Molecular, Translational and Clinical Research on the Two Most Common Forms of Neurodegenerative Dementia: Alzheimer’s Disease and Dementia with Lewy Bodies
Acknowledgments
Conflicts of Interest
References
- American Psychiatric Association (Ed.) Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association Publishing: Washington, DC, USA, 2013. [Google Scholar]
- World Health Organization. Fact Sheets of Dementia. Available online: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on 1 April 2023).
- Nichols, E.; Steinmetz, J.D.; Vollset, S.E.; Fukutaki, K.; Chalek, J.; Abd-Allah, F.; Abdoli, A.; Abualhasan, A.; Abu-Gharbieh, E.; Akram, T.T.; et al. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022, 7, e105–e125. [Google Scholar] [CrossRef] [PubMed]
- Nwadiugwu, M. Early-onset dementia: Key issues using a relationship-centred care approach. Postgrad. Med. J. 2021, 97, 598–604. [Google Scholar] [CrossRef]
- Williams, S.S. The terrorist inside my husband’s brain. Neurology 2016, 87, 1308–1311. [Google Scholar] [CrossRef] [PubMed]
- Bandopadhyay, R.; Gatt, A.; Lashley, T. Advances in the Understanding of Frontotemporal Dementia. Cells 2023, 12, 781. [Google Scholar] [CrossRef] [PubMed]
- Blum, D. Bruce Willis Has Frontotemporal Dementia, His Family Announces. Available online: https://www.nytimes.com/2023/02/16/well/mind/bruce-willis-frontotemporal-dementia-aphasia.html (accessed on 16 February 2023).
- Hendriks, S.; Peetoom, K.; Bakker, C.; van der Flier, W.M.; Papma, J.M.; Koopmans, R.; Verhey, F.R.J.; de Vugt, M.; Kohler, S.; Withall, A.; et al. Global Prevalence of Young-Onset Dementia: A Systematic Review and Meta-analysis. JAMA Neurol. 2021, 78, 1080–1090. [Google Scholar] [CrossRef] [PubMed]
- van Vliet, D.; de Vugt, M.E.; Bakker, C.; Koopmans, R.T.; Verhey, F.R. Impact of early onset dementia on caregivers: A review. Int. J. Geriatr. Psychiatry 2010, 25, 1091–1100. [Google Scholar] [CrossRef] [PubMed]
- Draper, B.; Cations, M.; White, F.; Trollor, J.; Loy, C.; Brodaty, H.; Sachdev, P.; Gonski, P.; Demirkol, A.; Cumming, R.G.; et al. Time to diagnosis in young-onset dementia and its determinants: The INSPIRED study. Int. J. Geriatr. Psychiatry 2016, 31, 1217–1224. [Google Scholar] [CrossRef]
- Chan, H.J.; Yanshree; Roy, J.; Tipoe, G.L.; Fung, M.L.; Lim, L.W. Therapeutic Potential of Human Stem Cell Implantation in Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 10151. [Google Scholar] [CrossRef]
- Jantrapirom, S.; Nimlamool, W.; Chattipakorn, N.; Chattipakorn, S.; Temviriyanukul, P.; Inthachat, W.; Govitrapong, P.; Potikanond, S. Liraglutide Suppresses Tau Hyperphosphorylation, Amyloid Beta Accumulation through Regulating Neuronal Insulin Signaling and BACE-1 Activity. Int. J. Mol. Sci. 2020, 21, 1725. [Google Scholar] [CrossRef]
- Moreira, G.G.; Cristovao, J.S.; Torres, V.M.; Carapeto, A.P.; Rodrigues, M.S.; Landrieu, I.; Cordeiro, C.; Gomes, C.M. Zinc Binding to Tau Influences Aggregation Kinetics and Oligomer Distribution. Int. J. Mol. Sci. 2019, 20, 5979. [Google Scholar] [CrossRef]
- Roy, J.; Tsui, K.C.; Ng, J.; Fung, M.L.; Lim, L.W. Regulation of Melatonin and Neurotransmission in Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 6841. [Google Scholar] [CrossRef] [PubMed]
- Toledo, A.R.L.; Monroy, G.R.; Salazar, F.E.; Lee, J.Y.; Jain, S.; Yadav, H.; Borlongan, C.V. Gut-Brain Axis as a Pathological and Therapeutic Target for Neurodegenerative Disorders. Int. J. Mol. Sci. 2022, 23, 1184. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhang, C.; Xia, J.; Xu, B. Treadmill Exercise Ameliorates Adult Hippocampal Neurogenesis Possibly by Adjusting the APP Proteolytic Pathway in APP/PS1 Transgenic Mice. Int. J. Mol. Sci. 2021, 22, 9570. [Google Scholar] [CrossRef] [PubMed]
- Lachen-Montes, M.; Mendizuri, N.; Schvartz, D.; Fernandez-Irigoyen, J.; Sanchez, J.C.; Santamaria, E. Proteomic Characterization of the Olfactory Molecular Imbalance in Dementia with Lewy Bodies. Int. J. Mol. Sci. 2020, 21, 6371. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Napoli, E.; Kim, K.; McLennan, Y.A.; Hagerman, R.J.; Giulivi, C. Brain Atrophy and White Matter Damage Linked to Peripheral Bioenergetic Deficits in the Neurodegenerative Disease FXTAS. Int. J. Mol. Sci. 2021, 22, 9171. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.; Park, Y.J.; Lee, J.Y.; Chase, T.N.; Koga, M.; Borlongan, C.V. Bone Marrow-Derived NCS-01 Cells Advance a Novel Cell-Based Therapy for Stroke. Int. J. Mol. Sci. 2020, 21, 2845. [Google Scholar] [CrossRef]
- Choi, I.A.; Yun, J.H.; Kim, J.H.; Kim, H.Y.; Choi, D.H.; Lee, J. Sequential Transcriptome Changes in the Penumbra after Ischemic Stroke. Int. J. Mol. Sci. 2019, 20, 6349. [Google Scholar] [CrossRef]
- Gugliandolo, A.; Bramanti, P.; Mazzon, E. Activation of Nrf2 by Natural Bioactive Compounds: A Promising Approach for Stroke? Int. J. Mol. Sci. 2020, 21, 4875. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Lyu, H.; Huo, K.; Do Prado, L.B.; Tang, C.; Wang, Z.; Li, Q.; Wong, J.; Su, H. Bone Fracture Enhanced Blood-Brain Barrier Breakdown in the Hippocampus and White Matter Damage of Stroke Mice. Int. J. Mol. Sci. 2020, 21, 8481. [Google Scholar] [CrossRef] [PubMed]
- Kalaria, R.N.; Akinyemi, R.; Ihara, M. Stroke injury, cognitive impairment and vascular dementia. Biochim. Biophys. Acta 2016, 1862, 915–925. [Google Scholar] [CrossRef]
- Nitrini, R.; Goncalves, M.R.R.; Capelli, L.P.; Barbosa, E.R.; Porto, C.S.; Amaro, E.; Otto, P.A.; Vianna-Morgante, A.M. Dementia in Fragile X-associated Tremor/Ataxia Syndrome. Dement Neuropsychol. 2010, 4, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Salcedo-Arellano, M.J.; Sanchez, D.; Wang, J.Y.; McLennan, Y.A.; Clark, C.J.; Juarez, P.; Schneider, A.; Tassone, F.; Hagerman, R.J.; Martinez-Cerdeno, V. Case Report: Coexistence of Alzheimer-Type Neuropathology in Fragile X-Associated Tremor Ataxia Syndrome. Front. Neurosci. 2021, 15, 720253. [Google Scholar] [CrossRef] [PubMed]
- Seritan, A.L.; Nguyen, D.V.; Farias, S.T.; Hinton, L.; Grigsby, J.; Bourgeois, J.A.; Hagerman, R.J. Dementia in fragile X-associated tremor/ataxia syndrome (FXTAS): Comparison with Alzheimer’s disease. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008, 147B, 1138–1144. [Google Scholar] [CrossRef] [PubMed]
- Amiri, K.; Hagerman, R.J.; Hagerman, P.J. Fragile X-associated tremor/ataxia syndrome: An aging face of the fragile X gene. Arch. Neurol. 2008, 65, 19–25. [Google Scholar] [CrossRef]
- Rost, N.S.; Brodtmann, A.; Pase, M.P.; van Veluw, S.J.; Biffi, A.; Duering, M.; Hinman, J.D.; Dichgans, M. Post-Stroke Cognitive Impairment and Dementia. Circ. Res. 2022, 130, 1252–1271. [Google Scholar] [CrossRef]
- Madokoro, Y.; Yoshino, Y.; Kato, D.; Sato, T.; Mizuno, M.; Kanamori, T.; Shimazawa, M.; Hida, H.; Hara, H.; Yoshida, M.; et al. Reduced Cholinergic Activity in the Hippocampus of Hippocampal Cholinergic Neurostimulating Peptide Precursor Protein Knockout Mice. Int. J. Mol. Sci. 2019, 20, 5367. [Google Scholar] [CrossRef]
- McKeith, I. Dementia with Lewy bodies. Dialogues Clin. Neurosci. 2004, 6, 333–341. [Google Scholar] [CrossRef]
- Gomez-Isla, T.; Growdon, W.B.; McNamara, M.; Newell, K.; Gomez-Tortosa, E.; Hedley-Whyte, E.T.; Hyman, B.T. Clinicopathologic correlates in temporal cortex in dementia with Lewy bodies. Neurology 1999, 53, 2003–2009. [Google Scholar] [CrossRef]
- Bostrom, F.; Jonsson, L.; Minthon, L.; Londos, E. Patients with dementia with lewy bodies have more impaired quality of life than patients with Alzheimer disease. Alzheimer. Dis. Assoc. Disord. 2007, 21, 150–154. [Google Scholar] [CrossRef]
- Bostrom, F.; Jonsson, L.; Minthon, L.; Londos, E. Patients with Lewy body dementia use more resources than those with Alzheimer’s disease. Int. J. Geriatr. Psychiatry 2007, 22, 713–719. [Google Scholar] [CrossRef]
- Williams, M.M.; Xiong, C.; Morris, J.C.; Galvin, J.E. Survival and mortality differences between dementia with Lewy bodies vs Alzheimer disease. Neurology 2006, 67, 1935–1941. [Google Scholar] [CrossRef] [PubMed]
- Baker, M. Mis-oriented stem cells don’t divide. Nat. Rep. Stem Cells 2008. [Google Scholar] [CrossRef]
- Piccin, D.; Morshead, C.M. Potential and pitfalls of stem cell therapy in old age. Dis. Model Mech. 2010, 3, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Salloway, S.; Cummings, J. Aducanumab, Amyloid Lowering, and Slowing of Alzheimer Disease. Neurology 2021, 97, 543–544. [Google Scholar] [CrossRef] [PubMed]
- van Dyck, C.H.; Swanson, C.J.; Aisen, P.; Bateman, R.J.; Chen, C.; Gee, M.; Kanekiyo, M.; Li, D.; Reyderman, L.; Cohen, S.; et al. Lecanemab in Early Alzheimer’s Disease. N. Engl. J. Med. 2023, 388, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Reardon, S. FDA approves Alzheimer’s drug lecanemab amid safety concerns. Nature 2023, 613, 227–228. [Google Scholar] [CrossRef]
- Steinbrook, R. The Accelerated Approval of Aducanumab for Treatment of Patients With Alzheimer Disease. JAMA Intern. Med. 2021, 181, 1281. [Google Scholar] [CrossRef]
- Mintun, M.A.; Lo, A.C.; Duggan Evans, C.; Wessels, A.M.; Ardayfio, P.A.; Andersen, S.W.; Shcherbinin, S.; Sparks, J.; Sims, J.R.; Brys, M.; et al. Donanemab in Early Alzheimer’s Disease. N. Engl. J. Med. 2021, 384, 1691–1704. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Napoli, E. Molecular, Translational and Clinical Research on the Two Most Common Forms of Neurodegenerative Dementia: Alzheimer’s Disease and Dementia with Lewy Bodies. Int. J. Mol. Sci. 2023, 24, 7996. https://doi.org/10.3390/ijms24097996
Napoli E. Molecular, Translational and Clinical Research on the Two Most Common Forms of Neurodegenerative Dementia: Alzheimer’s Disease and Dementia with Lewy Bodies. International Journal of Molecular Sciences. 2023; 24(9):7996. https://doi.org/10.3390/ijms24097996
Chicago/Turabian StyleNapoli, Eleonora. 2023. "Molecular, Translational and Clinical Research on the Two Most Common Forms of Neurodegenerative Dementia: Alzheimer’s Disease and Dementia with Lewy Bodies" International Journal of Molecular Sciences 24, no. 9: 7996. https://doi.org/10.3390/ijms24097996
APA StyleNapoli, E. (2023). Molecular, Translational and Clinical Research on the Two Most Common Forms of Neurodegenerative Dementia: Alzheimer’s Disease and Dementia with Lewy Bodies. International Journal of Molecular Sciences, 24(9), 7996. https://doi.org/10.3390/ijms24097996