 2002, 13, 73–92. [Google Scholar] [CrossRef]
- Kolender, A.A.; Matulewicz, M.C. Desulfation of sulfated galactans with chlorotrimethylsilane: Characterization of β-carrageenan by 1H NMR spectroscopy. Carbohydr. Res. 2004, 339, 1619–1629. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.; Amado, A.M.; Critchley, A.T.; Van de Velde, F.; Ribeiro-Claro, P.J.A. Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR-ATR and RT-Raman). Food Hydrocoll. 2009, 23, 1903–1909. [Google Scholar] [CrossRef]
- Stancioff, D.J.; Stanley, N.F. Infrared and chemical studies on algal polysaccharides. Proc. Int. Seaweed Symp. 1969, 6, 595–609. [Google Scholar]
- Prado-Fernandez, J.; Rodriguez-Vazquez, J.A.; Tojo, E.; Andrade, J.M. Quantitation of κ-, ι- and λ-carrageenans by mid-infrared spectroscopy and PLS regression. Anal. Chim. Acta 2003, 480, 23–37. [Google Scholar] [CrossRef]
- Van de Velde, F.; Pereira, L.; Rollema, H.S. The revised NMR chemical shift data of carrageenans. Carbohydr. Res. 2004, 339, 2309–2313. [Google Scholar] [CrossRef]
- Yuan, H.; Song, J.; Li, X.; Li, N.; Liu, S. Enhanced immunostimulatory and antitumor activity of different derivatives of κ-carrageenan oligosaccharides from Kappaphycus striatum. J. Appl. Phycol. 2011, 23, 59–65. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, T.; Yang, Y.; Meng, F.; Zhan, F.; Jiang, Q.; Sun, X. Anti-cancer activity of porphyran and carrageenan from red seaweeds. Molecules 2019, 24, 4286. [Google Scholar] [CrossRef]
- Kalitnik, A.A.; Byankina-Barabanova, A.O.; Nagorskaya, V.P.; Reunov, A.V.; Glazunov, V.P.; Solov’eva, T.F.; Yermak, I.M. Low molecular weight derivatives of different carrageenan types and their antiviral activity. J. Appl. Phycol. 2013, 25, 65–72. [Google Scholar] [CrossRef]
- Park, J.T.; Johnson, M.J. A submicrodetermination of glucose. J. Biol. Chem. 1949, 181, 149–151. [Google Scholar] [CrossRef]
- Franken, N.A.P.; Rodermond, H.M.; Stap, J.; Haveman, J.; van Bree, C. Clonogenic assay of cells in vitro. Nat. Protoc. 2006, 1, 2315–2319. [Google Scholar] [CrossRef]
- Ciancia, M.; Matulewicz, M.C.; Tuvikene, R. Structural diversity in galactans from red seaweeds and its influence on rheological properties. Front. Plant Sci. 2020, 11, 559986. [Google Scholar] [CrossRef] [PubMed]
- Talarico, L.B.; Zibetti, R.G.M.; Faria, P.C.S.; Scolaro, L.A.; Duarte, M.E.R.; Noseda, M.D.; Pujol, C.A.; Damonte, E.B. Anti-herpes simplex virus activity of sulfated galactans from the red seaweeds Gymnogongrus griffithsiae and Cryptonemia crenulata. Int. J. Biol. Macromol. 2004, 34, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Caceres, P.J.; Faundez, C.A.; Matsuhiro, B.; Vasquez, J.A. Carrageenophyte identification by second-derivative Fourier transform infrared spectroscopy. J. Appl. Phycol. 1997, 8, 523–527. [Google Scholar] [CrossRef]
- Estevez, J.M.; Ciancia, M.; Cerezo, A.S. DL-Galactan hybrids and agarans from gametophytes of the red seaweed Gymnogongrus torulosus. Carbohydr. Res. 2001, 331, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Song, J.; Li, X.; Li, N.; Dai, J. Immunomodulation and antitumor activity of kappa-carrageenan oligosaccharides. Cancer Lett. 2006, 243, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Calvo, G.H.; Cosenza, V.A.; Sáenz, D.A.; Navarro, D.A.; Stortz, C.A.; Céspedes, M.A.; Mamone, L.A.; Casas, A.G.; Di Venosa, G.M. Disaccharides obtained from carrageenans as potential antitumor agents. Sci. Rep. 2019, 9, 6654. [Google Scholar] [CrossRef]
- Khotimchenko, M.; Tiasto, V.; Kalitnik, A.; Begun, M.; Khotimchenko, R.; Leonteva, E.; Bryukhovetskiy, I.; Khotimchenko, Y. Antitumor potential of carrageenans from marine red algae. Carbohydr. Polym. 2020, 246, 116568. [Google Scholar] [CrossRef]
- Yang, B.; Yu, G.; Zhao, X.; Jiao, G.; Ren, S.; Chai, W. Mechanism of mild acid hydrolysis of galactan polysaccharides with highly ordered disaccharide repeats leading to a complete series of exclusively odd-numbered oligosaccharides. FEBS J. 2009, 276, 2125–2137. [Google Scholar] [CrossRef]
- Fu, Y.; Xie, D.; Zhu, Y.; Zhang, X.; Yue, H.; Zhu, K.; Pi, Z.; Dai, Y. Anti-colorectal cancer effects of seaweed-derived bioactive compounds. Front. Med. 2022, 9, 988507. [Google Scholar] [CrossRef]
- Raman, M.; Doble, M. κ-Carrageenan from marine red algae, Kappaphycus alvarezii—A functional food to prevent colon carcinogenesis. J. Funct. Foods 2015, 15, 354–364. [Google Scholar] [CrossRef]
- Suganya, A.M.; Sanjivkumar, M.; Chandran, M.N.; Palavesam, A.; Immanuel, G. Pharmacological importance of sulphated polysaccharide carrageenan from red seaweed Kappaphycus alvarezii in comparison with commercial carrageenan. Biomed. Pharmacother. 2016, 84, 1300–1312. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Song, J. Preparation, structural characterization and in vitro antitumor activity of kappa-carrageenan oligosaccharide fraction from Kappaphycus striatum. J. Appl. Phycol. 2005, 17, 7–13. [Google Scholar] [CrossRef]
- Jin, Z.; Han, Y.-X.; Han, X.-R. Degraded iota-carrageenan can induce apoptosis in human osteosarcoma cells via the Wnt/β-catenin signaling pathway. Nutr. Cancer 2013, 65, 126–131. [Google Scholar] [CrossRef]
- Perestenko, L.P. The Red Algae of the Far Eastern Seas of Russia; Nauka: St. Petersburg, Russia, 1994; 330p. (In Russian) [Google Scholar]
- Usov, A.I.; Elashvili, M.Y. Quantitative-determination of 3,6-anhydrogalactose derivatives and specific fragmentation of the red algal galactans under reductive hydrolysis conditions. Bioorg. Khim. 1991, 17, 839–848. [Google Scholar]
- Dodgson, K.S.; Price, R.G. A note on the determination of the ester sulphate content of sulphated polysaccharides. J. Biochem. 1962, 84, 106–110. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.L.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Zhu, P.; Zhao, N.; Sheng, D.; Hou, J.; Hao, C.; Yang, X.; Zhu, B.; Zhang, S.; Han, Z.; Wei, L.; et al. Inhibition of growth and metastasis of colon cancer by delivering 5-fluorouracil-loaded pluronic P85 copolymer micelles. Sci. Rep. 2016, 6, 20896. [Google Scholar] [CrossRef]
- Ho, Y.; Suphrom, N.; Daowtak, K.; Potup, P.; Thongsri, Y.; Usuwanthim, K. Anticancer effect of citrus hystrix DC. Leaf extract and its bioactive constituents citronellol and, citronellal on the triple negative breast cancer MDA-MB-231 cell line. Pharmaceuticals 2020, 13, 476. [Google Scholar] [CrossRef]
Sample | PS Yield, % of Dried Algal Weight | Molecular Weight, kDa | Protein Content, % | Content, % of PS Sample Weight | Molar Ratio Gal:AnGal:SO3Na | ||||
---|---|---|---|---|---|---|---|---|---|
Gal | AnGal | Xyl | Glc | SO3Na | |||||
Afg | 21.2 | 309 | 7.0 | 29.2 | 18.1 | 1.5 | 0.0 | 33.8 | 1.0:0.7:1.8 |
Mp | 31.5 | 414 | 2.7 | 36.1 | 22.8 | 0.8 | 0.2 | 26.3 | 1.0:0.7:1.1 |
Mpa | - | - | - | 32.1 | 24.9 | 1.2 | 0.8 | 27.4 | 1.0:0.9:1.3 |
Polysaccharide | Carrageenan Type | MS Residue * | 13C/1H Chemical Shifts (ppm) | |||||
---|---|---|---|---|---|---|---|---|
C-1/H-1 | C-2/H-2 | C-3/H-3 | C-4/H-4 | C-5/H-5 | C-6/H-6 | |||
Mp | kappa | G4S | 102.9/4.64 | 70.0/3.60 | 79.2/3.99 | 74.4/4.84 | 75.3/3.80 | 61.8/3.80–3.70 |
DA | 95.5/5.09 | 70.0/4.05 | 79.6/4.52 | 77.5/4.60 | 70.2/4.20–3.62 | |||
iota | G4S’ | 102.7/4.64 | 70.0/3.60 | 77.5/3.99 | 72.6/4.89 | 75.3/3.80 | 61.8/3.80–3.70 | |
DA2S | 92.4/5.30 | 78.9/4.67 | 79.1/4.84 | 77.5/4.67 | 70.2/4.12–4.27 | |||
Afg | kappa | G4S | 103.1/4.64 | 70.0/3.60 | 79.0/3.99 | 74.3/4.87 | 75.8/3.80 | 62.3/3.80–3.70 |
DA | 96.2/5.09 | 70.3/4.14 | 79.7/4.52 | 78.7/4.62 | 77.3/4.66 | 70.1/4.20–3.62 | ||
iota | G4S’ | 102.9/4.64 | 70.3/3.60 | 77.8/3.99 | 72.9/4.89 | 75.8/3.79 | 62.3/3.80–3.70 | |
DA2S | 92.9/5.30 | 77.9/4.65 | 78.8/4.82 | 77.9/4.76 | 76.9/4.75 | 70.1/4.12–4.27 | ||
beta | G | 103.2/4.61 | 70.1/3.62 | 80.6/3.86 | 66.7/4.14 | 76.1/3.70 | 62.3/3.80–3.70 | |
DA’ | 95.9/5.07 | 70.8/4.08 | 79.3/4.53 | 78.7/4.62 | 77.3/4.66 | 70.1/4.20–3.62 |
Hydrolysis Time, h | Sample Name | SO3Na Content, % of PS Sample Weight | Molecular Weight *, kDa | 1H NMR Data, Disaccharide Units Ratio |
---|---|---|---|---|
0.5 | Afgh1 | 32.0 | 184 | ι (5.30 ppm) (+); κ (5.10 ppm) (+); ν (5.50 ppm) (−) ι:κ = 2.4:1.0 |
1.0 | Afgh2 | 33.9 | 160 | ι (5.30 ppm) (+); κ (5.10 ppm) (+); ν (5.50 ppm) (−) ι:κ = 2.3:1.0 |
2.0 | Afgh3 | 33.7 | 112 | ι (5.30 ppm) (+); κ (5.10 ppm) (+); ν (5.50 ppm) (−) ι:κ = 2.8:1.0 |
4.0 | Afgh4 | 31.2 | 56 | ι (5.30 ppm) (+); κ (5.10 ppm) (+); ν (5.50 ppm) (−) ι:κ = 2.5:1.0 |
6.0 | Afgh5 | 31.9 | 22 | ι (5.30 ppm) (+); κ (5.10 ppm) (+); ν (5.50 ppm) (−) ι:κ = 2.5:1.0 |
0.5 | Mph1 | 25.9 | 219 | κ (5.10 ppm) (+); ι (5.30 ppm) (+); μ (5.26 ppm) (−); ν (5.30 ppm) (−); ι:κ = 1.0:3.0 |
1.0 | Mph2 | 25.3 | 216 | κ (5.10 ppm) (+); ι (5.30 ppm) (+); μ (5.26 ppm) (−); ν (5.30 ppm) (−); ι:κ = 1.0:2.9 |
2.0 | Mph3 | 23.2 | 150 | κ (5.10 ppm) (+); ι (5.30 ppm) (+); μ (5.26 ppm) (−); ν (5.30 ppm) (−); ι:κ = 1.0:3.1 |
4.0 | Mph4 | 26.4 | 81 | κ (5.10 ppm) (+); ι (5.30 ppm) (+); μ (5.26 ppm) (−); ν (5.30 ppm) (−); ι:κ = 1.0:3.1 |
6.0 | Mph5 | 25.9 | 25 | κ (5.10 ppm) (+); ι (5.30 ppm) (+); μ (5.26 ppm) (−); ν (5.30 ppm) (−); ι:κ = 1.0:3.2 |
Sample | Yield, % of PS Sample Weight | Molecular Weight *, kDa | Content, % of PS Sample Weight | Molar Ratio Gal:AnGal:SO3Na | ||||
---|---|---|---|---|---|---|---|---|
Gal | AnGal | Glc | Xyl | SO3Na | ||||
Afg-OS | 62.8 | 9.1 | 35.8 | 13.9 | 0.9 | 1.9 | 26.4 | 1.0:0.4:1.2 |
Mp-OS | 73.5 | 2.4 | 38.7 | 19.2 | 1.1 | 0.0 | 27.4 | 1.0:0.6:1.1 |
Compounds | DLD-1 | HT-29 | HCT-116 | HEK-293 | ||||
---|---|---|---|---|---|---|---|---|
24 h | 72 h | 24 h | 72 h | 24 h | 72 h | 24 h | 72 h | |
Afg-OS | - | 25.3 | - | 43.4 | - | 38.2 | - | 41.6 |
Mp-OS | - | 34.3 | - | 32.2 | - | 48.4 | - | 49.8 |
Afg | - | 25.2 | - | 34.7 | - | 21.5 | - | 41.1 |
Mp | - | 21.2 | - | 5.4 | - | 25.7 | - | 35.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kravchenko, A.O.; Menchinskaya, E.S.; Isakov, V.V.; Glazunov, V.P.; Yermak, I.M. Carrageenans and Their Oligosaccharides from Red Seaweeds Ahnfeltiopsis flabelliformis and Mastocarpus pacificus (Phyllophoraceae) and Their Antiproliferative Activity. Int. J. Mol. Sci. 2023, 24, 7657. https://doi.org/10.3390/ijms24087657
Kravchenko AO, Menchinskaya ES, Isakov VV, Glazunov VP, Yermak IM. Carrageenans and Their Oligosaccharides from Red Seaweeds Ahnfeltiopsis flabelliformis and Mastocarpus pacificus (Phyllophoraceae) and Their Antiproliferative Activity. International Journal of Molecular Sciences. 2023; 24(8):7657. https://doi.org/10.3390/ijms24087657
Chicago/Turabian StyleKravchenko, Anna O., Ekaterina S. Menchinskaya, Vladimir V. Isakov, Valery P. Glazunov, and Irina M. Yermak. 2023. "Carrageenans and Their Oligosaccharides from Red Seaweeds Ahnfeltiopsis flabelliformis and Mastocarpus pacificus (Phyllophoraceae) and Their Antiproliferative Activity" International Journal of Molecular Sciences 24, no. 8: 7657. https://doi.org/10.3390/ijms24087657
APA StyleKravchenko, A. O., Menchinskaya, E. S., Isakov, V. V., Glazunov, V. P., & Yermak, I. M. (2023). Carrageenans and Their Oligosaccharides from Red Seaweeds Ahnfeltiopsis flabelliformis and Mastocarpus pacificus (Phyllophoraceae) and Their Antiproliferative Activity. International Journal of Molecular Sciences, 24(8), 7657. https://doi.org/10.3390/ijms24087657