Prediction of Early- and Late-Onset Pre-Eclampsia in the Preclinical Stage via Placenta-Specific Extracellular miRNA Profiling
Abstract
:1. Introduction
2. Results
2.1. Search for Placenta-Specific Extracellular miRNAs in ePE and lPE at the Time of Delivery
2.2. Retrospective Analysis of miRNA Expression Profile in the Blood Serum from Women in the First Trimester of Pregnancy
2.3. Testing the Developed Model for Predicting PE in the First Trimester of Pregnancy on an Independent Cohort of Patients
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. RNA Isolation from Blood Plasma or Serum
4.3. RNA Isolation from Placenta Tissue
4.4. miRNA Deep Sequencing
4.5. Reverse Transcription and Quantitative Real-Time PCR
4.6. Statistical Analysis of the Obtained Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burton, G.J.; Redman, C.W.; Roberts, J.M.; Moffett, A. Pre-eclampsia: Pathophysiology and clinical implications. BMJ 2019, 366, l2381. [Google Scholar] [CrossRef] [PubMed]
- Ananth, C.V.; Lavery, J.A.; Friedman, A.M.; Wapner, R.J.; Wright, J.D. Serious maternal complications in relation to severe pre-eclampsia: A retrospective cohort study of the impact of hospital volume. BJOG 2017, 124, 1246–1253. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.A.; Magee, L.A.; Kenny, L.C.; Karumanchi, S.A.; McCarthy, F.P.; Saito, S.; Hall, D.R.; Warren, C.E.; Adoyi, G.; Ishaku, S. The hypertensive disorders of pregnancy: ISSHP classification, diagnosis & management recommendations for international practice. Pregnancy Hypertens. 2018, 13, 291–310. [Google Scholar] [CrossRef]
- Pierrat, V.; Marchand-Martin, L.; Arnaud, C.; Kaminski, M.; Resche-Rigon, M.; Lebeaux, C.; Bodeau-Livinec, F.; Morgan, A.S.; Goffinet, F.; Marret, S.; et al. Neurodevelopmental outcome at 2 years for preterm children born at 22 to 34 weeks’ gestation in France in 2011: EPIPAGE-2 cohort study. BMJ 2017, 358, j3448. [Google Scholar] [CrossRef]
- van Beek, P.E.; Rijken, M.; Broeders, L.; Ter Horst, H.J.; Koopman-Esseboom, C.; de Kort, E.; Laarman, C.; Mulder-de Tollenaer, S.M.; Steiner, K.; Swarte, R.M.; et al. Two-year neurodevelopmental outcome in children born extremely preterm: The EPI-DAF study. Arch. Dis. Child. Fetal Neonatal Ed. 2022, 107, 467–474. [Google Scholar] [CrossRef]
- Huppertz, B. Placental origins of preeclampsia: Challenging the current hypothesis. Hypertension 2008, 51, 970–975. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Gomez, T.; Dominguez, F.; Quiñonero, A.; Diaz-Gimeno, P.; Kapidzic, M.; Gormley, M.; Ona, K.; Padilla-Iserte, P.; McMaster, M.; Genbacev, O.; et al. Defective decidualization during and after severe preeclampsia reveals a possible maternal contribution to the etiology. Proc. Natl. Acad. Sci. USA 2017, 114, E8468–E8477. [Google Scholar] [CrossRef]
- Ruane, P.T.; Berneau, S.C.; Koeck, R.; Watts, J.; Kimber, S.J.; Brison, D.R.; Westwood, M.; Aplin, J.D. Apposition to endometrial epithelial cells activates mouse blastocysts for implantation. Mol. Hum. Reprod. 2017, 23, 617–627. [Google Scholar] [CrossRef]
- Myatt, L. Review: Reactive oxygen and nitrogen species and functional adaptation of the placenta. Placenta 2010, 31, S66–S69. [Google Scholar] [CrossRef]
- Pijnenborg, R.; Bland, J.M.; Robertson, W.B.; Brosens, I. Uteroplacental arterial changes related to interstitial trophoblast migration in early human pregnancy. Placenta 1983, 4, 397–413. [Google Scholar] [CrossRef]
- Burton, G.J.; Woods, A.W.; Jauniaux, E.; Kingdom, J.C.P. Rheological and Physiological Consequences of Conversion of the Maternal Spiral Arteries for Uteroplacental Blood Flow during Human Pregnancy. Placenta 2009, 30, 473–482. [Google Scholar] [CrossRef] [PubMed]
- James, J.L.; Saghian, R.; Perwick, R.; Clark, A.R. Trophoblast plugs: Impact on utero-placental haemodynamics and spiral artery remodelling. Hum. Reprod. 2018, 33, 1430–1441. [Google Scholar] [CrossRef] [PubMed]
- Allerkamp, H.H.; Clark, A.R.; Lee, T.C.; Morgan, T.K.; Burton, G.J.; James, J.L. Something old, something new: Digital quantification of uterine vascular remodelling and trophoblast plugging in historical collections provides new insight into adaptation of the utero-placental circulation. Hum. Reprod. 2021, 36, 571–586. [Google Scholar] [CrossRef]
- Staff, A.C.; Fjeldstad, H.E.; Fosheim, I.K.; Moe, K.; Turowski, G.; Johnsen, G.M.; Alnaes-Katjavivi, P.; Sugulle, M. Failure of physiological transformation and spiral artery atherosis: Their roles in preeclampsia. Am. J. Obstet. Gynecol. 2022, 226, S895–S906. [Google Scholar] [CrossRef]
- Sidorova, I.S. Solved and unsolved problems of preeclampsia in Russia (Editorial). Russ. Bull. Obstet. 2015, 15, 4–9. [Google Scholar] [CrossRef]
- Rana, S.; Burke, S.D.; Karumanchi, S.A. Imbalances in circulating angiogenic factors in the pathophysiology of preeclampsia and related disorders. Am. J. Obstet. Gynecol. 2022, 226, S1019–S1034. [Google Scholar] [CrossRef]
- Haram, K.; Mortensen, J.H.; Myking, O.; Magann, E.F.; Morrison, J.C. The Role of Oxidative Stress, Adhesion Molecules and Antioxidants in Preeclampsia. Curr. Hypertens. Rev. 2019, 15, 105–112. [Google Scholar] [CrossRef]
- Tomimatsu, T.; Mimura, K.; Matsuzaki, S.; Endo, M.; Kumasawa, K.; Kimura, T. Preeclampsia: Maternal Systemic Vascular Disorder Caused by Generalized Endothelial Dysfunction Due to Placental Antiangiogenic Factors. Int. J. Mol. Sci. 2019, 20, 4246. [Google Scholar] [CrossRef]
- Staff, A.C. The two-stage placental model of preeclampsia: An update. J. Reprod. Immunol. 2019, 134–135, 1–10. [Google Scholar] [CrossRef]
- Kohan-Ghadr, H.-R.; Kadam, L.; Jain, C.; Armant, D.R.; Drewlo, S. Potential role of epigenetic mechanisms in regulation of trophoblast differentiation, migration, and invasion in the human placenta. Cell Adh. Migr. 2016, 10, 126–135. [Google Scholar] [CrossRef]
- Skalis, G.; Katsi, V.; Miliou, A.; Georgiopoulos, G.; Papazachou, O.; Vamvakou, G.; Nihoyannopoulos, P.; Tousoulis, D.; Makris, T. MicroRNAs in Preeclampsia. MicroRNA 2019, 8, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Lu, C.; Ji, X.; Miao, Z.; Long, W.; Ding, H.; Lv, M. Roles of microRNAs in preeclampsia. J. Cell. Physiol. 2019, 234, 1052–1061. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Zhao, Y.; Liu, M.; Wang, Y.; Wang, H.; Li, Y.; Zhu, X.; Yao, Y.; Wang, H.; Qiao, J.; et al. Variations of MicroRNAs in Human Placentas and Plasma From Preeclamptic Pregnancy. Hypertension 2014, 63, 1276–1284. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Wang, W. Human placental microRNAs and preeclampsia. Biol. Reprod. 2013, 88, 130. [Google Scholar] [CrossRef]
- Winger, E.E.; Reed, J.L.; Ji, X.; Nicolaides, K. Peripheral blood cell microRNA quantification during the first trimester predicts preeclampsia: Proof of concept. PLoS ONE 2018, 13, e0190654. [Google Scholar] [CrossRef]
- Devor, E.; Santillan, D.; Scroggins, S.; Warrier, A.; Santillan, M. Trimester-specific plasma exosome microRNA expression profiles in preeclampsia. J. Matern.-Fetal Neonatal Med. Off. J. Eur. Assoc. Perinat. Med. Fed. Asia Ocean. Perinat. Soc. Int. Soc. Perinat. Obstet. 2020, 33, 3116–3124. [Google Scholar] [CrossRef]
- Hromadnikova, I.; Dvorakova, L.; Kotlabova, K.; Krofta, L. The Prediction of Gestational Hypertension, Preeclampsia and Fetal Growth Restriction via the First Trimester Screening of Plasma Exosomal C19MC microRNAs. Int. J. Mol. Sci. 2019, 20, 2972. [Google Scholar] [CrossRef]
- Licini, C.; Avellini, C.; Picchiassi, E.; Mensà, E.; Fantone, S.; Ramini, D.; Tersigni, C.; Tossetta, G.; Castellucci, C.; Tarquini, F.; et al. Pre-eclampsia predictive ability of maternal miR-125b: A clinical and experimental study. Transl. Res. 2021, 228, 13–27. [Google Scholar] [CrossRef]
- De La Calle, M.; Delgado, J.L.; Verlohren, S.; Escudero, A.I.; Bartha, J.L.; Campillos, J.M.; Aguarón De La Cruz, A.; Chantraine, F.; García Hernández, J.Á.; Herraiz, I.; et al. Gestational Age-Specific Reference Ranges for the sFlt-1/PlGF Immunoassay Ratio in Twin Pregnancies. Fetal Diagn. Ther. 2021, 48, 288–296. [Google Scholar] [CrossRef]
- Coenen-Stass, A.M.L.; Pauwels, M.J.; Hanson, B.; Martin Perez, C.; Conceição, M.; Wood, M.J.A.; Mäger, I.; Roberts, T.C. Extracellular microRNAs exhibit sequence-dependent stability and cellular release kinetics. RNA Biol. 2019, 16, 696–706. [Google Scholar] [CrossRef]
- Timofeeva, A.; Fedorov, I.; Tarasova, A.; Gorina, K.; Suhova, Y.; Gusar, V.; Ivanets, T. Role of clusterin in predicting development of early- and late-onset preeclampsia in the first trimester of pregnancy. Bull. Russ. State Med. Univ. 2022, 60–71. [Google Scholar] [CrossRef]
- Morales-Prieto, D.M.; Chaiwangyen, W.; Ospina-Prieto, S.; Schneider, U.; Herrmann, J.; Gruhn, B.; Markert, U.R. MicroRNA expression profiles of trophoblastic cells. Placenta 2012, 33, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Morales-Prieto, D.M.; Ospina-Prieto, S.; Chaiwangyen, W.; Schoenleben, M.; Markert, U.R. Pregnancy-associated miRNA-clusters. J. Reprod. Immunol. 2013, 97, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Mouillet, J.-F.; Ouyang, Y.; Coyne, C.B.; Sadovsky, Y. MicroRNAs in placental health and disease. Am. J. Obstet. Gynecol. 2015, 213, S163–S172. [Google Scholar] [CrossRef]
- Timofeeva, A.V.; Fedorov, I.S.; Shamina, M.A.; Chagovets, V.V.; Makarova, N.P.; Kalinina, E.A.; Nazarenko, T.A.; Sukhikh, G.T. Clinical Relevance of Secreted Small Noncoding RNAs in an Embryo Implantation Potential Prediction at Morula and Blastocyst Development Stages. Life 2021, 11, 1328. [Google Scholar] [CrossRef]
- Timofeeva, A.; Drapkina, Y.; Fedorov, I.; Chagovets, V.; Makarova, N.; Shamina, M.; Kalinina, E.; Sukhikh, G. Small Noncoding RNA Signatures for Determining the Developmental Potential of an Embryo at the Morula Stage. Int. J. Mol. Sci. 2020, 21, 9399. [Google Scholar] [CrossRef]
- Timofeeva, A.V.; Chagovets, V.V.; Drapkina, Y.S.; Makarova, N.P.; Kalinina, E.A.; Sukhikh, G.T. Cell-Free, Embryo-Specific sncRNA as a Molecular Biological Bridge between Patient Fertility and IVF Efficiency. Int. J. Mol. Sci. 2019, 20, 2912. [Google Scholar] [CrossRef]
- Li, Q.; Shi, J.; Liu, W. The role of Wnt/β-catenin-lin28a/let-7 axis in embryo implantation competency and epithelial-mesenchymal transition (EMT). Cell Commun. Signal. 2020, 18, 108. [Google Scholar] [CrossRef]
- Ali, A.; Iqbal, M.A.; Abbas, M.W.; Bouma, G.J.; Anthony, R.V.; Spencer, T.E.; Winger, Q.A. Trophectoderm Transcriptome Analysis in LIN28 Knockdown Ovine Conceptuses Suggests Diverse Roles of the LIN28-let-7 Axis in Placental and Fetal Development. Cells 2022, 11, 1234. [Google Scholar] [CrossRef]
- Piskounova, E.; Polytarchou, C.; Thornton, J.E.; LaPierre, R.J.; Pothoulakis, C.; Hagan, J.P.; Iliopoulos, D.; Gregory, R.I. Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell 2011, 147, 1066–1079. [Google Scholar] [CrossRef]
- Xie, H.; Tranguch, S.; Jia, X.; Zhang, H.; Das, S.K.; Dey, S.K.; Kuo, C.J.; Wang, H. Inactivation of nuclear Wnt-beta-catenin signaling limits blastocyst competency for implantation. Development 2008, 135, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Chen, J.; Yang, C.; Lee, K.-F.; Lee, Y.-L.; Chiu, P.C.-N.; Zhang, Y.; Duan, Y.-G.; Liu, K.; Yeung, W.S.-B. Expression of microRNA let-7 in cleavage embryos modulates cell fate determination and formation of mouse blastocysts†. Biol. Reprod. 2022, 107, 1452–1463. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, K.; Wu, Q.; Jin, L.; Lu, H.; Shi, Y.; Liu, L.; Yang, L.; Lv, L. Let-7 inhibits the migration and invasion of extravillous trophoblast cell via targeting MDM4. Mol. Cell. Probes 2019, 45, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Liu, N.; Tian, Y.; Li, Y.; Shen, X.; Chen, Y.; Wu, F. Expression profile of Let-7s in peripheral blood mononuclear cells of normal and severe preeclampsia pregnant women. Exp. Mol. Pathol. 2019, 110, 104263. [Google Scholar] [CrossRef] [PubMed]
- Caldeira-Dias, M.; Luizon, M.R.; Deffune, E.; Tanus-Santos, J.E.; Freire, P.P.; Carvalho, R.F.; Bettiol, H.; Cardoso, V.C.; Antonio Barbieri, M.; Cavalli, R.C.; et al. Preeclamptic plasma stimulates the expression of miRNAs, leading to a decrease in endothelin-1 production in endothelial cells. Pregnancy Hypertens. 2018, 12, 75–81. [Google Scholar] [CrossRef]
- Tokumaru, S.; Suzuki, M.; Yamada, H.; Nagino, M.; Takahashi, T. let-7 regulates Dicer expression and constitutes a negative feedback loop. Carcinogenesis 2008, 29, 2073–2077. [Google Scholar] [CrossRef]
- Qiu, G.; Fan, J.; Zheng, G.; He, J.; Lin, F.; Ge, M.; Huang, L.; Wang, J.; Xia, J.; Huang, R.; et al. Diagnostic Potential of Plasma Extracellular Vesicle miR-483-3p and Let-7d-3p for Sepsis. Front. Mol. Biosci. 2022, 9, 814240. [Google Scholar] [CrossRef]
- Yan, J.; Tie, G.; Wang, S.; Tutto, A.; DeMarco, N.; Khair, L.; Fazzio, T.G.; Messina, L.M. Diabetes impairs wound healing by Dnmt1-dependent dysregulation of hematopoietic stem cells differentiation towards macrophages. Nat. Commun. 2018, 9, 33. [Google Scholar] [CrossRef]
- DaSilva-Arnold, S.C.; Zamudio, S.; Al-Khan, A.; Alvarez-Perez, J.; Mannion, C.; Koenig, C.; Luke, D.; Perez, A.M.; Petroff, M.; Alvarez, M.; et al. Human trophoblast epithelial-mesenchymal transition in abnormally invasive placenta. Biol. Reprod. 2018, 99, 409–421. [Google Scholar] [CrossRef]
- Yang, H.; Chen, Z.; Liu, Z. MiR-20a-5p Negatively Regulates NR4A3 to Promote Metastasis in Bladder Cancer. J. Oncol. 2021, 2021, 1377989. [Google Scholar] [CrossRef]
- Xu, Y.; Lai, Y.; Cao, L.; Li, Y.; Chen, G.; Chen, L.; Weng, H.; Chen, T.; Wang, L.; Ye, Y. Human umbilical cord mesenchymal stem cells-derived exosomal microRNA-451a represses epithelial-mesenchymal transition of hepatocellular carcinoma cells by inhibiting ADAM10. RNA Biol. 2021, 18, 1408–1423. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Wang, S.; Fritah, S.; Wang, X.; Zhou, W.; Yang, N.; Ni, S.; Huang, B.; Chen, A.; Li, G.; et al. Interfering with long non-coding RNA MIR22HG processing inhibits glioblastoma progression through suppression of Wnt/β-catenin signalling. Brain 2020, 143, 512–530. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Tang, S.; He, R.; Luo, W.; Qin, S.; Jiang, H. The effect and mechanism of miR-30e-5p targeting SNAI1 to regulate epithelial-mesenchymal transition on pancreatic cancer. Bioengineered 2022, 13, 8013–8028. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Song, Y.; Lu, L. Overexpression of let-7d explains down-regulated KDM3A and ENO2 in the pathogenesis of preeclampsia. J. Cell. Mol. Med. 2021, 25, 8127–8139. [Google Scholar] [CrossRef] [PubMed]
- Ojeda-Casares, H.; Paradisi, I. The Regulatory Network Played by miRNAs During Normal Pregnancy and Preeclampsia: A Comparative Study. MicroRNA 2021, 10, 263–275. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, X.; Xie, J.; Chen, Y.; Fu, J.; Wang, L. Let-7i-Induced Atg4B Suppression Is Essential for Autophagy of Placental Trophoblast in Preeclampsia. J. Cell. Physiol. 2017, 232, 2581–2589. [Google Scholar] [CrossRef]
- Hromadnikova, I.; Kotlabova, K.; Krofta, L. Cardiovascular Disease-Associated MicroRNA Dysregulation during the First Trimester of Gestation in Women with Chronic Hypertension and Normotensive Women Subsequently Developing Gestational Hypertension or Preeclampsia with or without Fetal Growth Restr. Biomedicines 2022, 10, 256. [Google Scholar] [CrossRef]
- Jauniaux, E.; Watson, A.; Burton, G. Evaluation of respiratory gases and acid-base gradients in human fetal fluids and uteroplacental tissue between 7 and 16 weeks’ gestation. Am. J. Obstet. Gynecol. 2001, 184, 998–1003. [Google Scholar] [CrossRef]
- Zhou, H.; Zhao, C.; Wang, P.; Yang, W.; Zhu, H.; Zhang, S. Regulators involved in trophoblast syncytialization in the placenta of intrauterine growth restriction. Front. Endocrinol. 2023, 14, 1107182. [Google Scholar] [CrossRef]
- Zhao, H.; Wong, R.J.; Stevenson, D.K. The Impact of Hypoxia in Early Pregnancy on Placental Cells. Int. J. Mol. Sci. 2021, 22, 9675. [Google Scholar] [CrossRef]
- Chen, Y.; He, Y.; Zhao, S.; He, X.; Xue, D.; Xia, Y. Hypoxic/Ischemic Inflammation, MicroRNAs and δ-Opioid Receptors: Hypoxia/Ischemia-Sensitive Versus-Insensitive Organs. Front. Aging Neurosci. 2022, 14, 847374. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zhao, H.; Zhang, M.; He, Y.; Li, X.; Xu, Y.; Liu, X. Hypoxia Induced Changes of Exosome Cargo and Subsequent Biological Effects. Front. Immunol. 2022, 13, 824188. [Google Scholar] [CrossRef] [PubMed]
- Mouillet, J.-F.; Chu, T.; Nelson, D.M.; Mishima, T.; Sadovsky, Y. MiR-205 silences MED1 in hypoxic primary human trophoblasts. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2010, 24, 2030–2039. [Google Scholar] [CrossRef] [PubMed]
- Mo, B.; Wu, X.; Wang, X.; Xie, J.; Ye, Z.; Li, L. miR-30e-5p Mitigates Hypoxia-Induced Apoptosis in Human Stem Cell-Derived Cardiomyocytes by Suppressing Bim. Int. J. Biol. Sci. 2019, 15, 1042–1051. [Google Scholar] [CrossRef]
- Wang, W.; Sun, G.; Zhang, L.; Shi, L.; Zeng, Y. Circulating microRNAs as novel potential biomarkers for early diagnosis of acute stroke in humans. J. Stroke Cerebrovasc. Dis. Off. J. Natl. Stroke Assoc. 2014, 23, 2607–2613. [Google Scholar] [CrossRef]
- Xu, J.; Li, Y.; Li, Z.; Shao, W.; Song, J.; Wei, J. Acidic Tumor Microenvironment Promotes Pancreatic Cancer through miR-451a/MEF2D Axis. J. Oncol. 2022, 2022, 3966386. [Google Scholar] [CrossRef]
- Scrimgeour, N.R.; Wrobel, A.; Pinho, M.J.; Høydal, M.A. microRNA-451a prevents activation of matrix metalloproteinases 2 and 9 in human cardiomyocytes during pathological stress stimulation. Am. J. Physiol. Cell Physiol. 2020, 318, C94–C102. [Google Scholar] [CrossRef]
- Yang, J.; Chen, L.; Yang, J.; Ding, J.; Li, S.; Wu, H.; Zhang, J.; Fan, Z.; Dong, W.; Li, X. MicroRNA-22 targeting CBP protects against myocardial ischemia-reperfusion injury through anti-apoptosis in rats. Mol. Biol. Rep. 2014, 41, 555–561. [Google Scholar] [CrossRef]
- Chen, S.; Liu, R.; Wang, H.; Liu, Q. Hypoxia-driven miR-1307-3p promotes hepatocellular carcinoma cell proliferation and invasion by modulating DAB2 interacting protein. Pathol. Res. Pract. 2022, 237, 154066. [Google Scholar] [CrossRef]
- Veitch, S.; Njock, M.-S.; Chandy, M.; Siraj, M.A.; Chi, L.; Mak, H.; Yu, K.; Rathnakumar, K.; Perez-Romero, C.A.; Chen, Z.; et al. MiR-30 promotes fatty acid beta-oxidation and endothelial cell dysfunction and is a circulating biomarker of coronary microvascular dysfunction in pre-clinical models of diabetes. Cardiovasc. Diabetol. 2022, 21, 31. [Google Scholar] [CrossRef]
- Kriegel, A.J.; Baker, M.A.; Liu, Y.; Liu, P.; Cowley, A.W.J.; Liang, M. Endogenous microRNAs in human microvascular endothelial cells regulate mRNAs encoded by hypertension-related genes. Hypertension 2015, 66, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Yung, H.-W.; Cindrova-Davies, T.; Charnock-Jones, D.S. Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia. Placenta 2009, 30 (Suppl. A), S43–S48. [Google Scholar] [CrossRef] [PubMed]
- Carbonell, T.; Gomes, A. V MicroRNAs in the regulation of cellular redox status and its implications in myocardial ischemia-reperfusion injury. Redox Biol. 2020, 36, 101607. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.M.; Maltagliati, A.J. Nrf2 at the heart of oxidative stress and cardiac protection. Physiol. Genom. 2018, 50, 77–97. [Google Scholar] [CrossRef] [PubMed]
- Muralimanoharan, S.; Kwak, Y.-T.; Mendelson, C.R. Redox-Sensitive Transcription Factor NRF2 Enhances Trophoblast Differentiation via Induction of miR-1246 and Aromatase. Endocrinology 2018, 159, 2022–2033. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Jiang, X.; Qin, R.; Song, S.; Lu, Y.; Wang, L.; Chen, Y.; Lu, D. miR-1307 promotes hepatocarcinogenesis by CALR-OSTC-endoplasmic reticulum protein folding pathway. iScience 2021, 24, 103271. [Google Scholar] [CrossRef] [PubMed]
- Deharde, D.; Klockenbusch, W.; Schmitz, R.; Brand, M.; Köster, H.A.; de Murcia, K.O. Hydroxychloroquine as a Preventive and Therapeutic Option in Preeclampsia—A Literature Review. Geburtshilfe Frauenheilkd. 2020, 80, 679–685. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Sebire, N.J.; Myatt, L.; Tannetta, D.; Wang, Y.-L.; Sadovsky, Y.; Staff, A.C.; Redman, C.W. Optimising sample collection for placental research. Placenta 2014, 35, 9–22. [Google Scholar] [CrossRef]
- Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009, 10, R25. [Google Scholar] [CrossRef]
- Team, R.D.C. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available online: https://www.r-project.org (accessed on 10 March 2021).
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Team, R.S. RStudio: Integrated Development for R. RStudio. Available online: http://www.rstudio.com/ (accessed on 23 March 2021).
Normal Pregnancy | Complicated Pregnancy | |||
---|---|---|---|---|
Delivery | Planned Caesarean Section | Emergency Caesarean Section Because of the Risk of Early Pregnancy Failure | Caesarean Section Because of Early Pre-Eclampsia | Planned Caesarean Section Because of Late Pre-Eclampsia |
Group of pregnant women (number of patients) | N > 34 (n = 6) | N < 34 (n = 7) | ePE (n = 7) | lPE (n = 7) |
Pre-eclampsia manifestation time (weeks) | No | No | 24.5 (22.0; 28.0) * | 36.1 (36.0; 37.0) * |
Delivery time (weeks) | 38.0 (37.0; 39.0) * | 29.0 (25.0; 32.0) * | 28.2 (25.0; 30.0) * | 36.9 (36.0; 38.0) * |
Severe pre-eclampsia (number of patients) | 0 | 0 | 7 | 1 |
Mild pre-eclampsia (number of patients) | 0 | 0 | 0 | 6 |
Edema of legs and feet (number of patients) | 0 | 0 | 1 | 5 |
Urine protein level (0.0–0.2 g/L) | Normal | Normal | 2.3 (0.2; 4.6) * | 1.4 (0.1; 4.1) * |
Blood pressure: | ||||
systolic | 112 (107; 119) * | 116 (112; 120) * | 155 (125; 180) * | 144 (120; 175) * |
diastolic | 68 (65; 71) * | 77 (74; 81) * | 100 (80; 120) * | 93 (70; 100) * |
Alanine-aminotransferase, ALT (up to 31.0 U/L) | No data | No data | 74 (11; 215) * | 23 (12; 32) * |
Aspartate aminotransferase, AST (up to 31.0 U/L) | No data | No data | 55 (11; 194) * | 29 (16; 48) * |
Alkaline phosphatase (up to 239.0 U/L) | No data | No data | 110 (54; 179) * | 165 (79; 252) * |
Platelets of peripheral blood (150–390 thou/mm3) | 228 (166; 290) * | 238 (183; 293) * | 145 (68; 243) * | 238 (181; 308) * |
PLGF (54–862 pg/mL) for 37–40 GW [29] | No data | No data | 30 (14; 47) * | 101 (54; 216) * |
sFLT-1 (1533–9184 pg/mL) for 37–40 GW [29] | No data | No data | 11957 (5615; 23,226) * | 14657 (7489; 24,990) * |
sFLT-1/PLGF (<110) [29] | No data | No data | 444 (126; 847) * | 193 (42; 348) * |
Physiological Full-Term Pregnancy, N (n = 10) | Pregnancy with High sFLT-1/PLGF Ratio without Signs of PE, Nhr (n = 9) | lPE (n = 10) | ePE (n = 11) | |
---|---|---|---|---|
First pregnancy trimester screening | ||||
Gestational age | 12.5 (12.0; 13.4) | 12.1 (11.2; 13.1) | 12.2 (11.6; 12.5) | 12.0 (11.2; 12.4) |
Crown-rump length, CRL (43.0–84.0 mm) | 62.5 (54.0; 74.7) | 59.1 (50.0; 69.0) | 59.6 (55.1; 64.0) | 57.4 (50.0; 62.0) |
Nuchal translucency thickness, NT (1.6–1.7 mm) | 1.4 (1.1; 2.2) | 1.5 (1.0; 2.0) | 1.6 (1.3; 2.0) | 1.7 (1.1; 2.9) |
Uterine artery pulsatility index, UA (PI), 0.9–2.6 (5th and 95th percentiles) | 1.6 (0.4; 2.2) | 1.8 (1.2; 2.5) | 1.7 (0.7; 2.4) | 2.1 (1.3; 3.5) |
UA (PI) MoM | 0.9 (0.3; 1.3) | 1.1 (0.8; 1.4) | 1.0 (0.4; 1.5) | 1.1 (0.3; 2.1) |
b-hCG (50.0–55.0 IU/mL) | 68.7 (52.3; 89.8) | 47.1 (23.1; 114.6) | 36.4 (27.8; 53.6) | 43.4 (15.6; 94.3) |
b-hCG (0.5–2.0 MoM) | 1.5 (1.1; 2.3) | 1.1 (0.4; 2.5) | 0.8 (0.5; 1.6) | 0.9 (0.3; 1.7) |
PAPP-A (0.7–6.0 IU/L) | 3.1 (1.6; 6.9) | 2.4 (1.1; 4.2) | 2.7 (0.6; 5.0) | 2.4 (0.8; 6.2) |
PAPP-A (0.5–2.0 MoM) | 1.2 (0.5; 3.2) | 1.2 (0.4; 2.4) | 0.9 (0.4; 2.7) | 1.1 (0.5; 2.9) |
Delivery | ||||
Gestational age | 38.6 (36.0; 40.6) | 37.7 (31.0; 40.2) | 37.3 (35.4; 38.5) | 31.9 (28.2; 35.6) |
Alanine-aminotransferase, ALT (up to 31.0 U/L) | 31.8 (8.8; 95.0) | 24.1 (11.8; 46.1) | 34.2 (12.4; 165.1) | 78.2 (11.8; 352.2) |
Aspartate aminotransferase, AST (up to 31.0 U/L) | 19.7 (11.1; 25.5) | 24.3 (13.0; 40.5) | 48.9 (10.9; 262.3) | 68.7 (13.6; 282.4) |
Alkaline phosphatase (up to 239.0 U/L) | 182.3 (130.8; 292.6) | 130.2 (94.2; 183.0) | 208.8 (154.3; 319.6) | 119.8 (87.1;169.2) |
Lactate dehydrogenase, LDH (130.0–220.0 U/L) | 345.6 (271.0; 408.2) | 362.2 (296.8; 422.2) | 435.8 (36.4; 743.1) | 598.7 (351.4;1680.0) |
BP systolic (20 to 40 years; 120-127 mm Hg) | 118 (90; 140) | 135 (105; 170) | 140 (127; 160) | 152 (140; 170) |
BP diastolic (75–80 mm Hg) | 77 (60; 90) | 86 (70; 110) | 91 (80; 105) | 98 (90; 110) |
Protein level in urine (0.0–0.2, g/L) | 0.1 (0.1; 0.1) | 0.1 (0.0; 0.1) | 0.4 (0.2; 0.9) | 2.1 (0.2; 3.4) |
Peripheral blood leukocytes (4.0–9.0 thou/mm3) | 9.5 (5.2; 15.6) | 8.8 (7.8; 10.5) | 10.8 (7.7; 24.4) | 11.5 (3.3; 23.2) |
Platelets of peripheral blood (150–390 thou/mm3) | 261.8 (201.0; 390.0) | 209.9 (146.0; 287.0) | 210.1 (93.0; 300.0) | 203.5 (82.0; 359.0) |
PLGF (54–862 pg/mL) for 37–40 GW [29] | 115.3 (94.4; 143.8) | 74.9 (43.2; 113.4) | 83.6 (34.2; 152.0) | 56.8 (22.2; 109.7) |
sFLT-1 (1533–9184 pg/mL) for 37–40 GW [29] | 6271.0 (5168.0; 7763.0) | 11895.6 (5190.0; 19418.0) | 9651.7 (4027.0; 14131.0) | 10722.8 (5216.0; 19738.0) |
sFLT-1/PLGF (<110) [29] | 54.4 (53.9; 54.8) | 173.4 (107.3; 430.1) | 129.4 (66.8; 233.6) | 285.4 (48.8; 636.2) |
Edema of legs and feet (number of patients) | 3 | 1 | 4 | 5 |
Full-term fetus weight, 3200–3500 g | 3396.5 (2880.0; 3952.0) | 2764.4 (780.0; 3550.0) | 2744.9 (2132.0; 3518.0) | 1424.2 (900.0; 2582.0) |
Placenta weight at full-term pregnancy, 390–415 g | 463.1 (303.0; 650.0) | 324.4 (106.0; 449.0) | 370.3 (257.0; 465.0) | 230.2 (119.0; 371.0) |
Mean uterine artery PI (39th week, 5th and 95th percentiles: 0.47–0.91) | 0.6 (0.5; 0.7) | 0.8 (0.5; 1.7) | 0.9 (0.6; 1.1) | 1.2 (1.0; 1.5) |
Umbilical artery PI (39th week, 5th and 95th percentiles: 0.76–1.03) | 0.8 (0.6; 1.4) | 1.1 (0.7; 2.3) | 0.9 (0.7; 1.0) | 1.4 (0.8; 1.8) |
Middle cerebral artery PI (39th week, 5th and 95th percentiles: 0.93–1.73) | 1.4 (1.2; 1.7) | 1.4 (1.2; 1.6) | 1.3 (0.6; 1.7) | 1.6 (1.1; 2.4) |
Cerebro/placental ratio, > 1 | 1.8 (1.1; 2.5) | 1.4 (0.6; 2.0) | 1.5 (1.1; 2.3) | 1.3 (0.8; 1.9) |
Mean Arterial Blood Pressure | miRWalk Database (Disease ID) | ||||
---|---|---|---|---|---|
r | p | DOID:10825 #Essential Hypertension | DOID:1591 #Renovascular Hypertension | DOID:10591 #Pre-Eclampsia | |
hsa-miR-615-3p | 0.51 | 0.0009 | x | x | x |
hsa-miR-16-2-3p | 0.49 | 0.0014 | x | ||
hsa-miR-107 | 0.47 | 0.0022 | x | x | x |
hsa-miR-320a | 0.45 | 0.0036 | |||
hsa-miR-182-5p | 0.44 | 0.0049 | x | x | |
hsa-miR-320b | 0.44 | 0.0048 | x | x | x |
hsa-miR-92b-3p | 0.44 | 0.005 | x | x | x |
hsa-miR-101-3p | 0.42 | 0.0069 | x | x | |
hsa-miR-10b-5p | 0.42 | 0.0074 | x | x | x |
hsa-miR-1304-5p | 0.42 | 0.007 | x | x | x |
hsa-miR-185-5p | 0.41 | 0.0086 | x | x | x |
hsa-miR-3613-5p | 0.4 | 0.0115 | |||
hsa-miR-25-3p | 0.39 | 0.0138 | x | x | |
hsa-miR-451a | 0.39 | 0.012 | x | ||
hsa-miR-144-3p | 0.37 | 0.0191 | |||
hsa-miR-125a-5p | 0.36 | 0.0218 | x | x | x |
hsa-miR-183-5p | 0.36 | 0.0217 | x | x | x |
hsa-miR-139-3p | 0.35 | 0.0258 | x | x | |
hsa-miR-320c | 0.35 | 0.029 | x | x | x |
hsa-miR-363-3p | 0.35 | 0.0291 | x | x | |
hsa-miR-652-3p | 0.34 | 0.0317 | x | x | x |
hsa-miR-92a-3p | 0.34 | 0.0297 | x | x | x |
hsa-miR-378c | 0.33 | 0.0381 | x | x | x |
hsa-let-7c-5p | 0.32 | 0.046 | x | x | x |
hsa-miR-15a-5p | 0.32 | 0.0436 | x | x | |
hsa-miR-4732-5p | 0.32 | 0.0476 | x | x | x |
hsa-miR-148a-5p | 0.31 | 0.0511 | x | x | |
hsa-miR-381-3p | −0.31 | 0.0518 | x | x | x |
hsa-miR-99b-3p | −0.32 | 0.0444 | x | x | x |
hsa-miR-340-5p | −0.33 | 0.036 | |||
hsa-miR-134-5p | −0.34 | 0.0345 | x | x | x |
hsa-miR-17-5p | −0.34 | 0.0345 | x | x | x |
hsa-miR-493-3p | −0.34 | 0.0329 | x | x | x |
hsa-miR-330-3p | −0.35 | 0.0274 | x | x | |
hsa-miR-323a-3p | −0.36 | 0.0213 | x | ||
hsa-miR-503-5p | −0.37 | 0.0198 | x | x | |
hsa-miR-323b-3p | −0.38 | 0.0159 | x | x | x |
hsa-miR-374a-5p | −0.39 | 0.0135 | |||
hsa-miR-382-5p | −0.39 | 0.0119 | x | x | x |
hsa-miR-335-5p | −0.42 | 0.007 | |||
hsa-miR-199b-5p | −0.47 | 0.0023 | x | x | x |
miRNA | Uterine Artery Pulsatility Index (UAPI) | miRWalk Database (Disease ID) | |||
---|---|---|---|---|---|
r | p | DOID:3891 #Placental Insufficiency | DOID:178 #Vascular Disease | DOID:10591 #Pre-Eclampsia | |
hsa-miR-22-5p | −0.48 | 0.0017 | x | x | |
hsa-miR-20a-5p | 0.41 | 0.0082 | x | x | x |
hsa-miR-942-5p | −0.4 | 0.0097 | x | x | |
hsa-miR-125b-5p | 0.32 | 0.0443 | x | x | |
hsa-miR-1-3p | 0.31 | 0.0493 | |||
hsa-miR-150-3p | −0.31 | 0.053 | x | x | x |
UAPI_MoM | |||||
r | p | ||||
hsa-miR-425-3p | 0.42 | 0.0077 | x | ||
hsa-miR-6087 | 0.4 | 0.0096 | |||
hsa-miR-20a-5p | 0.4 | 0.01 | x | x | x |
hsa-miR-204-5p | −0.34 | 0.0295 | x | x | |
hsa-miR-1-3p | 0.33 | 0.0356 | |||
hsa-miR-126-5p | −0.33 | 0.0386 | |||
hsa-miR-885-5p | 0.32 | 0.0448 | x | x | |
hsa-miR-520a-3p | −0.32 | 0.0458 | x | x | |
hsa-miR-942-5p | −0.31 | 0.0503 | x | x | |
hsa-miR-1246 | 0.31 | 0.0526 | x | x | |
b-HCG_MU | |||||
r | p | ||||
hsa-miR-326 | 0.39 | 0.0132 | x | x | x |
hsa-miR-106b-5p | −0.38 | 0.0153 | x | x | x |
hsa-miR-760 | 0.38 | 0.016 | x | x | |
hsa-miR-193b-5p | 0.35 | 0.0278 | x | x | x |
hsa-miR-3605-3p | 0.34 | 0.0314 | x | x | |
b-HCG_MoM | |||||
r | p | ||||
hsa-miR-326 | 0.58 | 0.0001 | x | x | x |
hsa-miR-760 | 0.45 | 0.0039 | x | x | |
hsa-miR-193b-5p | 0.42 | 0.0068 | x | x | x |
hsa-miR-522-3p | 0.35 | 0.0252 | x | x | |
hsa-miR-106b-5p | −0.35 | 0.0289 | x | x | x |
hsa-miR-378a-3p | 0.33 | 0.0382 | x | x | |
hsa-miR-130a-3p | 0.32 | 0.0445 | x | x | x |
PAPP-A_MU | |||||
r | p | ||||
hsa-miR-1-3p | −0.4 | 0.0108 | |||
hsa-miR-146b-5p | −0.38 | 0.0156 | x | x | |
hsa-miR-664a-5p | 0.36 | 0.0209 | x | x | |
hsa-miR-615-3p | −0.36 | 0.0228 | x | x | x |
hsa-miR-320e | 0.36 | 0.0232 | x | x | |
hsa-miR-942-5p | 0.35 | 0.0262 | x | x | |
hsa-miR-652-3p | −0.32 | 0.0472 | x | x | |
hsa-miR-335-3p | 0.31 | 0.0497 | x | ||
PAPP-A_MoM | |||||
r | p | ||||
hsa-miR-517a-3p | 0.39 | 0.0121 | x | x | |
hsa-miR-517b-3p | 0.39 | 0.0121 | x | x | |
hsa-miR-1307-3p | 0.38 | 0.0164 | x | x | |
hsa-miR-223-3p | 0.38 | 0.0168 | x | x | |
hsa-miR-425-3p | −0.35 | 0.026 | x | ||
hsa-miR-942-5p | 0.35 | 0.026 | x | x | |
hsa-miR-140-3p | 0.35 | 0.028 | x | ||
hsa-miR-320e | 0.33 | 0.0351 | x | x | |
hsa-miR-30b-5p | -0.33 | 0.0365 | x | x | |
hsa-miR-127-3p | -0.33 | 0.0387 | x | x | |
hsa-miR-493-5p | -0.32 | 0.0475 | x | x | |
hsa-miR-126-5p | 0.31 | 0.0487 | |||
hsa-miR-1323 | 0.31 | 0.0532 | x | x |
Sample ID | Risk of PE According to the Astraia Program | Model 2 of Figure 6B: UAPI, UAPI(MoM), b-hCG(MoM), and PAPPA(MoM); Threshold = 0.508 | Model 1 of Figure 6B: miR-451a, let-7d-3p, miR-1307-3p, UAPI, UAPI(MoM), b-hCG(MoM), and PAPPA(MoM); Threshold = 0.52 | Diagnosis at Delivery | ||
---|---|---|---|---|---|---|
60 | PE | 0.513 | PE | 0.720 | PE | No symptoms of PE up to delivery. sFlt/PLGF = 41.01 at a rate of up to 29.8. |
61 | N | 0.988 | PE | 0.984 | PE | No symptoms of PE up to delivery. bHCG = 227.4 at a rate of up to 121 for 11–14 GW. sFlt/PLGF = 5.62 at a rate of up to 8.8. |
62 | PE | 0.833 | PE | 0.075 | N | Physiological term pregnancy. |
63 | PE | 0.334 | N | 0.010 | N | Physiological term pregnancy. |
64 | PE | 0.434 | N | 0.021 | N | Physiological term pregnancy. |
65 | PE | 0.864 | PE | 0.956 | PE | No symptoms of PE up to delivery. GDM, gestational oedema, hypothyroidism, hereditary thrombophilia, 1st-degree violation of the utero-placental blood flow at 17 GW, isthmic-cervical insufficiency. sFlt/PLGF = 46.74 at a rate of up to 52.4. |
66 | N | 0.660 | PE | 0.013 | N | Physiological term pregnancy. |
67 | ND * | 0.513 | PE | 0.743 | PE | No symptoms of PE up to delivery. Multigenic thrombophilia, recurrent abortion, isthmic-cervical insufficiency, violation of the fetal–placental blood flow (Type 1). According to Astraia, the risk of IUGR was 1:156. sFlt/PLGF = 3.39 at a rate of up to 8.8. |
68 | N | 0.230 | N | 0.008 | N | No symptoms of PE up to delivery. GAG. |
69 | PE | 0.463 | N | 0.067 | N | No symptoms of PE up to delivery. GAG. |
70 | N | 0.525 | PE | 0.216 | N | No symptoms of PE up to delivery. GAG. |
71 | N | 0.237 | N | 0.047 | N | No symptoms of PE up to delivery. GAG. |
72 | PE | 0.551 | PE | 0.188 | N | No symptoms of PE up to delivery. CAG. |
73 | PE | 0.312 | N | 0.087 | N | No symptoms of PE up to delivery. CAG. |
74 | PE | 0.634 | PE | 0.719 | PE | No symptoms of PE up to delivery. CAG, isthmic-cervical insufficiency, GDM, 1st-degree violation of the utero-placental blood flow, recurrent abortion, sFlt/PLGF = 87.49 at a rate of up to 29.8. |
75 | PE | 0.291 | N | 0.976 | PE | No symptoms of PE up to delivery. CAG, history of transient ischemic attacks, hypothyroidism, hereditary thrombophilia, GDM, augmenting of gestational oedema from 34 GW. sFlt/PLGF = 63.11 at a rate of up to 52.4. |
77 | N | 0.491 | N | 0.222 | N | No symptoms of PE up to delivery. IUGR. |
78 | N | 0.416 | N | 0.139 | N | No symptoms of PE up to delivery. CAG. |
79 | PE | 0.901 | PE | 0.730 | PE | No symptoms of PE up to delivery. IUGR, oligohydramnios, 2nd-degree violation of the utero-placental blood flow, sFlt/PLGF = 143.03 at a rate of up to 52.4. |
80 | N | 0.446 | N | 0.124 | N | No symptoms of PE up to delivery. GAG. |
82 | N | 0.992 | PE | 1.000 | PE | No symptoms of PE up to delivery. Intrauterine fetal death at 27 weeks (fetal weight 300 g at a rate of 758 ± 227, small placenta for gestational age). According to Astraia, the risk of IUGR was 1:110. Shortening of the tubular bones of the fetus from 17 GW. Third-degree violation of the utero-placental blood flow and third-degree violation of the feto-placental blood flow at twenty-four GW. |
83 | PE | 0.541 | PE | 0.001 | N | No symptoms of PE up to delivery. GAG. |
84 | PE | 0.842 | PE | 0.090 | N | No symptoms of PE up to delivery. GAG. |
85 | N | 0.315 | N | 0.261 | N | No symptoms of PE up to delivery. GAG. |
96 | PE | 0.781 | PE | 0.018 | N | Physiological term pregnancy. |
99 | N | 0.599 | PE | 0.003 | N | Physiological term pregnancy. |
100 | PE | 0.541 | PE | 0.143 | N | No symptoms of PE up to delivery. IUGR, CAG. |
107 | PE (1:4) | 0.744 | PE | 0.222 | N | No symptoms of PE up to delivery. IUGR, CAG, antiphospholipid syndrome, autoimmune thyroiditis, hypothyroidism, 3rd-degree violation of the utero-placental blood flow and 1st-degree violation of the feto-placental blood flow at 30 GW, decreased cerebro/placental ratio. sFlt/PLGF = 231.2 at a rate of up to 8.8. |
108 | PE | 0.741 | PE | 0.047 | N | No symptoms of PE up to delivery. IUGR, CAG, antiphospholipid syndrome, autoimmune thyroiditis, hypothyroidism, 3rd-degree violation of the utero-placental blood flow and 2nd-degree violation of the feto-placental blood flow at 26 GW, decreased cerebro/placental ratio. Autosomal dominant polycystic kidney disease, chronic kidney disease stage 1. According to Astraia, the risk of IUGR was 1:4. sFlt/PLGF = 524.49 at a rate of up to 8.8. |
87 | PE | 0.630 | PE | 0.446 | N | No symptoms of PE up to delivery. Chronic pyelonephritis. Gestational oedema. GDM. sFlt/PLGF = 80.48 at a rate of up to 52.4. |
81 | N | 0.924 | PE | 0.902 | PE | Moderate lPE |
86 | PE | 0.752 | PE | 0.998 | PE | Moderate lPE |
88 | PE | 0.971 | PE | 0.976 | PE | Moderate ePE, CAG |
89 | PE | 0.718 | PE | 0.994 | PE | Severe ePE, IUGR |
90 | PE | 0.564 | PE | 0.970 | PE | Severe lPE |
91 | ND * | 0.972 | PE | 1.000 | PE | Moderate lPE |
92 | PE | 0.946 | PE | 0.925 | PE | Severe lPE |
93 | PE | 0.462 | N | 0.564 | PE | Moderate lPE |
94 | PE | 0.478 | N | 0.570 | PE | Moderate lPE |
95 | PE | 0.551 | PE | 0.990 | PE | Moderate ePE, CAG |
97 | ND * | 0.477 | N | 0.235 | N | Moderate lPE, GAG |
98 | N | 0.878 | PE | 0.998 | PE | Moderate lPE |
101 | N | 0.899 | PE | 0.911 | PE | Moderate lPE |
103 | N | 0.587 | PE | 0.997 | PE | Moderate lPE |
104 | N | 0.775 | PE | 0.860 | PE | Moderate lPE |
105 | PE | 0.523 | PE | 0.640 | PE | Moderate lPE, CAG |
106 | PE | 0.284 | N | 0.966 | PE | Severe ePE, CAG |
109 | ND * | 0.583 | PE | 0.920 | PE | Severe ePE |
miRNA | miRBase ID | Nucleotide Sequence of Forward PCR Primer (5′-3′) | Annealing Temperature (°C) |
---|---|---|---|
miR-451a | MIMAT0001631 | aaaccgttaccattactgagtt | 55 |
let-7b-5p | MIMAT0000063 | tgaggtagtaggttgtgtggtt | 60 |
miR-320a-3p | MIMAT0000510 | aaaagctgggttgagagggcga | 60 |
let-7i-5p | MIMAT0000415 | tgaggtagtagtttgtgctgtt | 52 |
let-7f-5p | MIMAT0000067 | tgaggtagtagattgtatagtt | 51.3 |
miR-20a-5p | MIMAT0000075 | taaagtgcttatagtgcaggtag | 51.3 |
miR-30e-5p | MIMAT0000692 | tgtaaacatccttgactggaag | 52.7 |
miR-22-5p | MIMAT0004495 | agttcttcagtggcaagcttta | 52.7 |
miR-320e | MIMAT0015072 | aaagctgggttgagaagg | 48.9 |
miR-146a-5p | MIMAT0000449 | tgagaactgaattccatgggtt | 54 |
miR-192-5p | MIMAT0000222 | ctgacctatgaattgacagcc | 59 |
miR-10b-5p | MIMAT0000254 | taccctgtagaaccgaatttgtg | 58.7 |
miR-128-3p | MIMAT0000424 | tcacagtgaaccggtctcttt | 59 |
miR-16-5p | MIMAT0000069 | tagcagcacgtaaatattggcg | 62 |
miR-484 | MIMAT0002174 | tcaggctcagtcccctcccgat | 62 |
miR-17-5p | MIMAT0000070 | caaagtgcttacagtgcaggtag | 55 |
miR-25-3p | MIMAT0000081 | cattgcacttgtctcggtctga | 56 |
miR-92a-3p | MIMAT0000092 | tattgcacttgtcccggcctgt | 60 |
miR-93-5p | MIMAT0000093 | caaagtgctgttcgtgcaggtag | 55 |
let-7d-3p | MIMAT0004484 | ctatacgacctgctgcctttct | 51.3 |
miR-99a-5p | MIMAT0000097 | aacccgtagatccgatcttgtg | 55 |
miR-519a-3p | MIMAT0002869 | aaagtgcatccttttagagtgt | 52 |
miR-1307-3p | MIMAT0005951 | actcggcgtggcgtcggtcgtg | 46.2 |
miR-26a-5p | MIMAT0000082 | ttcaagtaatccaggataggct | 51.2 |
miR-1246 | MIMAT0005898 | aatggatttttggagcagg | 57.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timofeeva, A.V.; Fedorov, I.S.; Sukhova, Y.V.; Ivanets, T.Y.; Sukhikh, G.T. Prediction of Early- and Late-Onset Pre-Eclampsia in the Preclinical Stage via Placenta-Specific Extracellular miRNA Profiling. Int. J. Mol. Sci. 2023, 24, 8006. https://doi.org/10.3390/ijms24098006
Timofeeva AV, Fedorov IS, Sukhova YV, Ivanets TY, Sukhikh GT. Prediction of Early- and Late-Onset Pre-Eclampsia in the Preclinical Stage via Placenta-Specific Extracellular miRNA Profiling. International Journal of Molecular Sciences. 2023; 24(9):8006. https://doi.org/10.3390/ijms24098006
Chicago/Turabian StyleTimofeeva, Angelika V., Ivan S. Fedorov, Yuliya V. Sukhova, Tatyana Y. Ivanets, and Gennady T. Sukhikh. 2023. "Prediction of Early- and Late-Onset Pre-Eclampsia in the Preclinical Stage via Placenta-Specific Extracellular miRNA Profiling" International Journal of Molecular Sciences 24, no. 9: 8006. https://doi.org/10.3390/ijms24098006
APA StyleTimofeeva, A. V., Fedorov, I. S., Sukhova, Y. V., Ivanets, T. Y., & Sukhikh, G. T. (2023). Prediction of Early- and Late-Onset Pre-Eclampsia in the Preclinical Stage via Placenta-Specific Extracellular miRNA Profiling. International Journal of Molecular Sciences, 24(9), 8006. https://doi.org/10.3390/ijms24098006