Sex-Specific Features of the Correlation between GWAS-Noticeable Polymorphisms and Hypertension in Europeans of Russia
Abstract
:1. Introduction
2. Results
2.1. Intended Functionality of HTN-Associated SNPs in Men and Women Cohorts
2.1.1. Prediction of the Possible SNPs Link with Amino Acid Substitution and Resulting with Human Protein Structure/Function
2.1.2. Epigenetic Changes of DNA Determined by HTN-Related Loci
2.1.3. Expression Quantitative Traits (eQTL) Associated with HTN-Significant SNPs
2.1.4. Splicing Quantitative Traits (sQTL) Associated with HTN-Significant SNPs
2.1.5. HTN-Associated Gene Pathways
3. Discussion
4. Materials and Methods
4.1. Study Subjects
4.2. Laboratory DNA Testing
4.3. Association Statistical Analysis
4.4. Definition of the Alleged Functional Ability of HTN-Related Polymorphisms and Genes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef] [PubMed]
- Forouzanfar, M.H.; Liu, P.; Roth, G.A.; Ng, M.; Biryukov, S.; Marczak, L.; Alexander, L.; Estep, K.; Hassen Abate, K.; Akinyemiju, T.F.; et al. Global Burden of Hypertension and Systolic Blood Pressure of at Least 110 to 115 mm Hg, 1990–2015. JAMA 2017, 317, 165–182. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.M.; Danaei, G.; Farzadfar, F.; Stevens, G.A.; Woodward, M.; Wormser, D.; Kaptoge, S.; Whitlock, G.; Qiao, Q.; Lewington, S.; et al. The age-specific quantitative effects of metabolic risk factors on cardiovascular diseases and diabetes: A pooled analysis. PLoS ONE 2013, 8, e65174. [Google Scholar] [CrossRef] [PubMed]
- Muromtseva, G.A.; Kontsevaya, A.V.; Konstantinov, V.V.; Artamonova, G.V.; Gatagonova, T.M.; Duplyakov, D.V.; Efanov, A.Y.; Zhernakova, Y.V.; Il’in, V.A.; Konradi, A.O.; et al. The prevalence of non-infectious diseases risk factors in Russian population in 2012–2013 years. The results of ECVDRF. Cardiovasc. Ther. Prev. 2014, 13, 4–11. (In Russian) [Google Scholar] [CrossRef]
- Boytsov, S.A.; Balanova, Y.A.; Shalnova, S.A.; Deev, A.D.; Artamonova, G.V.; Gatagonova, T.M.; Duplyakov, D.V.; Efanov, A.Y.; Zhernakova, Y.V.; Konradi, A.O.; et al. Arterial hypertension among individuals of 25–64 years old: Preva-lence, awareness, treatment and control. By the data from ECCD. Cardiovasc. Ther. Prev. 2014, 13, 4–14. (In Russian) [Google Scholar] [CrossRef]
- NCD Risk Factor Collaboration. Worldwide trends in blood pressure from 1975 to 2015: A pooled analysis of 1479 population-based measurement studies with 19.1 million participants. Lancet 2017, 389, 37–55. [Google Scholar] [CrossRef]
- Faulkner, J.L.; Belin de Chantemèle, E.J. Sex hormones, aging and cardiometabolic syndrome. Biol. Sex Differ. 2019, 10, 30. [Google Scholar] [CrossRef]
- GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1659–1724. [Google Scholar] [CrossRef]
- Sung, Y.J.; Winkler, T.W.; de Las Fuentes, L.; Bentley, A.R.; Brown, M.R.; Kraja, A.T.; Schwander, K.; Ntalla, I.; Guo, X.; Franceschini, N.; et al. A Large-Scale Multi-ancestry Genome-wide Study Accounting for Smoking Behavior Identifies Multiple Significant Loci for Blood Pressure. Am. J. Hum. Genet. 2018, 102, 375–400. [Google Scholar] [CrossRef]
- Feitosa, M.F.; Kraja, A.T.; Chasman, D.I.; Sung, Y.J.; Winkler, T.W.; Ntalla, I.; Guo, X.; Franceschini, N.; Heng, C.K.; Sim, X.; et al. Novel genetic associations for blood pressure identified via gene-alcohol interaction in up to 570K individuals across multipleancestries. PLoS ONE 2018, 13, e0198166. [Google Scholar] [CrossRef]
- Rotimi, C.N.; Cooper, R.S.; Cao, G.; Ogunbiyi, O.; Ladipo, M.; Owoaje, E.; Ward, R. Maximum-likelihood generalized heritability estimate for blood pressure in Nigerian families. Hypertension 1999, 33, 874–878. [Google Scholar] [CrossRef]
- Kupper, N.; Willemsen, G.; Riese, H.; Posthuma, D.; Boomsma, D.I.; de Geus, E.J. Heritability of daytime ambulatory blood pressure in an extended twin design. Hypertension 2005, 45, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Tobin, M.D.; Raleigh, S.M.; Newhouse, S.; Braund, P.; Bodycote, C.; Ogleby, J.; Cross, D.; Gracey, J.; Hayes, S.; Smith, T.; et al. Association of WNK1 gene polymorphisms and haplotypes with ambulatory blood pressure in the general population. Circulation 2005, 112, 3423–3429. [Google Scholar] [CrossRef] [PubMed]
- Gu, D.; Rice, T.; Wang, S.; Yang, W.; Gu, C.; Chen, C.S.; Hixson, J.E.; Jaquish, C.E.; Yao, Z.J.; Liu, D.P.; et al. Heritability of blood pressure responses to dietary sodium and potassium intake in a Chinese population. Hypertension 2007, 50, 116–122. [Google Scholar] [CrossRef]
- Ehret, G.B. Genome-wide association studies: Contribution of genomics to understanding blood pressure and essential hypertension. Curr. Hypertens. Rep. 2010, 12, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Ehret, G.B.; Caulfield, M.J. Genes for blood pressure: An opportunity to understand hypertension. Eur. Heart J. 2013, 34, 951–961. [Google Scholar] [CrossRef]
- Chen, J.; Wang, W.; Li, Z.; Xu, C.; Tian, X.; Zhang, D. Heritability and genome-wide association study of blood pressure in Chinese adult twins. Mol. Genet. Genomic. Med. 2021, 9, e1828. [Google Scholar] [CrossRef]
- International Consortium for Blood Pressure Genome-Wide Association Studies; Ehret, G.B.; Munroe, P.B.; Rice, K.M.; Bochud, M.; Johnson, A.D.; Chasman, D.I.; Smith, A.V.; Tobin, M.D.; Verwoert, G.C.; et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 2011, 478, 103–109. [Google Scholar] [CrossRef]
- Giri, A.; Hellwege, J.N.; Keaton, J.M.; Park, J.; Qiu, C.X.; Warren, H.R.; Torstenson, E.S.; Kovesdy, C.P.; Sun, Y.V.; Wilson, O.D.; et al. Trans-ethnic association study of blood pressure determinants in over 750,000 individuals. Nat. Genet. 2019, 51, 51–62. [Google Scholar] [CrossRef]
- German, C.A.; Sinsheimer, J.S.; Klimentidis, Y.C.; Zhou, H.; Zhou, J.J. Ordered multinomial regression for genetic association analysis of ordinal phenotypes at Biobank scale. Genet. Epidemiol. 2019, 44, 248–260. [Google Scholar] [CrossRef]
- Jeong, H.; Jin, H.-S.; Kim, S.-S.; Shin, D. Identifying Interactions between Dietary Sodium, Potassium, Sodium–Potassium Ratios, and FGF5 rs16998073 Variants and Their Associated Risk for Hypertension in Korean Adults. Nutrients 2020, 12, 2121. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.B.; Park, B.; Hong, K.W.; Jung, D.H. Genome-Wide Association of New-Onset Hypertension According to Renin Concentration: The Korean Genome and Epidemiology Cohort Study. J. Cardiovasc. Dev. Dis. 2022, 9, 104. [Google Scholar] [CrossRef]
- Hartiala, J.A.; Han, Y.; Jia, Q.; Hilser, J.R.; Huang, P.; Gukasyan, J.; Schwartzman, W.S.; Cai, Z.; Biswas, S.; Trégouët, D.A.; et al. Genome-wide analysis identifies novel susceptibility loci for myocardial infarction. Eur. Heart J. 2021, 42, 919–933. [Google Scholar] [CrossRef] [PubMed]
- Kato, N.; Loh, M.; Takeuchi, F.; Verweij, N.; Wang, X.; Zhang, W.; Kelly, T.N.; Saleheen, D.; Lehne, B.; Leach, I.M.; et al. Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation. Nat. Genet. 2015, 47, 1282–1293. [Google Scholar] [CrossRef]
- Koyama, S.; Ito, K.; Terao, C.; Akiyama, M.; Horikoshi, M.; Momozawa, Y.; Matsunaga, H.; Ieki, H.; Ozaki, K.; Onouchi, Y.; et al. Population-specific and trans-ancestry genome-wide analyses identify distinct and shared genetic risk loci for coronary artery disease. Nat. Genet. 2020, 52, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- Levy, D.; Ehret, G.B.; Rice, K.; Verwoert, G.C.; Launer, L.J.; Dehghan, A.; Glazer, N.L.; Morrison, A.C.; Johnson, A.D.; Aspelund, T.; et al. Genome-wide association study of blood pressure and hypertension. Nat. Genet. 2009, 41, 677–687. [Google Scholar] [CrossRef]
- Nelson, C.P.; Goel, A.; Butterworth, A.S.; Kanoni, S.; Webb, T.R.; Marouli, E.; Zeng, L.; Ntalla, I.; Lai, F.Y.; Hopewell, J.C.; et al. Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nat. Genet. 2017, 49, 1385–1391. [Google Scholar] [CrossRef]
- Nikpay, M.; Goel, A.; Won, H.H.; Hall, L.M.; Willenborg, C.; Kanoni, S.; Saleheen, D.; Kyriakou, T.; Nelson, C.P.; Hopewell, J.C.; et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 2015, 47, 1121–1130. [Google Scholar] [CrossRef]
- Shungin, D.; Winkler, T.W.; Croteau-Chonka, D.C.; Ferreira, T.; Locke, A.E.; Mägi, R.; Strawbridge, R.J.; Pers, T.H.; Fischer, K.; Justice, A.E.; et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 2015, 518, 187–196. [Google Scholar] [CrossRef]
- Tachmazidou, I.; Süveges, D.; Min, J.L.; Ritchie, G.R.S.; Steinberg, J.; Walter, K.; Iotchkova, V.; Schwartzentruber, J.; Huang, J.; Memari, Y.; et al. Whole-Genome Sequencing Coupled to Imputation Discovers Genetic Signals for Anthropometric Traits. Am. J. Hum. Genet. 2017, 100, 865–884. [Google Scholar] [CrossRef]
- Takeuchi, F.; Akiyama, M.; Matoba, N.; Katsuya, T.; Nakatochi, M.; Tabara, Y.; Narita, A.; Saw, W.Y.; Moon, S.; Spracklen, C.N.; et al. Interethnic analyses of blood pressure loci in populations of East Asian and European descent. Nat. Commun. 2018, 9, 5052. [Google Scholar] [CrossRef] [PubMed]
- Wain, L.V.; Verwoert, G.C.; O’Reilly, P.F.; Shi, G.; Johnson, T.; Johnson, A.D.; Bochud, M.; Rice, K.M.; Henneman, P.; Smith, A.V.; et al. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nat. Genet. 2011, 43, 1005–1011. [Google Scholar] [CrossRef]
- Zhou, W.; Nielsen, J.B.; Fritsche, L.G.; Dey, R.; Gabrielsen, M.E.; Wolford, B.N.; LeFaive, J.; VandeHaar, P.; Gagliano, S.A.; Gifford, A.; et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 2018, 50, 1335–1341. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Wang, X.; Li, X.; Lin, Y.; Shen, S.; Liu, C.L.; Hobbs, B.D.; Hasegawa, K.; Liang, L.; International COPD Genetics Consortium; et al. Genetic overlap of chronic obstructive pulmonary disease and cardiovascular disease-related traits: A large-scale genome-wide cross-trait analysis. Respir. Res. 2019, 20, 64. [Google Scholar] [CrossRef]
- Bushueva, O.; Solodilova, M.; Churnosov, M.; Ivanov, V.; Polonikov, A. The Flavin-containing monooxygenase 3 gene and essential hypertension: The joint effect of polymorphism E158K and cigarette smoking on disease susceptibility. Int. J. Hypertens. 2014, 2014, 712169. [Google Scholar] [CrossRef] [PubMed]
- Polonikov, A.V.; Ushachev, D.V.; Ivanov, V.P.; Churnosov, M.I.; Freidin, M.B.; Ataman, A.V.; Harbuzova, V.Y.; Bykanova, M.A.; Bushueva, O.Y.; Solodilova, M.A. Altered erythrocyte membrane protein composition mirrors pleiotropic effects of hypertension susceptibility genes and disease pathogenesis. J. Hypertens. 2015, 33, 2265–2277. [Google Scholar] [CrossRef]
- Polonikov, A.V.; Bushueva, O.Y.; Bulgakova, I.V.; Freidin, M.B.; Churnosov, M.I.; Solodilova, M.A.; Shvetsov, Y.D.; Ivanov, V.P. A comprehensive contribution of genes for aryl hydrocarbon receptor signaling pathway to hypertension susceptibility. Pharm. Genom. 2017, 27, 57–69. [Google Scholar] [CrossRef]
- Polonikov, A.; Bykanova, M.; Ponomarenko, I.; Sirotina, S.; Bocharova, A.; Vagaytseva, K.; Stepanov, V.; Churnosov, M.; Bushueva, O.; Solodilova, M.; et al. The contribution of CYP2C gene subfamily involved in epoxygenase pathway of arachidonic acids metabolism to hypertension susceptibility in Russian population. Clin. Exp. Hypertens. 2017, 39, 306–311. [Google Scholar] [CrossRef]
- Fan, W.; Qu, X.; Li, J.; Wang, X.; Bai, Y.; Cao, Q.; Ma, L.; Zhou, X.; Zhu, W.; Liu, W.; et al. Associations between polymorphisms of the ADIPOQ gene and hypertension risk: A systematic and meta-analysis. Sci. Rep. 2017, 9, 41683. [Google Scholar] [CrossRef]
- Moskalenko, M.I.; Milanova, S.N.; Ponomarenko, I.V.; Polonikov, A.V.; Churnosov, M.I. Study of associations of polymorphism of matrix metalloproteinases genes with the development of arterial hypertension in men. Kardiologiia 2019, 59, 31–39. [Google Scholar] [CrossRef]
- Zhang, H.; Pushkarev, B.; Zhou, J.; Mu, Y.; Bolshakova, O.; Shrestha, S.; Wang, N.; Jian, B.; Jin, M.; Zhang, K.; et al. CACNA1C rs1006737 SNP increases the risk of essential hypertension in both Chinese Han and ethnic Russian people of Northeast Asia. Medicine 2021, 100, e24825. [Google Scholar] [CrossRef] [PubMed]
- Moskalenko, M.; Ponomarenko, I.; Reshetnikov, E.; Dvornyk, V.; Churnosov, M. Polymorphisms of the matrix metalloproteinase genes are associated with essential hypertension in a Caucasian population of Central Russia. Sci. Rep. 2021, 11, 5224. [Google Scholar] [CrossRef]
- Takahashi, Y.; Yamazaki, K.; Kamatani, Y.; Kubo, M.; Matsuda, K.; Asai, S. A genome-wide association study identifies a novel candidate locus at the DLGAP1 gene with susceptibility to resistant hypertension in the Japanese population. Sci. Rep. 2021, 11, 19497. [Google Scholar] [CrossRef] [PubMed]
- Alsamman, A.M.; Almabrazi, H.; Zayed, H. Whole-Genome Sequencing of 100 Genomes Identifies a Distinctive Genetic Susceptibility Profile of Qatari Patients with Hypertension. J. Pers. Med. 2022, 12, 722. [Google Scholar] [CrossRef]
- Moskalenko, M.I.; Polonikov, A.V.; Sorokina, I.N.; Yakunchenko, T.I.; Krikun, Y.N.; Ponomarenko, I.V. Gene-environment interactions between polymorphic loci of MMPs and obesity in essential hypertension in women. Probl. Endocrinol. 2019, 65, 425–435. [Google Scholar] [CrossRef]
- Moskalenko, M.I.; Ponomarenko, I.V.; Polonikov, A.V.; Sorokina, I.N.; Batlutskaya, I.V.; Churnosov, M.I. The role of obesity in the implementation of genetic predisposition to the development of essential hypertension in men. Obes. Metab. 2019, 16, 66–72. [Google Scholar] [CrossRef]
- Moskalenko, M.I.; Ponomarenko, I.V.; Verzilina, I.N.; Efremova, O.A.; Polonikov, A.V. The role of gene-gene and geneenvironment interactions of polymorphic locuses of MMPs in the formation of hypertension in women. Arter. Gipertenz. Arter. Hypertens. 2020, 26, 518–525. [Google Scholar] [CrossRef]
- Moskalenko, M.I.; Ponomarenko, I.V.; Milanova, S.N.; Verzilina, I.N.; Efremova, O.A.; Polonikov, A.V. Polymorphic locus rs1061624 of the TNFR2 gene is associated with the development of arterial hypertension in males. Kardiologiia 2020, 60, 78–83. [Google Scholar] [CrossRef]
- Williams, R.R.; Hunt, S.C.; Hopkins, P.N.; Wu, L.L.; Hasstedt, S.J.; Berry, T.D.; Barlow, G.K.; Stults, B.M.; Schumacher, M.C.; Ludwig, E.H. Genetic basis of familial dyslipidemia and hypertension: 15-year results from Utah. Am. J. Hypertens. 1993, 6, 319S–327S. [Google Scholar] [CrossRef]
- Brown, M.J. The causes of essential hypertension. Br. J. Clin. Pharmacol. 1996, 42, 21–27. [Google Scholar] [CrossRef]
- Evangelou, E.; Warren, H.R.; Mosen-Ansorena, D.; Mifsud, B.; Pazoki, R.; Gao, H.; Ntritsos, G.; Dimou, N.; Cabrera, C.P.; Karaman, I.; et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat. Genet. 2018, 50, 1412–1425. [Google Scholar] [CrossRef] [PubMed]
- Ruth, K.S.; Day, F.R.; Tyrrell, J.; Thompson, D.J.; Wood, A.R.; Mahajan, A.; Beaumont, R.N.; Wittemans, L.; Martin, S.; Busch, A.S.; et al. Using human genetics to understand the disease impacts of testosterone in men and women. Nat. Med. 2020, 26, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Sinnott-Armstrong, N.; Naqvi, S.; Rivas, M.; Pritchard, J.K. GWAS of three molecular traits highlights core genes and pathways alongside a highly polygenic background. Elife 2021, 10, e58615. [Google Scholar] [CrossRef]
- Schmitz, D.; Ek, W.E.; Berggren, E.; Höglund, J.; Karlsson, T.; Johansson, Å. Genome-wide Association Study of Estradiol Levels and the Causal Effect of Estradiol on Bone Mineral Density. J. Clin. Endocrinol. Metab. 2021, 106, e4471–e4486, Correction appears in J. Clin. Endocrinol. Metab. 26 October 2021. [Google Scholar] [CrossRef] [PubMed]
- Heid, I.M.; Jackson, A.U.; Randall, J.C.; Winkler, T.W.; Qi, L.; Steinthorsdottir, V.; Thorleifsson, G.; Zillikens, M.C.; Speliotes, E.K.; Mägi, R.; et al. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat. Genet. 2010, 42, 949–960, correction appears in Nat. Genet. 2011, 43, 1164. [Google Scholar] [CrossRef]
- Randall, J.C.; Winkler, T.W.; Kutalik, Z.; Berndt, S.I.; Jackson, A.U.; Monda, K.L.; Kilpeläinen, T.O.; Esko, T.; Mägi, R.; Li, S.; et al. Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits. PLoS Genet. 2013, 9, e1003500. [Google Scholar] [CrossRef]
- Locke, A.E.; Kahali, B.; Berndt, S.I.; Justice, A.E.; Pers, T.H.; Day, F.R.; Powell, C.; Vedantam, S.; Buchkovich, M.L.; Yang, J.; et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 2015, 518, 197–206. [Google Scholar] [CrossRef]
- Pulit, S.L.; Karaderi, T.; Lindgren, C.M. Sexual dimorphisms in genetic loci linked to body fat distribution. Biosci. Rep. 2017, 37, BSR20160184. [Google Scholar] [CrossRef]
- Flynn, E.; Tanigawa, Y.; Rodriguez, F.; Altman, R.B.; Sinnott-Armstrong, N.; Rivas, M.A. Sex-specific genetic effects across biomarkers. Eur. J. Hum. Genet. 2021, 29, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, P.H.; Cole, J.B.; Leong, A.; Florez, J.C.; Mercader, J.M. 139-OR: Large-scale sex-stratified additive and recessive GWAS identifies novel large-effect variants and improves polygenic prediction for type 2 diabetes. Diabetes 2022, 71, 139-OR. [Google Scholar] [CrossRef]
- Zhao, J.V.; Luo, S.; Schooling, C.M. Sex-specific Mendelian randomization study of genetically predicted insulin and cardiovascular events in the UK Biobank. Commun. Biol. 2019, 2, 332. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.V.; Schooling, C.M. Genetically predicted sex hormone binding globulin and ischemic heart disease in men and women: A univariable and multivariable Mendelian randomization study. Sci. Rep. 2021, 11, 23172. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Konja, D.; Wang, L.; Wang, Y. Sex Differences in Adiposity and Cardiovascular Diseases. Int. J. Mol. Sci. 2022, 23, 9338. [Google Scholar] [CrossRef]
- Leinone, J.T.; Mars, N.; Lehtonen, L.E.; Ahola-Olli, A.; Ruotsalainen, S.; Lehtimäki, T.; Kähönen, M.; Raitakari, O.; FinnGen Consortium; Piltonen, T.; et al. Genetic analyses implicate complex links between adult testosterone levels and health and disease. Commun. Med. 2023, 3, 4. [Google Scholar] [CrossRef] [PubMed]
- de Ruiter, S.C.; Schmidt, A.F.; Grobbee, D.E.; den Ruijter, H.M.; Peters, S.A.E. Sex-specific Mendelian randomisation to assess the causality of sex differences in the effects of risk factors and treatment: Spotlight on hypertension. J. Hum. Hypertens. 2023, 2023, 1–7. [Google Scholar] [CrossRef]
- Surendran, P.; Drenos, F.; Young, R.; Warren, H.; Cook, J.P.; Manning, A.K.; Grarup, N.; Sim, X.; Barnes, D.R.; Witkowska, K.; et al. Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat. Genet. 2016, 48, 1151–1161. [Google Scholar] [CrossRef]
- Liu, C.; Kraja, A.T.; Smith, J.A.; Brody, J.A.; Franceschini, N.; Bis, J.C.; Rice, K.; Morrison, A.C.; Lu, Y.; Weiss, S.; et al. Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nat. Genet. 2016, 48, 1162–1170. [Google Scholar] [CrossRef]
- Ehret, G.B.; Ferreira, T.; Chasman, D.I.; Jackson, A.U.; Schmidt, E.M.; Johnson, T.; Thorleifsson, G.; Luan, J.; Donnelly, L.A.; Kanoni, S.; et al. The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat. Genet. 2016, 48, 1171–1184. [Google Scholar] [CrossRef]
- Hoffmann, T.J.; Ehret, G.B.; Nandakumar, P.; Ranatunga, D.; Schaefer, C.; Kwok, P.Y.; Iribarren, C.; Chakravarti, A.; Risch, N. Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation. Nat. Genet. 2017, 49, 54–64. [Google Scholar] [CrossRef]
- Wain, L.V.; Vaez, A.; Jansen, R.; Joehanes, R.; van der Most, P.J.; Erzurumluoglu, A.M.; O’Reilly, P.F.; Cabrera, C.P.; Warren, H.R.; Rose, L.M.; et al. Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets from Blood and the Kidney. Hypertension 2017, 70, e4–e19. [Google Scholar] [CrossRef]
- Pichler, I.; Minelli, C.; Sanna, S.; Tanaka, T.; Schwienbacher, C.; Naitza, S.; Porcu, E.; Pattaro, C.; Busonero, F.; Zanon, A.; et al. Identification of a common variant in the TFR2 gene implicated in the physiological regulation of serum iron levels. Hum. Mol. Genet. 2011, 20, 1232–1240. [Google Scholar] [CrossRef] [PubMed]
- Raffield, L.M.; Louie, T.; Sofer, T.; Jain, D.; Ipp, E.; Taylor, K.D.; Papanicolaou, G.J.; Avilés-Santa, L.; Lange, L.A.; Laurie, C.C.; et al. Genome-wide association study of iron traits and relation to diabetes in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL): Potential genomic intersection of iron and glucose regulation? Hum. Mol. Genet. 2017, 26, 1966–1978. [Google Scholar] [CrossRef] [PubMed]
- Astle, W.J.; Elding, H.; Jiang, T.; Allen, D.; Ruklisa, D.; Mann, A.L.; Mead, D.; Bouman, H.; Riveros-Mckay, F.; Kostadima, M.A.; et al. The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease. Cell 2016, 167, 1415–1429.e19. [Google Scholar] [CrossRef]
- Pilling, L.C.; Atkins, J.L.; Duff, M.O.; Beaumont, R.N.; Jones, S.E.; Tyrrell, J.; Kuo, C.L.; Ruth, K.S.; Tuke, M.A.; Yaghootkar, H.; et al. Red blood cell distribution width: Genetic evidence for aging pathways in 116,666 volunteers. PLoS ONE 2017, 12, e0185083. [Google Scholar] [CrossRef] [PubMed]
- Kanai, M.; Akiyama, M.; Takahashi, A.; Matoba, N.; Momozawa, Y.; Ikeda, M.; Iwata, N.; Ikegawa, S.; Hirata, M.; Matsuda, K.; et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat. Genet. 2018, 50, 390–400. [Google Scholar] [CrossRef]
- Oskarsson, G.R.; Oddsson, A.; Magnusson, M.K.; Kristjansson, R.P.; Halldorsson, G.H.; Ferkingstad, E.; Zink, F.; Helgadottir, A.; Ivarsdottir, E.V.; Arnadottir, G.A.; et al. Predicted loss and gain of function mutations in ACO1 are associated with erythropoiesis. Commun. Biol. 2020, 3, 189. [Google Scholar] [CrossRef]
- Vuckovic, D.; Bao, E.L.; Akbari, P.; Lareau, C.A.; Mousas, A.; Jiang, T.; Chen, M.H.; Raffield, L.M.; Tardaguila, M.; Huffman, J.E.; et al. The Polygenic and Monogenic Basis of Blood Traits and Diseases. Cell 2020, 182, 1214–1231.e11. [Google Scholar] [CrossRef]
- Sakaue, S.; Kanai, M.; Tanigawa, Y.; Karjalainen, J.; Kurki, M.; Koshiba, S.; Narita, A.; Konuma, T.; Yamamoto, K.; Akiyama, M.; et al. A cross-population atlas of genetic associations for 220 human phenotypes. Nat. Genet. 2021, 53, 1415–1424. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Spracklen, C.N.; Marenne, G.; Varshney, A.; Corbin, L.J.; Luan, J.; Willems, S.M.; Wu, Y.; Zhang, X.; Horikoshi, M.; et al. The trans-ancestral genomic architecture of glycemic traits. Nat. Genet. 2021, 53, 840–860. [Google Scholar] [CrossRef]
- Wu, Y.; Byrne, E.M.; Zheng, Z.; Kemper, K.E.; Yengo, L.; Mallett, A.J.; Yang, J.; Visscher, P.M.; Wray, N.R. Genome-wide association study of medication-use and associated disease in the UK Biobank. Nat. Commun. 2019, 10, 1891. [Google Scholar] [CrossRef] [PubMed]
- Gill, D.; Benyamin, B.; Moore, L.S.P.; Monori, G.; Zhou, A.; Koskeridis, F.; Evangelou, E.; Laffan, M.; Walker, A.P.; Tsilidis, K.K.; et al. Associations of genetically determined iron status across the phenome: A mendelian randomization study. PLoS Med. 2019, 16, e1002833. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Pikhart, H.; Tamosiunas, A.; Kubinova, R.; Capkova, N.; Malyutina, S.; Pająk, A.; Bobak, M. Prevalence, awareness, treatment and control of hypertension, diabetes and hypercholesterolemia, and associated risk factors in the Czech Republic, Russia, Poland and Lithuania: A cross-sectional study. BMC Public Health 2022, 22, 883. [Google Scholar] [CrossRef]
- Lule, S.A.; Mentzer, A.J.; Namara, B.; Muwenzi, A.G.; Nassanga, B.; Kizito, D.; Akurut, H.; Lubyayi, L.; Tumusiime, J.; Zziwa, C.; et al. A genome-wide association and replication study of blood pressure in Ugandan early adolescents. Mol. Genet. Genomic. Med. 2019, 7, e00950. [Google Scholar] [CrossRef] [PubMed]
- Schneider-Hohendorf, T.; Görlich, D.; Savola, P.; Kelkka, T.; Mustjoki, S.; Gross, C.C.; Owens, G.C.; Klotz, L.; Dornmair, K.; Wiendl, H.; et al. Sex bias in MHC I-associated shaping of the adaptive immune system. Proc. Natl. Acad. Sci. USA 2018, 115, 2168–2173. [Google Scholar] [CrossRef]
- Mikolajczyk, T.P.; Guzik, T.J. Adaptive Immunity in Hypertension. Curr. Hypertens. Rep. 2019, 21, 68. [Google Scholar] [CrossRef]
- Li, J.X.; Tang, B.P.; Sun, H.P.; Feng, M.; Cheng, Z.H.; Niu, W.Q. Interacting contribution of the five polymorphisms in three genes of Hsp70 family to essential hypertension in Uygur ethnicity. Cell Stress Chaperones 2009, 14, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Iturbe, B.; Pons, H.; Johnson, R.J. Role of the Immune System in Hypertension. Physiol. Rev. 2017, 97, 1127–1164. [Google Scholar] [CrossRef]
- Rodriguez-Iturbe, B.; Lanaspa, M.A.; Johnson, R.J. The role of autoimmune reactivity induced by heat shock protein 70 in the pathogenesis of essential hypertension. Br. J. Pharmacol. 2019, 76, 1829–1838. [Google Scholar] [CrossRef]
- Zhou, B.; Perel, P.; Mensah, G.A.; Ezzati, M. Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension. Nat. Rev. Cardiol. 2021, 18, 785–802. [Google Scholar] [CrossRef]
- Gerdts, E.; Sudano, I.; Brouwers, S.; Borghi, C.; Bruno, R.M.; Ceconi, C.; Cornelissen, V.; Diévart, F.; Ferrini, M.; Kahan, T.; et al. Sex differences in arterial hypertension. Eur. Heart J. 2022, 43, 4777–4788. [Google Scholar] [CrossRef]
- Mendelsohn, M.E.; Karas, R.H. The protective effects of estrogen on the cardiovascular system. N. Engl. J. Med. 1999, 340, 1801–1811. [Google Scholar] [CrossRef]
- Reckelhoff, J.F. Gender differences in the regulation of blood pressure. Hypertension 2001, 37, 1199–1208. [Google Scholar] [CrossRef]
- Colafella, K.M.M.; Denton, K.M. Sex-specific differences in hypertension and associated cardiovascular disease. Nat. Rev. Nephrol. 2018, 14, 185–201. [Google Scholar] [CrossRef] [PubMed]
- EUGenMed Cardiovascular Clinical Study Group. Gender in cardiovascular diseases: Impact on clinical manifestations, management, and outcomes. Eur. Heart J. 2016, 37, 24–34. [Google Scholar] [CrossRef]
- Moulton, V.R. Sex Hormones in Acquired Immunity and Autoimmune Disease. Front. Immunol. 2018, 9, 2279. [Google Scholar] [CrossRef]
- Fujioka, K.; Kajita, K.; Wu, Z.; Hanamoto, T.; Ikeda, T.; Mori, I.; Okada, H.; Yamauchi, M.; Uno, Y.; Morita, H.; et al. Dehydroepiandrosterone reduces preadipocyte proliferation via androgen receptor. Am. J. Physiol. Endocrinol. Metab. 2012, 302, E694–E704. [Google Scholar] [CrossRef] [PubMed]
- Nardozza Junior, A.; Szelbracikowski Sdos, S.; Nardi, A.C.; Almeida, J.C. Age-related testosterone decline in a Brazilian cohort of healthy military men. Int. Braz. J. Urol. 2011, 37, 591–597. [Google Scholar] [CrossRef]
- Rotter, I.; Rył, A.; Grzesiak, K.; Szylińska, A.; Pawlukowska, W.; Lubkowska, A.; Sipak-Szmigiel, O.; Pabisiak, K.; Laszczyńska, M. Cross-Sectional Inverse Associations of Obesity and Fat Accumulation Indicators with Testosterone in Non-Diabetic Aging Men. Int. J. Environ. Res. Public Health 2018, 15, 1207. [Google Scholar] [CrossRef]
- Ibanez, L.; Diaz, M.; Sebastiani, G.; Marcos, M.V.; Lopez-Bermejo, A.; de Zegher, F. Oral contraception vs insulin sensitization for 18 months in nonobese adolescents with androgen excess: Posttreatment differences in C-reactive protein, intima-media thickness, visceral adiposity, insulin sensitivity, and menstrual regularity. J. Clin. Endocrinol. Metab. 2013, 98, E902–E907. [Google Scholar] [CrossRef]
- Díaz, M.; Chacón, M.R.; López-Bermejo, A.; Maymó-Masip, E.; Salvador, C.; Vendrell, J.; de Zegher, F.; Ibáñez, L. Ethinyl estradiol-cyproterone acetate versus low-dose pioglitazone-flutamide-metformin for adolescent girls with androgen excess: Divergent effects on CD163, TWEAK receptor, ANGPTL4, and LEPTIN expression in subcutaneous adipose tissue. J. Clin. Endocrinol. Metab. 2012, 97, 3630–3638. [Google Scholar] [CrossRef] [PubMed]
- Carnagarin, R.; Matthews, V.; Zaldivia, M.T.K.; Peter, K.; Schlaich, M.P. The bidirectional interaction between the sympathetic nervous system and immune mechanisms in the pathogenesis of hypertension. Br. J. Pharmacol. 2019, 176, 1839–1852. [Google Scholar] [CrossRef]
- Ji, H.; Zheng, W.; Li, X.; Liu, J.; Wu, X.; Zhang, M.A.; Umans, J.G.; Hay, M.; Speth, R.C.; Dunn, S.E.; et al. Sex-specific T-cell regulation of angiotensin II-dependent hypertension. Hypertension 2014, 64, 573–582. [Google Scholar] [CrossRef]
- Loughner, C.L.; Bruford, E.A.; McAndrews, M.S.; Delp, E.E.; Swamynathan, S.; Swamynathan, S.K. Organization, evolution and functions of the human and mouse Ly6/uPAR family genes. Hum. Genom. 2016, 10, 10. [Google Scholar] [CrossRef] [PubMed]
- Churnosov, M.; Abramova, M.; Reshetnikov, E.; Lyashenko, I.V.; Efremova, O.; Churnosova, M.; Ponomarenko, I. Polymorphisms of hypertension susceptibility genes as a risk factors of preeclampsia in the Caucasian population of central Russia. Placenta 2022, 129, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Abramova, M.; Churnosova, M.; Efremova, O.; Aristova, I.; Reshetnikov, E.; Polonikov, A.; Churnosov, M.; Ponomarenko, I. Effects of pre-pregnancy over-weight/obesity on the pattern of association of hypertension susceptibility genes with preeclampsia. Life 2022, 12, 2018. [Google Scholar] [CrossRef] [PubMed]
- Litovkina, O.; Nekipelova, E.; Dvornyk, V.; Polonikov, A.; Efremova, O.; Zhernakova, N.; Reshetnikov, E.; Churnosov, M. Genes involved in the regulation of vascular homeostasis determine renal survival rate in patients with chronic glomerulo-nephritis. Gene 2014, 546, 112–116. [Google Scholar] [CrossRef]
- Reshetnikov, E.; Zarudskaya, O.; Polonikov, A.; Bushueva, O.; Orlova, V.; Krikun, E.; Dvornyk, V.; Churnosov, M. Genetic markers for inherited thrombophilia are associated with fetal growth retardation in the population of Central Russia. J. Obstet. Gynaecol. Res. 2017, 43, 1139–1144. [Google Scholar] [CrossRef]
- Hoeper, M.M.; Bogaard, H.J.; Condliffe, R.; Frantz, R.; Khanna, D.; Kurzyna, M.; Langleben, D.; Manes, A.; Satoh, T.; Torres, F.; et al. Defnitions and diagnosis of hypertension. J. Am. Coll. Cardiol. 2013, 62, 42–50. [Google Scholar] [CrossRef]
- Ivanova, T.A. Polymorphic loci of AC026703.1 and HFE genes are associated with se vere hypertension. Res. Results Biomed. 2023, 9, 22–38. [Google Scholar] [CrossRef]
- World Health Organization. Diet, Nutrition, and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert 802 Consultation; World Health Organization: Geneva, Switzerland, 2003; 148p.
- Haskell, W.L.; Lee, I.M.; Pate, R.R.; Powell, K.E.; Blair, S.N.; Franklin, B.A.; Macera, C.A.; Heath, G.W.; Thompson, P.D.; Bauman, A. Physical activity and public health: Updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med. Sci. Sports. Exerc. 2007, 39, 1423–1434. [Google Scholar] [CrossRef]
- Lanier, J.B.; Bury, D.C.; Richardsonm, S.W. Diet and Physical Activity for Cardiovascular Disease Prevention. Am. Fam. Physician 2016, 93, 919–924. [Google Scholar] [PubMed]
- Ponomarenko, I.; Reshetnikov, E.; Altuchova, O.; Polonikov, A.; Sorokina, I.; Yermachenko, A.; Dvornyk, V.; Golovchenko, O.; Churnosov, M. Association of genetic polymorphisms with age at menarche in Russian women. Gene 2019, 686, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Eliseeva, N.; Ponomarenko, I.; Reshetnikov, E.; Dvornyk, V.; Churnosov, M. LOXL1 gene polymorphism candidates for exfoliation glaucoma are also associated with a risk for primary open-angle glaucoma in a Caucasian population from central Russia. Mol. Vis. 2021, 27, 262–269. [Google Scholar] [PubMed]
- Abramova, M. Genetic markers of severe preeclampsia. Res. Results Biomed. 2022, 8, 305–316. [Google Scholar] [CrossRef]
- Ward, L.D.; Kellis, M. HaploReg v4: Systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res. 2016, 44, D877–D881. [Google Scholar] [CrossRef]
- Novakov, V.; Novakova, O.; Churnosova, M.; Sorokina, I.; Aristova, I.; Polonikov, A.; Reshetnikov, E.; Churnosov, M. Intergenic Interactions of SBNO1, NFAT5 and GLT8D1 Determine the Susceptibility to Knee Osteoarthritis among Europeans of Russia. Life 2023, 13, 405. [Google Scholar] [CrossRef]
- Golovchenko, O.; Abramova, M.; Ponomarenko, I.; Reshetnikov, E.; Aristova, I.; Polonikov, A.; Dvornyk, V.; Churnosov, M. Functionally significant polymorphisms of ESR1and PGR and risk of intrauterine growth restriction in population of Central Russia. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 253, 52–57. [Google Scholar] [CrossRef]
- Starikova, D.; Ponomarenko, I.; Reshetnikov, E.; Dvornyk, V.; Churnosov, M. Novel Data about Association of the Functionally Significant Polymorphisms of the MMP9 Gene with Exfoliation Glaucoma in the Caucasian Population of Central Russia. Ophthalmic Res. 2021, 64, 458–464. [Google Scholar] [CrossRef]
- Sirotina, S.; Ponomarenko, I.; Kharchenko, A.; Bykanova, M.; Bocharova, A.; Vagaytseva, K.; Stepanov, V.; Churnosov, M.; Solodilova, M.; Polonikov, A. A Novel Polymorphism in the Promoter of the CYP4A11 Gene Is Associated with Susceptibility to Coronary Artery Disease. Dis. Markers 2018, 2018, 5812802. [Google Scholar] [CrossRef]
- Tikunova, E.; Ovtcharova, V.; Reshetnikov, E.; Dvornyk, V.; Polonikov, A.; Bushueva, O.; Churnosov, M. Genes of tumor necrosis factors and their receptors and the primary open angle glaucoma in the population of Central Russia. Int. J. Ophthalmol. 2017, 10, 1490–1494. [Google Scholar] [CrossRef]
- Pavlova, N.; Demin, S.; Churnosov, M.; Reshetnikov, E.; Aristova, I.; Churnosova, M.; Ponomarenko, I. The Modifying Effect of Obesity on the Association of Matrix Metalloproteinase Gene Polymorphisms with Breast Cancer Risk. Biomedicines 2022, 10, 2617. [Google Scholar] [CrossRef] [PubMed]
- Ponomarenko, I.; Reshetnikov, E.; Polonikov, A.; Verzilina, I.; Sorokina, I.; Elgaeva, E.E.; Tsepilov, Y.A.; Yermachenko, A.; Dvornyk, V.; Churnosov, M. Candidate genes for age at menarche are associated with endometriosis. Reprod. Biomed. Online 2020, 41, 943–956. [Google Scholar] [CrossRef] [PubMed]
- Reshetnikov, E.; Ponomarenko, I.; Golovchenko, O.; Sorokina, I.; Batlutskaya, I.; Yakunchenko, T.; Dvornyk, V.; Polonikov, A.; Churnosov, M. The VNTR polymorphism of the endothelial nitric oxide synthase gene and blood pressure in women at the end of pregnancy. Taiwan J. Obstet. Gynecol. 2019, 58, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Minyaylo, O.; Ponomarenko, I.; Reshetnikov, E.; Dvornyk, V.; Churnosov, M. Functionally significant polymorphisms of the MMP-9 gene are associated with peptic ulcer disease in the Caucasian population of Central Russia. Sci. Rep. 2021, 11, 13515. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Sourceforge. Available online: http://sourceforge.net/projects/mdr (accessed on 22 November 2022).
- Pavlova, N.; Demin, S.; Churnosov, M.; Reshetnikov, E.; Aristova, I.; Churnosova, M.; Ponomarenko, I. Matrix Metalloproteinase Gene Polymorphisms Are Associated with Breast Cancer in the Caucasian Women of Russia. Int. J. Mol. Sci. 2022, 23, 12638. [Google Scholar] [CrossRef]
- Calle, M.L.; Urrea, V.; Malats, N.; Van Steen, K. Mbmdr: An R package for exploring gene-gene interactions associated with binary or quantitative traits. Bioinformatics 2010, 26, 2198–2199. [Google Scholar] [CrossRef]
- Ponomarenko, I.V. Using the method of Multifactor Dimensionality Reduction (MDR) and its modifications for analysis of gene-gene and gene-environment interactions in genetic-epidemiological studies (review). Res. Results Biomed. 2019, 5, 4–21. [Google Scholar] [CrossRef]
- Che, R.; Jack, J.R.; Motsinger-Reif, A.A.; Brown, C.C. An adaptive permutation approach for genome-wide association study: Evaluation and recommendations for use. BioData Min. 2014, 7, 9. [Google Scholar] [CrossRef]
- Ponomarenko, I.; Reshetnikov, E.; Polonikov, A.; Sorokina, I.; Yermachenko, A.; Dvornyk, V.; Churnosov, M. Candidate genes for age at menarche are associated with endometrial hyperplasia. Gene 2020, 757, 4933. [Google Scholar] [CrossRef]
- Gauderman, W.J.; Morrison, J.M. QUANTO 1.1: A Computer Program for Power and Sample Size Calculations for Genetic-Epidemiology Studies. Available online: https://hydra.usc.edu/gxe2006 (accessed on 2 December 2022).
- Ponomarenko, I.; Reshetnikov, E.; Polonikov, A.; Verzilina, I.; Sorokina, I.; Yermachenko, A.; Dvornyk, V.; Churnosov, M. Candidate genes for age at menarche are associated with uterine leiomyoma. Front. Genet. 2021, 11, 512940. [Google Scholar] [CrossRef] [PubMed]
- Golovchenko, I.; Aizikovich, B.; Golovchenko, O.; Reshetnikov, E.; Churnosova, M.; Aristova, I.; Ponomarenko, I.; Churnosov, M. Sex Hormone Candidate Gene Polymorphisms Are Associated with Endometriosis. Int. J. Mol. Sci. 2022, 23, 13691. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Henikoff, S.; Ng, P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 2009, 7, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Adzhubei, I.; Jordan, D.M.; Sunyaev, S.R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. 2013, 76, 7–20. [Google Scholar] [CrossRef] [PubMed]
- GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 2020, 369, 1318–1330. [Google Scholar] [CrossRef]
- Westra, H.J.; Peters, M.J.; Esko, T.; Yaghootkar, H.; Schurmann, C.; Kettunen, J.; Christiansen, M.W.; Fairfax, B.P.; Schramm, K.; Powell, J.E.; et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 2013, 45, 1238–1243. [Google Scholar] [CrossRef]
- Gene Ontology Consortium. The Gene Ontology resource: Enriching a GOld mine. Nucleic Acids Res. 2021, 49, D325–D334. [Google Scholar] [CrossRef]
- Franz, M.; Rodriguez, H.; Lopes, C.; Zuberi, K.; Montojo, J.; Bader, G.D.; Morris, Q. GeneMANIA update 2018. Nucleic Acids Res. 2018, 46, W60–W64. [Google Scholar] [CrossRef]
Parameters | Men (n = 821) | Women (n = 584) | ||||
---|---|---|---|---|---|---|
HTN, Mean ± SD, % (n) | Controls, Mean ± SD, % (n) | p | HTN, Mean ± SD, % (n) | Controls, Mean ± SD, % (n) | p | |
N | 564 | 257 | - | 375 | 209 | - |
Age (years) | 57.60 ± 8.36 | 57.54 ± 9.73 | 0.86 | 58.80 ± 9.64 | 58.17 ± 9.30 | 0.43 |
BMI (kg/m2) | 30.76 ± 4.52 | 25.04 ± 2.86 | <0.001 | 30.81 ± 5.84 | 24.83 ± 3.41 | <0.001 |
SBP (mmHg) | 180.45 ± 27.40 | 123.89 ± 11.92 | <0.001 | 185.53 ± 29.26 | 120.98 ± 10.76 | <0.001 |
DBP (mmHg) | 104.76 ± 12.75 | 78.19 ± 6.76 | <0.001 | 107.47 ± 14.35 | 76.98 ± 7.09 | <0.001 |
TC (mM) | 5.65 ± 1.32 | 5.24 ± 0.98 | <0.001 | 5.79 ± 1.23 | 5.28 ± 1.09 | <0.001 |
HDL-C (mM) | 1.35 ± 0.44 | 1.48 ± 0.41 | <0.001 | 1.33 ± 0.37 | 1.56 ± 0.42 | <0.001 |
LDL-C (mM) | 3.78 ± 0.73 | 3.18 ± 0.66 | <0.001 | 3.77 ± 1.15 | 3.25 ± 0.79 | <0.001 |
TG (mM) | 2.00 ± 1.01 | 1.28 ± 0.81 | <0.001 | 1.80 ± 1.04 | 1.18 ± 0.62 | <0.001 |
Blood glucose (mM) | 5.82 ± 1.20 | 4.93 ± 1.12 | <0.001 | 6.08 ± 1.91 | 4.81 ± 0.67 | <0.001 |
Smoking | 65.58 (318) | 34.96 (74) | <0.001 | 9.75 (35) | 4.78 (10) | 0.04 |
Alcohol abuse | 9.30 (52) | 2.29 (13) | 0.17 | 0.28 (1) | 0 (0) | 1.00 |
Antihypertensive medication use | 82.80 (467) | - | - | 80.27 (301) | - | - |
HTN Grade: Grade 1 | 18.44 (104) | - | - | 12.80 (48) | - | - |
Grade 2 | 48.23 (272) | - | - | 45.60 (171) | - | - |
Grade 3 | 33.33 (188) | - | - | 41.60 (156) | - | - |
HTN Stage: Stage 1 | 11.88 (67) | - | - | 7.20 (27) | - | - |
Stage 2 | 31.21 (176) | - | - | 30.40 (114) | - | - |
Stage 3 | 56.91 (321) | - | - | 62.40 (234) | - | - |
Stroke incident | 35.64 (201) | - | - | 27.20 (102) | - | - |
Coronary artery disease | 29.08 (164) | - | - | 32.00 (120) | - | - |
Type 2 diabetes mellitus | 33.51 (189) | - | - | 30.13 (113) | - | - |
Low physical activity | 57.62 (325) | 24.12 (62) | <0.001 | 60.27 (226) | 31.58 (66) | <0.001 |
Low fruit/vegetable consumption | 11.52 (65) | 7.39 (19) | 0.09 | 11.20 (42) | 6.70 (14) | 0.10 |
High fatty food consumption | 24.47 (138) | 10.12 (26) | <0.001 | 25.06 (94) | 10.53 (22) | <0.001 |
High sodium consumption | 16.49 (93) | 14.01 (36) | 0.42 | 17.07 (64) | 12.44 (26) | 0.17 |
Gene (SNP, Major/Minor Alleles) | n | Allelic Model | Additive Model | Dominant Model | Recessive Model | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OR | 95%CI | p | OR | 95%CI | p | OR | 95%CI | p | OR | 95%CI | p | ||||||
L95 | U95 | L95 | U95 | L95 | U95 | L95 | U95 | ||||||||||
Model 1 | |||||||||||||||||
Men | |||||||||||||||||
AC026703.1 (rs1173771, G/A) | 774 | 0.91 | 0.73 | 1.13 | 0.383 | 0.88 | 0.61 | 1.29 | 0.524 | 0.67 | 0.38 | 1.17 | 0.161 | 1.25 | 0.61 | 2.55 | 0.542 |
HFE (rs1799945, C/G) | 800 | 1.16 | 0.89 | 1.52 | 0.281 | 1.30 | 0.85 | 1.99 | 0.220 | 1.38 | 0.80 | 2.37 | 0.248 | 1.54 | 0.54 | 4.38 | 0.421 |
BAG6 (rs805303, G/A) | 789 | 0.95 | 0.76 | 1.19 | 0.665 | 0.66 | 0.46 | 0.96 | 0.028 | 0.82 | 0.49 | 1.39 | 0.466 | 0.30 | 0.15 | 0.61 | 0.0008 |
PLCE1 (rs932764, A/G) | 775 | 1.23 | 0.99 | 1.53 | 0.056 | 1.24 | 0.85 | 1.80 | 0.267 | 1.30 | 0.71 | 2.36 | 0.392 | 1.36 | 0.72 | 2.55 | 0.339 |
OBFC1 (rs4387287, C/A) | 751 | 0.88 | 0.66 | 1.17 | 0.380 | 0.84 | 0.50 | 1.41 | 0.497 | 0.80 | 0.44 | 1.46 | 0.469 | 0.88 | 0.17 | 4.72 | 0.884 |
ARHGAP42 (rs633185, C/G) | 800 | 1.01 | 0.79 | 1.28 | 0.964 | 1.18 | 0.80 | 1.74 | 0.418 | 1.14 | 0.68 | 1.90 | 0.631 | 1.58 | 0.65 | 3.86 | 0.316 |
CERS5 (rs7302981, G/A) | 767 | 0.93 | 0.74 | 1.16 | 0.499 | 0.67 | 0.45 | 0.99 | 0.044 | 0.70 | 0.40 | 1.22 | 0.211 | 0.44 | 0.21 | 0.92 | 0.028 |
ATP2B1 (rs2681472, A/G) | 778 | 1.12 | 0.82 | 1.54 | 0.479 | 1.64 | 0.91 | 2.97 | 0.103 | 1.61 | 0.83 | 3.09 | 0.157 | 5.61 | 0.42 | 74.38 | 0.191 |
TBX2 (rs8068318, T/C) | 762 | 1.14 | 0.89 | 1.46 | 0.299 | 1.33 | 0.87 | 2.05 | 0.194 | 1.45 | 0.85 | 2.49 | 0.173 | 1.33 | 0.46 | 3.83 | 0.596 |
RGL3 (rs167479, T/G) | 783 | 0.98 | 0.79 | 1.21 | 0.833 | 0.82 | 0.57 | 1.18 | 0.283 | 0.90 | 0.49 | 1.64 | 0.722 | 0.66 | 0.37 | 1.18 | 0.161 |
Women | |||||||||||||||||
AC026703.1 (rs1173771, G/A) | 543 | 0.91 | 0.71 | 1.17 | 0.458 | 0.92 | 0.64 | 1.31 | 0.631 | 0.85 | 0.50 | 1.45 | 0.554 | 0.95 | 0.52 | 1.76 | 0.877 |
HFE (rs1799945, C/G) | 573 | 0.71 | 0.53 | 0.96 | 0.026 | 0.75 | 0.48 | 1.17 | 0.210 | 0.60 | 0.37 | 0.98 | 0.040 | 11.15 | 1.15 | 97.68 | 0.011 |
BAG6 (rs805303, G/A) | 560 | 0.99 | 0.77 | 1.28 | 0.938 | 1.08 | 0.76 | 1.51 | 0.675 | 1.06 | 0.66 | 1.72 | 0.801 | 1.18 | 0.60 | 2.35 | 0.630 |
PLCE1 (rs932764, A/G) | 544 | 0.95 | 0.74 | 1.21 | 0.663 | 0.83 | 0.59 | 1.17 | 0.286 | 0.59 | 0.34 | 1.03 | 0.061 | 1.07 | 0.59 | 1.91 | 0.832 |
OBFC1 (rs4387287, C/A) | 509 | 0.97 | 0.72 | 1.30 | 0.891 | 0.88 | 0.57 | 1.35 | 0.551 | 0.89 | 0.52 | 1.50 | 0.650 | 0.70 | 0.21 | 2.25 | 0.545 |
ARHGAP42 (rs633185, C/G) | 577 | 1.04 | 0.79 | 1.37 | 0.759 | 1.03 | 0.71 | 1.49 | 0.868 | 1.05 | 0.65 | 1.68 | 0.850 | 1.02 | 0.42 | 2.46 | 0.965 |
CERS5 (rs7302981, G/A) | 535 | 1.20 | 0.93 | 1.55 | 0.152 | 1.19 | 0.84 | 1.68 | 0.326 | 1.03 | 0.79 | 2.15 | 0.306 | 1.20 | 0.62 | 2.30 | 0.591 |
ATP2B1 (rs2681472, A/G) | 551 | 0.96 | 0.68 | 1.35 | 0.809 | 0.89 | 0.55 | 1.45 | 0.648 | 0.94 | 0.55 | 1.59 | 0.808 | 0.45 | 0.08 | 2.62 | 0.372 |
TBX2 (rs8068318, T/C) | 530 | 1.06 | 0.80 | 1.40 | 0.704 | 1.04 | 0.70 | 1.55 | 0.841 | 1.03 | 0.63 | 1.68 | 0.918 | 1.16 | 0.42 | 3.18 | 0.772 |
RGL3 (rs167479, T/G) | 550 | 1.15 | 0.90 | 1.47 | 0.266 | 1.29 | 0.92 | 1.82 | 0.138 | 1.44 | 0.83 | 2.50 | 0.200 | 1.38 | 0.79 | 2.41 | 0.252 |
Model 2* | |||||||||||||||||
Men | |||||||||||||||||
AC026703.1 (rs1173771, G/A) | 0.90 | 0.62 | 1.30 | 0.560 | 0.68 | 0.39 | 1.19 | 0.176 | 1.25 | 0.62 | 2.51 | 0.529 | |||||
HFE (rs1799945, C/G) | 1.33 | 0.87 | 2.01 | 0.187 | 1.42 | 0.83 | 2.43 | 0.204 | 1.55 | 0.56 | 4.29 | 0.403 | |||||
BAG6 (rs805303, G/A) | 0.66 | 0.46 | 0.95 | 0.026 | 0.80 | 0.47 | 1.34 | 0.395 | 0.31 | 0.16 | 0.64 | 0.001 | |||||
PLCE1 (rs932764, A/G) | 1.21 | 0.84 | 1.75 | 0.311 | 1.27 | 0.71 | 2.29 | 0.425 | 1.31 | 0.71 | 2.44 | 0.391 | |||||
OBFC1 (rs4387287, C/A) | 0.90 | 0.54 | 1.50 | 0.681 | 0.86 | 0.48 | 1.56 | 0.629 | 1.03 | 0.19 | 5.64 | 0.974 | |||||
ARHGAP42 (rs633185, C/G) | 1.14 | 0.77 | 1.67 | 0.510 | 1.10 | 0.66 | 1.83 | 0.727 | 1.49 | 0.62 | 3.76 | 0.376 | |||||
CERS5 (rs7302981, G/A) | 0.67 | 0.46 | 1.00 | 0.047 | 0.70 | 0.40 | 1.22 | 0.213 | 0.46 | 0.22 | 0.94 | 0.033 | |||||
ATP2B1 (rs2681472, A/G) | 1.59 | 0.89 | 2.83 | 0.118 | 1.55 | 0.82 | 2.95 | 0.179 | 5.11 | 0.42 | 61.98 | 0.200 | |||||
TBX2 (rs8068318, T/C) | 1.29 | 0.85 | 1.97 | 0.233 | 1.40 | 0.82 | 2.38 | 0.220 | 1.33 | 0.48 | 3.75 | 0.584 | |||||
RGL3 (rs167479, T/G) | 0.80 | 0.56 | 1.15 | 0.237 | 0.90 | 0.49 | 1.65 | 0.740 | 0.63 | 0.35 | 1.11 | 0.110 | |||||
Women | |||||||||||||||||
AC026703.1 (rs1173771, G/A) | 0.92 | 0.65 | 1.31 | 0.649 | 0.87 | 0.51 | 1.47 | 0.595 | 0.95 | 0.51 | 1.74 | 0.858 | |||||
HFE (rs1799945, C/G) | 0.77 | 0.50 | 1.19 | 0.241 | 0.61 | 0.37 | 0.99 | 0.043 | 10.96 | 1.12 | 89.68 | 0.012 | |||||
BAG6 (rs805303, G/A) | 1.05 | 0.75 | 1.47 | 0.781 | 1.05 | 0.65 | 1.69 | 0.848 | 1.10 | 0.56 | 2.19 | 0.776 | |||||
PLCE1 (rs932764, A/G) | 0.80 | 0.57 | 1.13 | 0.211 | 0.58 | 0.33 | 1.00 | 0.050 | 1.00 | 0.56 | 1.77 | 0.997 | |||||
OBFC1 (rs4387287, C/A) | 0.89 | 0.58 | 1.37 | 0.593 | 0.91 | 0.54 | 1.54 | 0.726 | 0.67 | 0.21 | 2.16 | 0.502 | |||||
ARHGAP42 (rs633185, C/G) | 1.02 | 0.71 | 1.48 | 0.898 | 1.03 | 0.65 | 1.65 | 0.895 | 1.03 | 0.43 | 2.47 | 0.951 | |||||
CERS5 (rs7302981, G/A) | 1.20 | 0.85 | 1.68 | 0.305 | 1.34 | 0.81 | 2.21 | 0.250 | 1.16 | 0.61 | 2.21 | 0.649 | |||||
ATP2B1 (rs2681472, A/G) | 0.98 | 0.61 | 1.56 | 0.920 | 1.00 | 0.60 | 1.68 | 0.989 | 0.70 | 0.13 | 3.78 | 0.678 | |||||
TBX2 (rs8068318, T/C) | 1.07 | 0.72 | 1.58 | 0.754 | 1.03 | 0.63 | 1.68 | 0.899 | 1.31 | 0.48 | 3.54 | 0.602 | |||||
RGL3 (rs167479, T/G) | 1.20 | 0.86 | 1.68 | 0.274 | 1.32 | 0.77 | 2.27 | 0.312 | 1.25 | 0.72 | 2.16 | 0.435 |
N | SNP × SNP Interaction Models | NH | betaH | WH | NL | betaL | WL | pperm |
---|---|---|---|---|---|---|---|---|
Men | ||||||||
Three-order interaction models | ||||||||
1 | rs805303 BAG6 × rs1173771 AC026703.1 × rs4387287 OBFC1 | 1 | 2.287 | 4.73 | 4 | −0.815 | 16.76 | 0.008 |
2 | rs932764 PLCE1 × rs7302981 CERS5 × rs1799945 HFE | - | - | - | 3 | −1.118 | 18.67 | 0.010 |
3 | rs7302981 CERS5 × rs1173771 AC026703.1 × rs167479 RGL3 | - | - | - | 4 | −0.933 | 18.13 | 0.016 |
Four-order interaction models | ||||||||
1 | rs932764 PLCE1 × rs7302981 CERS5 × rs1799945 HFE × rs8068318 TBX2 | 1 | 2.096 | 3.75 | 5 | −1.325 | 32.12 | 0.001 |
2 | rs932764 PLCE1 × rs7302981 CERS5 × rs1799945 HFE × rs1173771 AC026703.1 | 0 | - | - | 5 | −1.637 | 28.51 | 0.008 |
3 | rs932764 PLCE1 × rs8068318 TBX2 × rs805303 BAG6 × rs1173771 AC026703.1 | 0 | - | - | 6 | −1.265 | 27.17 | 0.016 |
4 | rs7302981 CERS5 × rs1799945 HFE × rs805303 BAG6 × rs167479 RGL3 | 1 | 0.531 | 3.07 | 5 | −1.261 | 24.40 | 0.022 |
Women | ||||||||
Two-order interaction models | ||||||||
1 | rs8068318 TBX2 × rs167479 RGL3 | 3 | 0.623 | 10.18 | 3 | −0.880 | 21.92 | <0.001 |
2 | rs932764 PLCE1 × rs1799945 HFE | 2 | - | - | 2 | −0.801 | 10.83 | 0.013 |
Three-order interaction models | ||||||||
1 | rs1799945 HFE × rs8068318 TBX2 × rs167479 RGL3 | 2 | 1.140 | 21.30 | 4 | −0.898 | 20.87 | <0.001 |
2 | rs2681472 ATP2B1 × rs8068318 TBX2 × rs167479 RGL3 | 2 | 0.804 | 13.59 | 2 | −0.870 | 18.15 | <0.001 |
3 | rs932764 PLCE1 × rs7302981 CERS5 × rs805303 BAG6 | 2 | 1.011 | 8.23 | 2 | −1.311 | 20.96 | 0.001 |
4 | rs932764 PLCE1 × rs805303 BAG6 × rs4387287 OBFC1 | 4 | 1.394 | 20.28 | 1 | −1.419 | 3.43 | 0.001 |
5 | rs8068318 TBX2 × rs4387287 OBFC1 × rs167479 RGL3 | 3 | 0.778 | 15.03 | 4 | −0.817 | 18.36 | 0.001 |
6 | rs2681472 ATP2B1 × rs805303 BAG6 × rs1173771 AC026703.1 | 1 | 1.404 | 7.81 | 3 | −1.573 | 16.48 | 0.001 |
7 | rs932764 PLCE1 × rs8068318 TBX2 × rs167479 RGL3 | 2 | 1.323 | 10.47 | 2 | −0.966 | 18.01 | 0.001 |
8 | rs932764 PLCE1 × rs1799945 HFE × rs805303 BAG6 | 0 | - | - | 3 | −1.218 | 17.93 | 0.001 |
9 | rs932764 PLCE1 × rs1799945 HFE × rs8068318 TBX2 | 1 | 0.679 | 8.01 | 3 | −0.849 | 15.49 | 0.010 |
10 | rs932764 PLCE1 × rs1799945 HFE × rs167479 RGL3 | 0 | - | - | 3 | −1.102 | 15.68 | 0.016 |
Four-order interaction models | ||||||||
1 | rs932764 PLCE1 × rs8068318 TBX2 × rs1173771 AC026703.1 × rs167479 RGL3 | 1 | 1.446 | 3.33 | 7 | −1.275 | 33.53 | <0.001 |
2 | rs1799945 HFE × rs8068318 TBX2 × rs805303 BAG6 × rs167479 RGL3 | 4 | 1.045 | 18.51 | 7 | −1.229 | 32.64 | <0.001 |
3 | rs932764 PLCE1 × rs1799945 HFE × rs1173771 AC026703.1 × rs167479 RGL3 | 3 | 1.182 | 9.42 | 6 | −1.840 | 31.40 | <0.001 |
4 | rs2681472 ATP2B1 × rs1799945 HFE × rs8068318 TBX2 × rs167479 RGL3 | 4 | 1.235 | 27.98 | 6 | −1.276 | 31.20 | <0.001 |
5 | rs1799945 HFE × rs8068318 TBX2 × rs1173771 AC026703.1 × rs167479 RGL3 | 3 | 0.995 | 14.27 | 7 | −1.356 | 30.93 | <0.001 |
6 | rs932764 PLCE1 × rs1799945 HFE × rs8068318 TBX2 × rs167479 RGL3 | 3 | 1.256 | 17.70 | 5 | −1.287 | 29.85 | <0.001 |
7 | rs1799945 HFE × rs8068318 TBX2 × rs4387287 OBFC1 × rs167479 RGL3 | 3 | 1.410 | 26.21 | 2 | −0.707 | 7.43 | <0.001 |
8 | rs2681472 ATP2B1 × rs633185 ARHGAP42 × rs7302981 CERS5 × rs805303 BAG6 | 0 | - | - | 5 | −1.199 | 26.05 | <0.001 |
9 | rs2681472 ATP2B1 × rs633185 ARHGAP42 × rs8068318 TBX2 × rs167479 RGL3 | 2 | 0.813 | 9.37 | 4 | −1.192 | 24.91 | <0.001 |
10 | rs2681472 ATP2B1 × rs8068318 TBX2 × rs1173771 AC026703.1 × rs167479 RGL3 | 1 | 1.157 | 4.12 | 4 | −1.207 | 24.60 | <0.001 |
11 | rs633185 ARHGAP42 × rs932764 PLCE1 × rs7302981 CERS5 × rs805303 BAG6 | 2 | 1.503 | 7.55 | 2 | −1.238 | 25.86 | 0.001 |
12 | rs932764 PLCE1 × rs7302981 CERS5 × rs1799945 HFE × rs167479 RGL3 | 0 | - | - | 5 | −1.477 | 25.01 | 0.001 |
13 | rs7302981 CERS5 × rs1799945 HFE × rs8068318 TBX2 × rs167479 RGL3 | 3 | 0.995 | 14.27 | 5 | −1.242 | 24.28 | 0.001 |
14 | rs633185 ARHGAP42 × rs7302981 CERS5 × rs8068318 TBX2 × rs167479 RGL3 | 1 | 0.943 | 3.36 | 4 | −1.376 | 24.37 | 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanova, T.; Churnosova, M.; Abramova, M.; Plotnikov, D.; Ponomarenko, I.; Reshetnikov, E.; Aristova, I.; Sorokina, I.; Churnosov, M. Sex-Specific Features of the Correlation between GWAS-Noticeable Polymorphisms and Hypertension in Europeans of Russia. Int. J. Mol. Sci. 2023, 24, 7799. https://doi.org/10.3390/ijms24097799
Ivanova T, Churnosova M, Abramova M, Plotnikov D, Ponomarenko I, Reshetnikov E, Aristova I, Sorokina I, Churnosov M. Sex-Specific Features of the Correlation between GWAS-Noticeable Polymorphisms and Hypertension in Europeans of Russia. International Journal of Molecular Sciences. 2023; 24(9):7799. https://doi.org/10.3390/ijms24097799
Chicago/Turabian StyleIvanova, Tatiana, Maria Churnosova, Maria Abramova, Denis Plotnikov, Irina Ponomarenko, Evgeny Reshetnikov, Inna Aristova, Inna Sorokina, and Mikhail Churnosov. 2023. "Sex-Specific Features of the Correlation between GWAS-Noticeable Polymorphisms and Hypertension in Europeans of Russia" International Journal of Molecular Sciences 24, no. 9: 7799. https://doi.org/10.3390/ijms24097799
APA StyleIvanova, T., Churnosova, M., Abramova, M., Plotnikov, D., Ponomarenko, I., Reshetnikov, E., Aristova, I., Sorokina, I., & Churnosov, M. (2023). Sex-Specific Features of the Correlation between GWAS-Noticeable Polymorphisms and Hypertension in Europeans of Russia. International Journal of Molecular Sciences, 24(9), 7799. https://doi.org/10.3390/ijms24097799