Identification of Alternative Splicing in Proteomes of Human Melanoma Cell Lines without RNA Sequencing Data
Abstract
:1. Introduction
2. Results
2.1. RefSeq-Based Identification
- Chromatographic (LC) filter: Deviation of experimentally measured retention time for an identified peptide from the predicted one;
- Fragmentation pattern filter: A Pearson correlation between fragment ion intensities in measured tandem mass spectra and predicted fragmentation pattern for a peptide ion in question.
2.2. Combinatorial Database Identification
- The exons must not overlap;
- If an exon contains an untranslated region (UTR), it cannot be coupled with another exon at the end where the UTR is located;
- There must be no more than ten skipped (non-overlapping) exons between the two exons in the pair.
2.3. PCR Validation of Target Splicing Events
3. Discussion
4. Materials and Methods
- -
- For each gene's exon set:
- -
- For j in 1…10.
- -
- If the frame of exon ej+i corresponds to the end of ei.
- -
- Generate junction from exons ei and ei+j.
- -
- Apply the trypsin cleavage rule to the generated junction sequence and make peptides with up to one missed cleavage.
- -
- Add junction-containing tryptic peptides with lengths of 7 to 50 amino acid residues to the peptide database.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pan, Q.; Shai, O.; Lee, L.J.; Frey, B.J.; Blencowe, B.J. Deep Surveying of Alternative Splicing Complexity in the Human Transcriptome by High-Throughput Sequencing. Nat. Genet. 2008, 40, 1413–1415. [Google Scholar] [CrossRef]
- Wang, E.T.; Sandberg, R.; Luo, S.; Khrebtukova, I.; Zhang, L.; Mayr, C.; Kingsmore, S.F.; Schroth, G.P.; Burge, C.B. Alternative Isoform Regulation in Human Tissue Transcriptomes. Nature 2008, 456, 470–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frankish, A.; Diekhans, M.; Ferreira, A.-M.; Johnson, R.; Jungreis, I.; Loveland, J.; Mudge, J.M.; Sisu, C.; Wright, J.; Armstrong, J.; et al. GENCODE Reference Annotation for the Human and Mouse Genomes. Nucleic Acids Res. 2019, 47, D766–D773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buljan, M.; Chalancon, G.; Eustermann, S.; Wagner, G.P.; Fuxreiter, M.; Bateman, A.; Babu, M.M. Tissue-Specific Splicing of Disordered Segments That Embed Binding Motifs Rewires Protein Interaction Networks. Mol. Cell 2012, 46, 871–883. [Google Scholar] [CrossRef] [Green Version]
- Bush, S.J.; Chen, L.; Tovar-Corona, J.M.; Urrutia, A.O. Alternative Splicing and the Evolution of Phenotypic Novelty. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20150474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solovyeva, E.M.; Ibebunjo, C.; Utzinger, S.; Eash, J.K.; Dunbar, A.; Naumann, U.; Zhang, Y.; Serluca, F.C.; Demirci, S.; Oberhauser, B.; et al. New Insights into Molecular Changes in Skeletal Muscle Aging and Disease: Differential Alternative Splicing and Senescence. Mech. Ageing Dev. 2021, 197, 111510. [Google Scholar] [CrossRef]
- Chabot, B.; Shkreta, L. Defective Control of Pre–Messenger RNA Splicing in Human Disease. J. Cell Biol. 2016, 212, 13–27. [Google Scholar] [CrossRef]
- Scotti, M.M.; Swanson, M.S. RNA Mis-Splicing in Disease. Nat. Rev. Genet. 2016, 17, 19–32. [Google Scholar] [CrossRef]
- Bonnal, S.C.; López-Oreja, I.; Valcárcel, J. Roles and Mechanisms of Alternative Splicing in Cancer—Implications for Care. Nat. Rev. Clin. Oncol. 2020, 17, 457–474. [Google Scholar] [CrossRef]
- El Marabti, E.; Younis, I. The Cancer Spliceome: Reprograming of Alternative Splicing in Cancer. Front. Mol. Biosci. 2018, 5, 80. [Google Scholar] [CrossRef]
- Furney, S.J.; Pedersen, M.; Gentien, D.; Dumont, A.G.; Rapinat, A.; Desjardins, L.; Turajlic, S.; Piperno-Neumann, S.; de la Grange, P.; Roman-Roman, S.; et al. SF3B1 Mutations Are Associated with Alternative Splicing in Uveal Melanoma. Cancer Discov. 2013, 3, 1122–1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Si, W.; Liu, X.; He, L.; Ren, J.; Yang, Z.; Yang, J.; Li, W.; Liu, S.; Pei, F.; et al. JMJD6 Promotes Melanoma Carcinogenesis through Regulation of the Alternative Splicing of PAK1, a Key MAPK Signaling Component. Mol. Cancer 2017, 16, 175. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Feng, S.; Liu, G.; Wang, H.; Fu, A.; Zhu, H.; Ren, Q.; Wang, B.; Xu, X.; Bai, H.; et al. CD82 Suppresses CD44 Alternative Splicing-Dependent Melanoma Metastasis by Mediating U2AF2 Ubiquitination and Degradation. Oncogene 2016, 35, 5056–5069. [Google Scholar] [CrossRef] [Green Version]
- Hakobyan, S.; Loeffler-Wirth, H.; Arakelyan, A.; Binder, H.; Kunz, M. A Transcriptome-Wide Isoform Landscape of Melanocytic Nevi and Primary Melanomas Identifies Gene Isoforms Associated with Malignancy. Int. J. Mol. Sci. 2021, 22, 7165. [Google Scholar] [CrossRef]
- Mei, C.; Song, P.-Y.; Zhang, W.; Zhou, H.-H.; Li, X.; Liu, Z.-Q. Aberrant RNA Splicing Events Driven by Mutations of RNA-Binding Proteins as Indicators for Skin Cutaneous Melanoma Prognosis. Front. Oncol. 2020, 10, 568469. [Google Scholar] [CrossRef]
- Bokharaie, H.; Kolch, W.; Krstic, A. Analysis of Alternative MRNA Splicing in Vemurafenib-Resistant Melanoma Cells. Biomolecules 2022, 12, 993. [Google Scholar] [CrossRef] [PubMed]
- Holland, D.O.; Gotea, V.; Fedkenheuer, K.; Jaiswal, S.K.; Baugher, C.; Tan, H.; Fedkenheuer, M.; Elnitski, L. Characterization and Clustering of Kinase Isoform Expression in Metastatic Melanoma. PLoS Comput. Biol. 2022, 18, e1010065. [Google Scholar] [CrossRef]
- Ma, F.-C.; He, R.-Q.; Lin, P.; Zhong, J.-C.; Ma, J.; Yang, H.; Hu, X.-H.; Chen, G. Profiling of Prognostic Alternative Splicing in Melanoma. Oncol. Lett. 2019, 18, 1081–1088. [Google Scholar] [CrossRef] [Green Version]
- Xue, D.; Cheng, P.; Jiang, J.; Ren, Y.; Wu, D.; Chen, W. Systemic Analysis of the Prognosis-Related RNA Alternative Splicing Signals in Melanoma. Med. Sci. Monit. 2020, 26, e921133-1. [Google Scholar] [CrossRef]
- Huang, R.; Li, M.; Zeng, Z.; Zhang, J.; Song, D.; Hu, P.; Yan, P.; Xian, S.; Zhu, X.; Chang, Z.; et al. The Identification of Prognostic and Metastatic Alternative Splicing in Skin Cutaneous Melanoma. Cancer Control. 2022, 29, 10732748211051554. [Google Scholar] [CrossRef]
- Yeo, G.; Holste, D.; Kreiman, G.; Burge, C.B. Variation in Alternative Splicing across Human Tissues. Genome Biol. 2004, 5, R74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harvey, S.E.; Cheng, C. Methods for Characterization of Alternative RNA Splicing. In Long Non-Coding RNAs: Methods and Protocols; Feng, Y., Zhang, L., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2016; pp. 229–241. ISBN 978-1-4939-3378-5. [Google Scholar]
- Yang, P.; Wang, D.; Kang, L. Alternative Splicing Level Related to Intron Size and Organism Complexity. BMC Genom. 2021, 22, 853. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Pham, M.H.C.; Ko, K.S.; Rhee, B.D.; Han, J. Alternative Splicing Isoforms in Health and Disease. Pflug. Arch. Eur. J. Physiol. 2018, 470, 995–1016. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Fang, L.; Wu, C. Alternative Splicing and Isoforms: From Mechanisms to Diseases. Genes 2022, 13, 401. [Google Scholar] [CrossRef]
- Artemaki, P.I.; Kontos, C.K. Alternative Splicing in Human Physiology and Disease. Genes 2022, 13, 1820. [Google Scholar] [CrossRef]
- Liu, Y.; Gonzàlez-Porta, M.; Santos, S.; Brazma, A.; Marioni, J.C.; Aebersold, R.; Venkitaraman, A.R.; Wickramasinghe, V.O. Impact of Alternative Splicing on the Human Proteome. Cell Rep. 2017, 20, 1229–1241. [Google Scholar] [CrossRef] [Green Version]
- Tress, M.L.; Abascal, F.; Valencia, A. Alternative Splicing May Not Be the Key to Proteome Complexity. Trends Biochem. Sci. 2017, 42, 98–110. [Google Scholar] [CrossRef] [Green Version]
- Blencowe, B.J. The Relationship between Alternative Splicing and Proteomic Complexity. Trends Biochem. Sci. 2017, 42, 407–408. [Google Scholar] [CrossRef] [Green Version]
- Wright, C.J.; Smith, C.W.J.; Jiggins, C.D. Alternative Splicing as a Source of Phenotypic Diversity. Nat. Rev. Genet. 2022, 23, 697–710. [Google Scholar] [CrossRef]
- Marasco, L.E.; Kornblihtt, A.R. The Physiology of Alternative Splicing. Nat. Rev. Mol. Cell Biol. 2022. [Google Scholar] [CrossRef]
- Tress, M.L.; Bodenmiller, B.; Aebersold, R.; Valencia, A. Proteomics Studies Confirm the Presence of Alternative Protein Isoforms on a Large Scale. Genome Biol. 2008, 9, R162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nilsen, T.W.; Graveley, B.R. Expansion of the Eukaryotic Proteome by Alternative Splicing. Nature 2010, 463, 457–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, E.; Han, Y.; Williams, D.R.; Thomas, C.T.; Shrestha, R.; Wu, J.C.; Lam, M.P.Y. Splice-Junction-Based Mapping of Alternative Isoforms in the Human Proteome. Cell Rep. 2019, 29, 3751–3765.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abascal, F.; Ezkurdia, I.; Rodriguez-Rivas, J.; Rodriguez, J.M.; del Pozo, A.; Vázquez, J.; Valencia, A.; Tress, M.L. Alternatively Spliced Homologous Exons Have Ancient Origins and Are Highly Expressed at the Protein Level. PLoS Comput. Biol. 2015, 11, e1004325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, J.M.; Pozo, F.; di Domenico, T.; Vazquez, J.; Tress, M.L. An Analysis of Tissue-Specific Alternative Splicing at the Protein Level. PLoS Comput. Biol. 2020, 16, e1008287. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Codreanu, S.G.; Wen, B.; Li, K.; Chambers, M.C.; Liebler, D.C.; Zhang, B. Detection of Proteome Diversity Resulted from Alternative Splicing Is Limited by Trypsin Cleavage Specificity. Mol. Cell. Proteom. 2018, 17, 422–430. [Google Scholar] [CrossRef] [Green Version]
- Solovyeva, E.M.; Utzinger, S.; Vissières, A.; Mitchelmore, J.; Ahrné, E.; Hermes, E.; Poetsch, T.; Ronco, M.; Bidinosti, M.; Merkl, C.; et al. Integrative Proteogenomics for Differential Expression and Splicing Variation in a DM1 Mouse Model. bioRxiv 2022. bioRxiv:2021.05.15.443842. [Google Scholar]
- Giansanti, P.; Tsiatsiani, L.; Low, T.Y.; Heck, A.J.R. Six Alternative Proteases for Mass Spectrometry–Based Proteomics beyond Trypsin. Nat. Protoc. 2016, 11, 993–1006. [Google Scholar] [CrossRef]
- Elias, J.E.; Gygi, S.P. Target-Decoy Search Strategy for Increased Confidence in Large-Scale Protein Identifications by Mass Spectrometry. Nat. Methods 2007, 4, 207–214. [Google Scholar] [CrossRef]
- Faridi, P.; Li, C.; Ramarathinam, S.H.; Vivian, J.P.; Illing, P.T.; Mifsud, N.A.; Ayala, R.; Song, J.; Gearing, L.J.; Hertzog, P.J.; et al. A Subset of HLA-I Peptides Are Not Genomically Templated: Evidence for Cis- and Trans-Spliced Peptide Ligands. Sci. Immunol. 2018, 3, eaar3947. [Google Scholar] [CrossRef] [Green Version]
- Rolfs, Z.; Müller, M.; Shortreed, M.R.; Smith, L.M.; Bassani-Sternberg, M. Comment on “A Subset of HLA-I Peptides Are Not Genomically Templated: Evidence for Cis- and Trans-Spliced Peptide Ligands”. Sci. Immunol. 2019, 4, eaaw1622. [Google Scholar] [CrossRef]
- Faridi, P.; Li, C.; Ramarathinam, S.H.; Illing, P.T.; Mifsud, N.A.; Ayala, R.; Song, J.; Gearing, L.J.; Croft, N.P.; Purcell, A.W. Response to Comment on “A Subset of HLA-I Peptides Are Not Genomically Templated: Evidence for Cis- and Trans-Spliced Peptide Ligands”. Sci. Immunol. 2019, 4, eaaw8457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lobas, A.A.; Pyatnitskiy, M.A.; Chernobrovkin, A.L.; Ilina, I.Y.; Karpov, D.S.; Solovyeva, E.M.; Kuznetsova, K.G.; Ivanov, M.V.; Lyssuk, E.Y.; Kliuchnikova, A.A.; et al. Proteogenomics of Malignant Melanoma Cell Lines: The Effect of Stringency of Exome Data Filtering on Variant Peptide Identification in Shotgun Proteomics. J. Proteome Res. 2018, 17, 1801–1811. [Google Scholar] [CrossRef] [PubMed]
- Degroeve, S.; Martens, L. MS2PIP: A Tool for MS/MS Peak Intensity Prediction. Bioinformatics 2013, 29, 3199–3203. [Google Scholar] [CrossRef] [Green Version]
- Tarasova, I.A.; Masselon, C.D.; Gorshkov, A.V.; Gorshkov, M.V. Predictive Chromatography of Peptides and Proteins as a Complementary Tool for Proteomics. Analyst 2016, 141, 4816–4832. [Google Scholar] [CrossRef] [PubMed]
- Bouwmeester, R.; Gabriels, R.; Hulstaert, N.; Martens, L.; Degroeve, S. DeepLC Can Predict Retention Times for Peptides That Carry As-yet Unseen Modifications. Nat. Methods 2021, 18, 1363–1369. [Google Scholar] [CrossRef]
- Noble, W.S. Mass Spectrometrists Should Search Only for Peptides They Care About. Nat. Methods 2015, 12, 605–608. [Google Scholar] [CrossRef] [Green Version]
- van Niel, G.; Bergam, P.; Di Cicco, A.; Hurbain, I.; Lo Cicero, A.; Dingli, F.; Palmulli, R.; Fort, C.; Potier, M.C.; Schurgers, L.J.; et al. Apolipoprotein E Regulates Amyloid Formation within Endosomes of Pigment Cells. Cell Rep. 2015, 13, 43–51. [Google Scholar] [CrossRef]
- Berson, J.F.; Harper, D.C.; Tenza, D.; Raposo, G.; Marks, M.S. Pmel17 Initiates Premelanosome Morphogenesis within Multivesicular Bodies. MBoC 2001, 12, 3451–3464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Chen, K.; Liu, H.; Jing, C.; Zhang, X.; Qu, C.; Yu, S. PMEL as a Prognostic Biomarker and Negatively Associated With Immune Infiltration in Skin Cutaneous Melanoma (SKCM). J. Immunother. 2021, 44, 214–223. [Google Scholar] [CrossRef]
- Johnson, L.A.; Morgan, R.A.; Dudley, M.E.; Cassard, L.; Yang, J.C.; Hughes, M.S.; Kammula, U.S.; Royal, R.E.; Sherry, R.M.; Wunderlich, J.R.; et al. Gene Therapy with Human and Mouse T-Cell Receptors Mediates Cancer Regression and Targets Normal Tissues Expressing Cognate Antigen. Blood 2009, 114, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Hee, J.S.; Mitchell, S.M.; Liu, X.; Leonhardt, R.M. Melanosomal Formation of PMEL Core Amyloid Is Driven by Aromatic Residues. Sci. Rep. 2017, 7, 44064. [Google Scholar] [CrossRef] [Green Version]
- Kawakami, Y.; Eliyahu, S.; Delgado, C.H.; Robbins, P.F.; Sakaguchi, K.; Appella, E.; Yannelli, J.R.; Adema, G.J.; Miki, T.; Rosenberg, S.A. Identification of a Human Melanoma Antigen Recognized by Tumor-Infiltrating Lymphocytes Associated with in Vivo Tumor Rejection. Proc. Natl. Acad. Sci. USA 1994, 91, 6458–6462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turajlic, S.; Sottoriva, A.; Graham, T.; Swanton, C. Resolving Genetic Heterogeneity in Cancer. Nat. Rev. Genet. 2019, 20, 404–416. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.; Yuan, X.; Wang, M.; Li, A.; Li, X.; Huang, Q. Inferring Subgroup-Specific Driver Genes from Heterogeneous Cancer Samples via Subspace Learning with Subgroup Indication. Bioinformatics 2020, 36, 1855–1863. [Google Scholar] [CrossRef]
- Kong, A.T.; Leprevost, F.V.; Avtonomov, D.M.; Mellacheruvu, D.; Nesvizhskii, A.I. MSFragger: Ultrafast and Comprehensive Peptide Identification in Mass Spectrometry—Based Proteomics. Nat. Methods 2017, 14, 513–520. [Google Scholar] [CrossRef] [Green Version]
- Okonechnikov, K.; Golosova, O.; Fursov, M.; on behalf of the EUGENE team. Unipro UGENE: A Unified Bioinformatics Toolkit. Bioinformatics 2012, 28, 1166–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A Tool to Design Target-Specific Primers for Polymerase Chain Reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef] [Green Version]
- Mikhaĭlova, I.N.; Lukashina, M.I.; Baryshnikov, A.I.; Morozova, L.F.; Burova, O.S.; Palkina, T.N.; Kozlov, A.M.; Golubeva, V.A.; Cheremushkin, E.A.; Doroshenko, M.B.; et al. Melanoma Cell Lines as the Basis for Antitumor Vaccine Preparation. Vestn. Ross. Akad. Meditsinskikh Nauk. 2005, 37–40. [Google Scholar]
- Mikhaylova, I.N.; Kovalevsky, D.A.; Morozova, L.F.; Golubeva, V.A.; Cheremushkin, E.A.; Lukashina, M.I.; Voronina, E.S.; Burova, O.S.; Utyashev, I.A.; Kiselev, S.L.; et al. Cancer/Testis Genes Expression in Human Melanoma Cell Lines. Melanoma Res. 2008, 18, 303–313. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lobas, A.A.; Solovyeva, E.M.; Levitsky, L.I.; Goncharov, A.O.; Lyssuk, E.Y.; Larin, S.S.; Moshkovskii, S.A.; Gorshkov, M.V. Identification of Alternative Splicing in Proteomes of Human Melanoma Cell Lines without RNA Sequencing Data. Int. J. Mol. Sci. 2023, 24, 2466. https://doi.org/10.3390/ijms24032466
Lobas AA, Solovyeva EM, Levitsky LI, Goncharov AO, Lyssuk EY, Larin SS, Moshkovskii SA, Gorshkov MV. Identification of Alternative Splicing in Proteomes of Human Melanoma Cell Lines without RNA Sequencing Data. International Journal of Molecular Sciences. 2023; 24(3):2466. https://doi.org/10.3390/ijms24032466
Chicago/Turabian StyleLobas, Anna A., Elizaveta M. Solovyeva, Lev I. Levitsky, Anton O. Goncharov, Elena Y. Lyssuk, Sergey S. Larin, Sergei A. Moshkovskii, and Mikhail V. Gorshkov. 2023. "Identification of Alternative Splicing in Proteomes of Human Melanoma Cell Lines without RNA Sequencing Data" International Journal of Molecular Sciences 24, no. 3: 2466. https://doi.org/10.3390/ijms24032466
APA StyleLobas, A. A., Solovyeva, E. M., Levitsky, L. I., Goncharov, A. O., Lyssuk, E. Y., Larin, S. S., Moshkovskii, S. A., & Gorshkov, M. V. (2023). Identification of Alternative Splicing in Proteomes of Human Melanoma Cell Lines without RNA Sequencing Data. International Journal of Molecular Sciences, 24(3), 2466. https://doi.org/10.3390/ijms24032466