Anticancer Potential of Sulfonamide Moieties via In-Vitro and In-Silico Approaches: Comparative Investigations for Future Drug Development
Abstract
:1. Introduction
2. Result and Discussions
2.1. Biological Evaluation
2.1.1. In-Vitro Cytotoxic Activity
2.1.2. UV-Visible Spectroscopy-Based DNA Binding Studies
2.1.3. Density Functional Theory Calculations
2.1.4. Molecular Docking Studies
Interpretation of Molecular Interactions
DNA Molecule Intercalation
2.1.5. Molecular Dynamics Simulation
Root Mean Square Deviation Plot
MMGBSA Free-Binding Energy Analysis
3. Materials and Methods
3.1. Assay for Cell Viability
3.2. Spectrophotometric DNA Binding Analysis
3.3. Computational Investigations
3.3.1. Density Functional Theory Calculations
3.3.2. Molecular Docking Studies
3.3.3. Molecular Dynamics Simulations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, W.; Chen, H.D.; Yu, Y.W.; Li, N.; Chen, W.Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin. Med. J. 2021, 134, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.; DeSantis, C.; Virgo, K.; Stein, K.; Mariotto, A.; Smith, T.; Cooper, D.; Gansler, T.; Lerro, C.; Fedewa, S.; et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J. Clin. 2012, 62, 220–241. [Google Scholar] [CrossRef] [PubMed]
- Saini, A.; Kumar, M.; Bhatt, S.; Saini, V.; Malik, A. Cancer causes and treatments. Int. J. Pharm. Sci. Res. 2020, 11, 3121–3134. [Google Scholar]
- Garcia-Oliveira, P.; Otero, P.; Pereira, A.G.; Chamorro, F.; Carpena, M.; Echave, J.; Fraga-Corral, M.; Simal-Gandara, J.; Prieto, M.A. Status and challenges of plant-anticancer compounds in cancer treatment. Pharmaceuticals 2021, 14, 157. [Google Scholar] [CrossRef]
- Dragojevic, S.; Ryu, J.S.; Raucher, D. Polymer-based prodrugs: Improving tumor targeting and the solubility of small molecule drugs in cancer therapy. Molecules 2015, 20, 21750–21769. [Google Scholar] [CrossRef]
- Majumder, J.; Minko, T. Targeted Nanotherapeutics for respiratory diseases: Cancer, fibrosis, and coronavirus. Adv. Ther. 2021, 4, 2000203. [Google Scholar] [CrossRef]
- Nguyen, V.-T.; Huynh, T.-K.-C.; Ho, G.-T.-T.; Nguyen, T.-H.-A.; Le Anh Nguyen, T.; Dao, D.Q.; Mai, T.V.; Huynh, L.K.; Hoang, T.-K.-D. Metal complexes of benzimidazole-derived as potential anti-cancer agents: Synthesis, characterization, combined experimental and computational studies. R. Soc. Open Sci. 2022, 9, 220659. [Google Scholar] [CrossRef]
- Satange, R.; Chang, C.K.; Hou, M.H. A survey of recent unusual high-resolution DNA structures provoked by mismatches, repeats and ligand binding. Nucleic Acids Res. 2018, 46, 6416–6434. [Google Scholar] [CrossRef]
- Pope, A.J.; Bruce, C.; Kysela, B.; Hannon, M.J. Issues surrounding standard cytotoxicity testing for assessing activity of non-covalent DNA-binding metallo-drugs. Dalton Trans. 2010, 39, 2772–2774. [Google Scholar] [CrossRef]
- Bilal, M.S.; Ejaz, S.A.; Zargar, S.; Akhtar, N.; Wani, T.A.; Riaz, N.; Aborode, A.T.; Siddique, F.; Altwaijry, N.; Alkahtani, H.M. Computational Investigation of 1, 3, 4 Oxadiazole Derivatives as Lead Inhibitors of VEGFR 2 in Comparison with EGFR: Density Functional Theory, Molecular Docking and Molecular Dynamics Simulation Studies. Biomolecules 2022, 12, 1612. [Google Scholar] [CrossRef]
- Hou, W.; Xu, H. Incorporating Selenium into Heterocycles and Natural Products—From Chemical Properties to Pharmacological Activities. J. Med. Chem. 2022, 65, 4436–4456. [Google Scholar] [CrossRef]
- Scheepers, M.C.; Lemmerer, A. In pursuit of multicomponent crystals of the sulfa drugs sulfapyridine, sulfathiazole, and sulfamethoxazole. Cryst. Growth Des. 2021, 22, 98–122. [Google Scholar] [CrossRef]
- Saeed, A.; Ejaz, S.A.; Saeed, M.; Channar, P.A.; Aziz, M.; Fayyaz, A.; Zargar, S.; Wani, T.A.; Alanazi, H.; Alharbi, M. Synthesis, Biochemical Characterization, and in-Silico Investigations of Acyl-3-(Ciprofloxacinyl) Thioureas as Inhibitors of Carbonic Anhydrase-II. Polycycl. Aromat. Compd. 2023, 1–19. [Google Scholar] [CrossRef]
- Ballatore, C.; Huryn, D.M.; Smith, A.B., III. Carboxylic acid (bio) isosteres in drug design. ChemMedChem 2013, 8, 385–395. [Google Scholar] [CrossRef]
- Horgan, C.O.; Sullivan, T.P. Recent developments in the practical application of novel carboxylic acid bioisosteres. Curr. Med. Chem. 2022, 29, 2203–2234. [Google Scholar] [CrossRef]
- Lamberth, C.; Dinges, J. Different roles of carboxylic functions in pharmaceuticals and agrochemicals. In Bioactive Carboxylic Compound Classes: Pharmaceuticals and Agrochemicals; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Lassalas, P.; Gay, B.; Lasfargeas, C.; James, M.J.; Tran, V.; Vijayendran, K.G.; Brunden, K.R.; Kozlowski, M.C.; Thomas, C.J.; Smith, A.B., III; et al. Structure property relationships of carboxylic acid isosteres. J. Med. Chem. 2016, 59, 3183–3203. [Google Scholar] [CrossRef]
- Owa, T.; Yoshino, H.; Yoshimatsu, K.; Nagasu, T. Cell cycle regulation in the G1 phase: A promising target for the development of new chemotherapeutic anticancer agents. Curr. Med. Chem. 2001, 8, 1487–1503. [Google Scholar] [CrossRef]
- Liu, Y.H.; Liu, G.H.; Mei, J.J.; Wang, J. The preventive effects of hyperoside on lung cancer in vitro by inducing apoptosis and inhibiting proliferation through Caspase-3 and p53 signaling pathway. Biomed. Pharmacother. 2016, 83, 381–391. [Google Scholar] [CrossRef]
- Rengarajan, T.; Nandakumar, N.; Rajendran, P.; Haribabu, L.; Nishigaki, I.; Balasubramanian, M.P. D-pinitol promotes apoptosis in MCF-7 cells via induction of p53 and Bax and inhibition of Bcl-2 and NF-κB. Asian Pac. J. Cancer Prev. 2014, 15, 1757–1762. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, R.K. Garlic induced apoptosis, cell cycle check points and inhibition of cancer cell proliferation. J. Cancer Res. 2017, 5, 35–54. [Google Scholar]
- Pflug, K.M.; Sitcheran, R. Targeting NF-κB-inducing kinase (NIK) in immunity, inflammation, and cancer. Int. J. Mol. Sci. 2020, 21, 8470. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Abak, A.; Fattahi, F.; Hussen, B.M.; Bahroudi, Z.; Shoorei, H.; Taheri, M. The interaction between miRNAs/lncRNAs and nuclear factor-κB (NF-κB) in human disorders. Biomed. Pharmacother. 2021, 138, 111519. [Google Scholar] [CrossRef] [PubMed]
- Tilborghs, S.; Corthouts, J.; Verhoeven, Y.; Arias, D.; Rolfo, C.; Trinh, X.B.; Van Dam, P.A. The role of nuclear factor-kappa B signaling in human cervical cancer. Crit. Rev. Oncol. Hematol. 2017, 120, 141–150. [Google Scholar] [CrossRef]
- Khayyat, A.I.A.; Zargar, S.; Wani, T.A.; Rehman, M.U.; Khan, A.A. Association mechanism and conformational changes in trypsin on its interaction with atrazine: A multi-spectroscopic and biochemical study with computational approach. Int. J. Mol. Sci. 2022, 23, 5636. [Google Scholar] [CrossRef]
- Kumar, S.; Nair, M.S. Deciphering the interaction of flavones with calf thymus DNA and octamer DNA sequence (CCAATTGG) 2. RSC Adv. 2021, 11, 29354–29371. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Z.; Zhou, M.; Li, Y. Synthesis and crystal structure of new monometallic Ni (II) and Co (II) complexes with an asymmetrical aroylhydrazone: Effects of the complexes on DNA/protein binding property, molecular docking, and in vitro anticancer activity. RSC Adv. 2017, 7, 49404–49422. [Google Scholar] [CrossRef]
- Alsaif, N.A.; Al-Mehizia, A.A.; Bakheit, A.H.; Zargar, S.; Wani, T.A. A spectroscopic, thermodynamic and molecular docking study of the binding mechanism of dapoxetine with calf thymus DNA. S. Afr. J. Chem. 2020, 73, 44–50. [Google Scholar] [CrossRef]
- Aziz, M.; Ejaz, S.A.; Zargar, S.; Akhtar, N.; Aborode, A.T.; Wani, T.A.; Batiha, G.E.-S.; Siddique, F.; Alqarni, M.; Akintola, A.A. Deep Learning and Structure-Based Virtual Screening for Drug Discovery against NEK7: A Novel Target for the Treatment of Cancer. Molecules 2022, 27, 4098. [Google Scholar] [CrossRef]
- Nikš, M.; Otto, M.; Bušová, B.; Štefanović, J. Quantification of proliferative and suppressive responses of human T lymphocytes following ConA stimulation. J. Immunol. Methods 1990, 126, 263–271. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Manojkumar, P.; Mahipal, V.; Suresh, G.; Venkatesh, N.; Ramesh, M.; Parthasarathy, T. Exploring Interaction Dynamics of Designed Organic Charge Transfer Complex of 6-Aminoindole and Chloranilic Acid: Spectrophotometric, Characterization, Computational, Antimicrobial, and DNA Binding Properties. J. Mol. Struct. 2022, 1258, 132666. [Google Scholar] [CrossRef]
- Wani, T.A.; Alsaif, N.; Bakheit, A.H.; Zargar, S.; Al-Mehizia, A.A.; Khan, A.A. Interaction of an abiraterone with calf thymus DNA: Investigation with spectroscopic technique and modelling studies. Bioorg. Chem. 2020, 100, 103957. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- St-Amant, A. Density Functional Methods in Biomolecular Modeling. Rev. Comput. Chem. 1996, 7, 217. [Google Scholar]
- Thanikaivelan, P.; Subramanian, V.; Rao, J.R.; Nair, B.U. Application of quantum chemical descriptor in quantitative structure activity and structure property relationship. Chem. Phys. Lett. 2000, 323, 59–70. [Google Scholar] [CrossRef]
- Baerends, E.J.; Gritsenko, O.V. A quantum chemical view of density functional theory. J. Phys. Chem. A 1997, 101, 5383–5403. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Schäfer, A.; Horn, H.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 1992, 97, 2571–2577. [Google Scholar] [CrossRef]
- Dennington, R.; Keith, T.A.; Millam, J.M. GaussView Version 6, 2019; Semichem Inc.: Shawnee Mission, KS, USA, 2019. [Google Scholar]
- Du, J.Q.; Wu, J.; Zhang, H.J.; Zhang, Y.H.; Qiu, B.Y.; Wu, F.; Chen, Y.H.; Li, J.Y.; Nan, F.J.; Ding, J.P.; et al. Isoquinoline-1, 3, 4-trione derivatives inactivate caspase-3 by generation of reactive oxygen species. J. Biol. Chem. 2008, 283, 30205–30215. [Google Scholar] [CrossRef]
- Zheng, C.; Yin, Q.; Wu, H. Structural studies of NF-κB signaling. Cell Res. 2011, 21, 183–195. [Google Scholar] [CrossRef]
- Li, H.; Jogl, G. Structural and biochemical studies of TIGAR (Tp53-induced glycolysis and apoptosis regulator). J. Biol. Chem. 2009, 284, 1748–1754. [Google Scholar] [CrossRef] [PubMed]
- Chandel, V.; Sharma, P.P.; Nayar, S.A.; Jha, N.K.; Jha, S.K.; Rathi, B.; Kumar, D. In silico identification of potential inhibitor for TP53-induced glycolysis and apoptosis regulator in head and neck squamous cell carcinoma. 3 Biotech 2021, 11, 1–16. [Google Scholar] [CrossRef]
- Morris, G.M.; Lim-Wilby, M. Molecular Docking. In Molecular Modeling of Proteins; Springer: Berlin/Heidelberg, Germany, 2008; pp. 365–382. [Google Scholar]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Stalin, A.; Lin, D.; Princy, J.J.; Feng, Y.; Xiang, H.; Ignacimuthu, S.; Chen, Y. Computational analysis of single nucleotide polymorphisms (SNPs) in PPAR gamma associated with obesity, diabetes and cancer. J. Biomol. Struct. Dyn. 2022, 40, 1843–1857. [Google Scholar] [CrossRef]
- Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.; Sherman, W. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J. Chem. Theory Comput. 2010, 6, 1509–1519. [Google Scholar] [CrossRef]
- Martyna, G.J.; Tobias, D.J.; Klein, M.L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 1994, 101, 4177–4189. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695. [Google Scholar] [CrossRef]
- Humphreys, D.D.; Friesner, R.A.; Berne, B.J. A multiple-time-step molecular dynamics algorithm for macromolecules. J. Phys. Chem. A 1994, 98, 6885–6892. [Google Scholar] [CrossRef]
- Luty, B.A.; Davis, M.E.; Tironi, I.G.; Van Gunsteren, W.F. A comparison of particle-particle, particle-mesh and Ewald methods for calculating electrostatic interactions in periodic molecular systems. Mol. Simul. 1994, 14, 11–20. [Google Scholar] [CrossRef]
- Wani, T.A.; Zargar, S.; Hussain, A. Spectroscopic, Thermodynamic and Molecular Docking Studies on Molecular Mechanisms of Drug Binding to Proteins. Molecules 2022, 27, 8405. [Google Scholar] [CrossRef]
- Rasheed, S.; Aziz, M.; Saeed, A.; Ejaz, S.A.; Channar, P.A.; Zargar, S.; Abbas, Q.; Alanazi, H.; Hussain, M.; Alharbi, M. Analysis of 1-Aroyl-3-[3-chloro-2-methylphenyl] Thiourea Hybrids as Potent Urease Inhibitors: Synthesis, Biochemical Evaluation and Computational Approach. Int. J. Mol. Sci. 2022, 23, 11646. [Google Scholar] [CrossRef] [PubMed]
Compound | IC50 (µM) ± SEM | ||
---|---|---|---|
HeLa | MDA-MB231 | MCF-7 | |
(8a) | 10.9 ± 1.01 | 19.22 ± 1.67 | 12.21 ± 0.93 |
(8b) | 7.2 ± 1.12 | 4.62 ± 0.13 | 7.13 ± 0.13 |
Doxorubicin | 4.21 ± 0.22 | 6.82 ± 0.59 | 7.32 ± 0.81 |
Cisplatin | 2.64 ± 0.13 | 2.27 ± 0.24 | 4.63 ± 0.21 |
Compound | Optimization Energy (Hartree) | Polarizability a.u (α) | Dipole Moment (Debye) | Potential Ionization I (eV) | Affinity A(eV) | Electron Donating Power (ω−) | Electron Accepting Power (ω+) | Electro Philicity (Δω±) |
---|---|---|---|---|---|---|---|---|
(8a) | −953.809912 | 300.221 | 6.201887 | 0.258 | 0.04684 | 0.047 | 0.199 | 0.246 |
(8b) | −2075.743816 | 110.149294 | 3.618891 | 0.2711 | 0.0800 | 0.085 | 0.261 | 0.346 |
Compound | EHOMO (eV) | ELUMO (eV) | ∆Egap (eV) | Chemical Hardness (η) | Chemical Potential (μ) | Electrophilicity Index (ω) | Chemical Softness (S) | Electronegativity (X) |
---|---|---|---|---|---|---|---|---|
(8a) | −0.258 | −0.046 | 0.211 | 0.106 | −0.152 | 0.110 | 4.736 | 0.152 |
(8b) | −0.271 | −0.080 | 0.191 | 0.096 | −0.176 | 0.161 | 5.233 | 0.176 |
Complex | Docking Score (kcal/mol) | Hydrogen Bonding Residues | Hydrogen Bond Length (Angstroms) | Hydrophobic Interactions Residues |
---|---|---|---|---|
Caspase-3-N-ethyl toluene-4-sulphonamide (8a) | −4.9 | Asn208 | 3.5 | Asp253, Trp206, Arg207, Trp214, Asn208, Phe247, Glu246, Glu248, Phe250, Phe252, Ser251 |
Caspase-3-2,5-Dichlorothiophene-3-sulfonamide (8b) | −5.9 | Gly165 | 2.92 | His121, Arg207, Thr255, Tyr204. Thr166, Gly122 |
NF-κB-N-ethyl toluene-4-sulphonamide (8a) | −5.2 | Val244 | 3.14 | His245, Arg246, Gln247, Lys221, Tyr251 |
NF-κB-2,5-Dichlorothiophene-3-sulfonamide (8b) | −5.8 | Gln241, Lys221 | 3.4, 2.4 | Phe239, Gly259, Asp223, Lys221, Glu222, Ile224 |
p53-N-ethyl toluene-4-sulphonamide (8a) | −5.7 | Arg203, Tyr92, Glu89 | 3.4, 3.4, 3.5 | Lys20, Leu100, Tyr92, Ala200, His11, Asn17, Arg10, Arg61, Gln23, Ile22, Ile21 |
p53-2,5-Dichlorothiophene-3-sulfonamide (8b) | −5.1 | Ile21 | 2.90 | Phe16, Lys20, Asn17, Ile22, Glu89, Gln23 |
DNA-N-ethyl toluene-4-sulphonamide (8a) | −5.1 | Dt19, Dt19 | 3.14, 3.25 | Dc9, Da18, Dt20, Dt8 |
DNA-2,5-Dichlorothiophene-3-sulfonamide (8b) | −5.6 | Dg10, Dg16 | 3.23, 3.31 | Dc11, Da18, Dc9, Dc17 |
p53-Doxirubicin | −10.53 | Asn17, Gln23, Arg10 | 2.69, 3.20, 3.18 | Glu89, Ile22, Lys20, Tyr92, Cys114, Arg203, Pro231 |
NF-κB-Doxorubicin | −4.52 | Thr682, Arg685 | 2.94, 2.93 | Pro681, Thr740 |
Caspase 3-Doxorubicin | −9.49 | His121, Gly122, Leu168 | 3.24, 2.2, 2.96 | Leu168, Phe256, Thr166, Thr255 |
DNA-Doxorubicin | −9.93 | Dt20, Dt20, Dt19, Dt8, Dt7 | 2.77, 3.26, 3.10, 2.66, 3.22 | Da6, Dc21, Da5, Dg4, Dg22 |
p53-cisplatin | −3.27 | Asn17, Ile21, Phe16 | 3.34, 2.98, 3.32 | Ly20, Ile22, Gln23 |
NF-κB-cisplatin | −2.38 | - | - | Leu674, Jis673, Leu736, Asn698, Asn669 |
Caspase 3-cisplatin | −2.57 | - | - | Phe256, Thr255, Tyr204, Leu168, Phe256 |
DNA-cisplatin | −3.79 | Dt8, Dt19, Dt7 | 2.92, 3.12, 2.96 | Dt20, Da6, Dc21 |
Complexes | Complex Free Binding Energy (kcal/mol) | Columb Energy (kcal/mol) | Hydrogen Bond Energy (kcal/mol) | Covalent Energy (kcal/mol) |
---|---|---|---|---|
p53-(8a) | −5508.8 | −8235.2 | −123.1 | −6012 |
Caspase-3-(8b) | −5822.1 | −8421.4 | −165.5 | −7233 |
p53-Doxorubicin | −1022.6 | −1523.9 | −420.2 | −1232 |
p53-Cisplatin | −1002 | −503.5 | −54.2 | −232.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wani, T.A.; Zargar, S.; Alkahtani, H.M.; Altwaijry, N.; Al-Rasheed, L.S. Anticancer Potential of Sulfonamide Moieties via In-Vitro and In-Silico Approaches: Comparative Investigations for Future Drug Development. Int. J. Mol. Sci. 2023, 24, 7953. https://doi.org/10.3390/ijms24097953
Wani TA, Zargar S, Alkahtani HM, Altwaijry N, Al-Rasheed LS. Anticancer Potential of Sulfonamide Moieties via In-Vitro and In-Silico Approaches: Comparative Investigations for Future Drug Development. International Journal of Molecular Sciences. 2023; 24(9):7953. https://doi.org/10.3390/ijms24097953
Chicago/Turabian StyleWani, Tanveer A., Seema Zargar, Hamad M. Alkahtani, Nojood Altwaijry, and Lamees S. Al-Rasheed. 2023. "Anticancer Potential of Sulfonamide Moieties via In-Vitro and In-Silico Approaches: Comparative Investigations for Future Drug Development" International Journal of Molecular Sciences 24, no. 9: 7953. https://doi.org/10.3390/ijms24097953
APA StyleWani, T. A., Zargar, S., Alkahtani, H. M., Altwaijry, N., & Al-Rasheed, L. S. (2023). Anticancer Potential of Sulfonamide Moieties via In-Vitro and In-Silico Approaches: Comparative Investigations for Future Drug Development. International Journal of Molecular Sciences, 24(9), 7953. https://doi.org/10.3390/ijms24097953