A Comprehensive Analysis of the Intrinsic Visible Fluorescence Emitted by Peptide/Protein Amyloid-like Assemblies
Abstract
:1. Introduction
2. Exhaustive Search of Literature Articles Describing the Visible Fluorescence Emission by Amyloid-like Systems
3. Amyloid-like Assemblies Exhibiting Intrinsic Visible Fluorescence
3.1. Proteins
Protein System | UniProt ID | Excitation, Emission Wavelength/Range (λexc, λem) | Methodology Used for the Experiment | Physical State of the Sample | Ref. | ||
---|---|---|---|---|---|---|---|
UV–Blue | Green | Red–NIR | |||||
Gamma-B (Gamma-II) Crystallin | P02526 | 340 nm, 445 nm | Fluorescence spectroscopy | Aggregates | [37] | ||
340 nm, 425/445 nm | Fluorescence spectroscopy | Protein solution | |||||
354/361 nm, 466 nm | Fluorescence spectroscopy | Protein solution | [38] | ||||
Triosephosphate Isomerase (TIM) | P62002 | 351/364 nm, 445 nm | Fluorescence spectroscopy, microscopy | Needle-like crystals | [37] | ||
Truncated TIM (β1α1β2 domain with Y and F but no W residues) | 340 nm, 425 nm | Fluorescence spectroscopy | Protein solution | ||||
Hydantoinase | Q5DLU2 | 351/364 nm, 450 nm | Fluorescence spectroscopy | Crystals | [37] | ||
Hen egg white lysozyme (HEWL) | P00698 | 351/364 nm, 470 nm | Fluorescence spectroscopy | Crystalline form | [37] | ||
354/361 nm, 425 nm | Fluorescence spectroscopy | Protein solution | [38] | ||||
355 nm, 440 nm | Fluorescence spectroscopy | Amyloid fiber suspension | [27] | ||||
357 nm, 440 */470 * nm | Fluorescence spectroscopy | Amyloid fiber suspension | [39] | ||||
350 nm, 438 nm | Fluorescence spectroscopy | Fibers | [40] | ||||
360 nm, 440 * nm | 640 nm, 703 nm | Fluorescence spectroscopy | Amyloid fiber | [32] | |||
375 nm, 428 nm | Fluorescence spectroscopy | Amyloid fiber suspension | [41] | ||||
365 nm, 445/50 nm | Fluorescence microscopy | Solid state | [42] | ||||
357 nm, 430–450 * nm | Steady-state fluorescence, fluorescence spectroscopy | Amyloid fiber suspension | [42] | ||||
370 nm, 460 * nm | Fluorescence spectroscopy | Protein solution | [43] | ||||
365 nm, 450 nm | Fluorescence spectroscopy | Aqueous concentrates and solid state | [44] | ||||
α-Synuclein (α-Syn) | P37840 | 380 nm, 480 nm | 450 nm, 520 nm | Fluorescence spectroscopy | Protein solution | [45] | |
405 nm, 460 * nm | Confocal fluorescence lifetime microscopy | Fibrils in solid state | [46] | ||||
405 nm, 450–500 * nm | Confocal microscopy | Fibrils in solid state | [47] | ||||
380 nm, 425 nm | Fluorescence spectroscopy | Amyloid fiber suspension | [48] | ||||
Human Lysozyme (I59T mutant) | P61626 | 450 nm, >488 * nm | Time-correlated single-photon-counting fluorescence lifetime imaging | Fibrils in solid state | [27] | ||
405 nm, >488 * nm | Confocal microscopy | Fibrils in solid state | |||||
TAR-DNA-binding protein-43 (TDP-43) (prion-like domain, residues 342–414) | Q13148 | 375 nm, 427–450 nm | Fluorescence spectroscopy | Protein solution | [49] | ||
TDP-43 mutant (prion-like domain, residues 363–414, A315E, and Q331K, and M337V mutations) | 375 nm, 446 * nm | Fluorescence spectroscopy | Protein solution | [50] | |||
RNA-binding protein FUS (prion-like domain, residues 1–165) | P35637 | 375 nm, 421–450 nm | Fluorescence spectroscopy | Protein solution | [49] | ||
RNA-binding protein FUS (RNA-recognition motif domain RRM, residues 285–371) | 375 nm, 440 nm | Fluorescence spectroscopy | Protein solution | ||||
Bovine insulin | P01317 | 310–380 nm, 360–430 * nm | 400–420 nm, 430–500 * nm | Fluorescence spectroscopy | Native protein in solution, fibrils and spherulites in solution | [33] | |
360 nm, 430 * nm | 640 nm, 696 nm | Fluorescence spectroscopy | Amyloid fiber suspension | [32] | |||
375 nm, 428 nm | Fluorescence spectroscopy | Amyloid fiber suspension | [41] | ||||
375 nm, 425 nm | Fluorescence spectroscopy | Spherulites | [51] | ||||
N.R. ** | 330–590 nm, 440–610 nm | Fluorescence spectroscopy | Solution of dots | [52] | |||
N.R. ** | 350 nm, 438 nm | Fluorescence spectroscopy | Fibers | [40] | |||
P01308 | 350 nm, 440 * nm | Fluorescence spectroscopy | Amyloid fiber suspension | [13] | |||
Bovine β-Lactoglobulin (β-LG) | P02754 | 640 nm, 702 nm | Fluorescence spectroscopy | Amyloid fiber suspension | [32] | ||
360 nm, 430 nm | Fluorescence spectroscopy | Amyloid fiber suspension | [48] | ||||
365 nm, 420 nm | Fluorescence microscopy, confocal imaging | Hybrid fibers | [53] | ||||
405 nm, 480 * nm | 514 nm, 570 * nm | 633 nm, 650 * nm | Fluorescence microscopy and spectroscopy | Hybrid tactoids | [54] | ||
320–380 nm, 360–425 * nm | 400–450 nm, 450–525 * nm | Fluorescence spectroscopy | Native protein in solution, fibrils and spherulites in solution | [33] | |||
HET-s prion-domain (residues 218–289) | Q03689 | 360 nm, 450 nm | 440 nm, 520 * nm | 640 nm, 700 * nm | Fluorescence spectroscopy | Amyloid fiber suspension | [32] |
390 ± 10 nm, 460 ± 50 nm | 475 ± 10 nm, 530 ± 50 nm | 620 ± 60 nm, 700 ± 75 nm | Fluorescence microscopy | Highly oriented amyloid fibers | |||
Prion C-terminal fragment (MoPrP (89–230)) | P04925 | 375 nm, 428 nm | Fluorescence spectroscopy | Amyloid fiber suspension | [41] | ||
Human serum albumin (HSA) | P02768 | 375 nm, 450 * nm | 460 nm, 535 * nm | Fluorescence spectroscopy | Protein in solution | [55] | |
405 nm, 450 * nm | Confocal microscopy | Fibrils in solid state | |||||
640 nm, 696 nm | Fluorescence spectroscopy | Amyloid fiber suspension | [32] | ||||
Bovine serum albumin (BSA) | P02769 | 355 nm, 425 nm | Fluorescence spectroscopy | Protein solution | [56] | ||
320 nm, 420 nm 365 nm, 448 nm | 440 nm, 500 nm | Fluorescence spectroscopy | Protein solution and solid state | [44] | |||
Human Tau isoform K18 (K18Tau I260C/C291A/C322A) variant (129 residues) | P10636 | 405 nm, 460 * nm | Confocal fluorescence lifetime images | Fibrils in solid state | [46] | ||
450 nm, >480 * nm | Time-correlated single-photon-counting fluorescence lifetime imaging | Fibrils in solid state | [27] | ||||
405 nm, >488 * nm | Confocal microscopy | Fibrils in solid state | |||||
Myoglobin (MB) | P68082 | 405 nm, 470 * nm | Fluorescence spectroscopy | Protein solution | [57] | ||
405 nm, 450–500 * nm | Confocal microscopy | Solid state | |||||
Transthyretin (TTR) V30M mutant | P02766 | 640 nm, 695 nm | Fluorescence spectroscopy | Amyloid fiber suspension | [32] | ||
α-Lactalbumin | P00711 | 640 nm, 692 nm | Fluorescence spectroscopy | Amyloid fiber suspension | [32] | ||
Human insulin | P01308 | 275nm, 440 * nm | Fluorescence spectroscopy | Protein solution | [58] | ||
Keratin-based films | N.R. | 280 nm, 450 * nm | Fluorescence spectroscopy | Nanorods in solution | [59] | ||
Polyclonal Rabbit Immunoglobulin (rIgG) | N.R. | 300–320 nm, 400–450 nm | Fluorescence spectroscopy | Protein solution | [60] | ||
GRASP55 | Q9H8Y8 | 375 nm, 440 nm | Fluorescence lifetime imaging microscopy | Fibrils in solid state | [61] | ||
GADD45α, GADD45β | P24522, O75293 | 360 nm, 420/455 nm | Fluorescence spectroscopy | Protein solution | [62] | ||
Elastin | P04985 | 325 nm, 415 nm | 325 nm, 505 nm | Fluorescence spectroscopy | Protein solution | [63] | |
Human transthyretin (TTR) | P02766 | 360 nm, 417/438/480 nm | Fluorescence spectroscopy | Protein solution | [64] | ||
360 nm, 400/420 nm, and 360 nm, 417/438 nm | Fluorescence spectroscopy | Protein solution | [65] | ||||
Double Plant homeodomain fingers 3 isoform a (DPF3a) | Q92784 | 350 nm, 460 * nm | Fluorescence spectroscopy | Amyloid fiber suspension | [66] | ||
DPF3a and DPF3b | Q92784 | 400 nm, 456 nm | Fluorescence spectroscopy | Amyloid fiber suspension | [67] | ||
DPF3a (residues 200–357) and DPF3b (residues 200–378) | Q92784 | 400 nm, 460 nm | Fluorescence spectroscopy | Amyloid fiber suspension | [68] | ||
Class I hydrophobin Vmh2 and Vmh2-H3w chimera (H3w fluorescent peptide HPHGHW) | Q8WZI2 | 345 nm, 450 nm | Fluorescence spectroscopy | Protein solution | [69] | ||
TasA | P54507 | 350 nm, 435 nm | Fluorescence spectroscopy | Amyloid fiber suspension, dry samples | [48] | ||
GRASP ancestors ANC1, ANC2, ANC3, and ANC4 | N.R. ** | 365 nm, 450 * nm | 365 nm, 510 * nm (for ANC4) | Fluorescence spectroscopy | Protein solution | [70] |
3.2. Peptides
3.2.1. Linear Peptides
Peptide System | Peptide Sequence | Excitation and Emission Wavelength Range (λexc, λem) | Methodology Used for the Experiment | Physical State of the Sample | Ref. | ||
---|---|---|---|---|---|---|---|
UV–Blue | Green | Red–NIR | |||||
IAPP-derived peptide | CSNNFGA | 640 nm, 695 nm | Fluorescence spectroscopy | Amyloid fiber suspension | [32] | ||
Poly(VGGLG) | VGGLG | 405 nm, 465 nm | Confocal microscopy | Amyloid fiber suspension | [71] | ||
TTR-derived peptide (residues 105–115) | YTIAALLSPYS | 360 nm, 440 nm | Fluorescence spectroscopy | Amyloid fiber suspension | [78] | ||
Elastin-derived peptide | GVGVAGVG | 358 nm, 460 nm | Fluorescence spectroscopy and microscopy | Film | [79] | ||
Gamma-B (Gamma-II) crystallin-derived peptide lacking aromatic residues | NDSIRSCRLIPQHT | 345 nm, 425 nm | Fluorescence spectroscopy | Lyophilized (powder) form | [37] | ||
340 nm, 415–420 nm | Fluorescence spectroscopy | Protein solution | |||||
HSA-derived peptide | FLSucFF | 375 nm, 450–460 * nm | Fluorescence spectroscopy | Protein solution | [55] | ||
HSA-derived peptide | WLSucLW | 375 nm, 450–460 * nm | Fluorescence spectroscopy | Protein solution | |||
HSA-derived peptide lacking aromatic residues | LLSucLL | 375 nm, 450–460 * nm | Fluorescence spectroscopy | Protein solution | |||
Homeobox protein PKNOX1-derived peptide (residues 117–132) | LMVKAIQVLRIHLLEL | 370 nm, 420–450 * nm | 400–480 nm, 520 * nm | Fluorescence spectroscopy | Amyloid fiber suspension | [72] | |
405 ± 10 nm, 460 ± 50 nm | 475 ± 10 nm, 530 ± 50 nm | 620 ± 60 nm, 700 ± 75 nm | Fluorescence microscopy | Cells and fibrils in solid state | |||
Homeobox protein PKNOX1-derived peptide (residues 117–132) | R8βAlaLMVKAIQVLRIHLLE | 370 nm, 420–450 * nm | 488 nm, 520 * nm | 555 nm, 710 nm | Fluorescence spectroscopy | Amyloid fiber suspension | [72] |
390 ±10 nm, 460 ± 50 nm | 475 ± 10 nm, 530 ± 50 nm | 620 ± 60 nm, 700 ± 75 nm | Fluorescence microscopy | Cells and fibrils in solid state | |||
Homeobox protein PKNOX1-derived peptide (residues 297–311) | R8βAlaAQTNLTLLQVNNWFI | 370 nm, 420–450 * nm | 400–480 nm, 520 * nm | 670 nm, 710 nm | Fluorescence spectroscopy | Amyloid fiber suspension | [72] |
390 ± 10 nm, 460 ± 50 nm | 475 ± 10 nm, 530 ± 50 nm | 620 ± 60 nm, 700 ± 75 nm | Fluorescence microscopy | Cells and fibrils in solid state | |||
β-Amyloid peptide (1–42) (Aβ(1–42)) | DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA | 360 nm, 440 * nm | 440 nm, 520 * nm | 640 nm, 696 nm | Fluorescence spectroscopy | Amyloid fiber suspension | [32] |
390 ± 10 nm, 460 ± 50 nm | 475 ± 10 nm, 530 ± 50 nm | 620 ± 60 nm, 700 ± 75 nm | Fluorescence microscopy | Amyloid fiber suspension | |||
405 nm, 460 * nm | Confocal fluorescence lifetime microscopy | Fibrils in solid state | [46] | ||||
390 nm, 430 * nm | Fluorescence spectroscopy | Fibrils in solution | [80] | ||||
450 nm, >488 * nm | Time-correlated single-photon-counting fluorescence lifetime imaging | Fibrils in solid state | [27] | ||||
405 nm, >488 * nm | Confocal microscopy | Fibrils in solid state | |||||
365 nm, 470 nm | Fluorescence spectroscopy | Solution and solid state | [81] | ||||
280 nm, 450 nm | Fluorescence spectroscopy | Amyloid fiber suspension | [82] | ||||
Aβ(1–40) | DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV | 450 nm, >488 * nm | Time-correlated single-photon-counting fluorescence lifetime imaging | Fibrils in solid state | [27] | ||
405 nm, >488 * nm | Confocal microscopy | Fibrils in solid state | |||||
275 nm, 470 * nm | Fluorescence spectroscopy | Fibrils in solution | [58] | ||||
350 nm, 436 nm, and 380 nm, 470 nm | Fluorescence spectroscopy | Fibrils in solution | [83] | ||||
350 nm, 430 nm, and 380 nm, 462 nm | Fluorescence spectroscopy | Fibrils in solution | |||||
Aβ(33–42) | GLMVGGVVIA | 450 nm, >488 * nm | Time-correlated single-photon-counting fluorescence lifetime imaging | Fibrils in solid state | [27] | ||
405 nm, >488 * nm | Confocal microscopy | Fibrils in solid state | |||||
Aβ(30–35) | AIIGLM | 320 nm, 420 nm | Fluorescence spectroscopy | Fibrils in solid state | [84] | ||
310 nm, 425 nm | Fluorescence spectroscopy | Fibrils in solid state | |||||
Aβ(35–42) | MVGGVVIA | 365 nm, 470 nm | Fluorescence spectroscopy | Amyloid fiber suspension | [81] | ||
Aβ(16–21) | KLVFFA | 359 nm, 461 nm | Fluorescence microscopy | Peptide films | [85] | ||
330–400 nm, 410–500 nm | Fluorescence spectroscopy | Fibrils in solution and solid state | |||||
Human amylin (1–37) or islet amyloid polypeptide (hIAPP) | KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNTY | 640 nm, 695 nm | Fluorescence spectroscopy | Amyloid fiber suspension | [32] | ||
280 nm, 382 */450 * nm | Fluorescence spectroscopy | Amyloid fiber suspension | [86] | ||||
325–375 nm, 435–485 nm | 450–490 nm, 500–550 * nm | Fluorescence microscopy | Dried aggregates, fibrils in solid state | [87] | |||
305 nm, 430 * nm | 305 nm, 525 * nm | Fluorescence spectroscopy | Fibrils in solution | ||||
280 nm, 450 nm | Fluorescence spectroscopy | Amyloid fiber suspension | [82] | ||||
Aβ(1–42) :hIAPP(1–37) (1:1) | DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA:KC(S-)NTATC(S-)ATQRLANFLVHSSNNFGAILSSTNVGSNTY | 280 nm, 450 nm | Fluorescence spectroscopy | Amyloid fiber suspension | [82] | ||
EKKE four-residue peptide | EKKE | 405 nm, N.R. ** | Confocal microscopy | Amyloid assemblies | [88] | ||
Semaglutide | HAib-EGTFTSDVSSYLEGQAAK(C18diacid-γ-Glu-OEG-OEG)EFIAWLVRGRG | 344 nm, 420 nm | Fluorescence spectroscopy | Fibrils in solution | [89] | ||
Ferrocene (Fc)-based peptide | Fc-YYGCGPGRC | 490 nm, 520 nm | Fluorescence spectroscopy | Spherical nanoparticle solutions | [90] | ||
Glycyl-L-histidyl-L-lysine-Cu peptide | GHK | 375 nm, 435 nm | 435 nm, 830 nm | Fluorescence spectroscopy, confocal microscopy | Nanoparticles | [91] | |
FINYVK peptide | FINYVK | 370 nm, 450 * nm | Fluorescence spectroscopy | Amyloid fibers | [92] | ||
fINYVK peptide | fINYVK | 370 nm, 450 * nm | Fluorescence spectroscopy | Amyloid fibers | |||
FiNYVK peptide | FiNYVK | 370 nm, 450 * nm | 440 nm, 480 * nm | Fluorescence spectroscopy | Amyloid fibers | ||
FInYVK peptide | FInYVK | 440 nm, 480 * nm | Fluorescence spectroscopy | Amyloid fibers | |||
FINyVK peptide | FINyVK | 370 nm, 450 * nm | 440 nm, 520 * nm | Fluorescence spectroscopy | Amyloid fibers | ||
FINYvK peptide | FINYvK | 370 nm, 450 * nm | 440 nm, 520 * nm | Fluorescence spectroscopy | Amyloid fibers | ||
FINYVk peptide | FINYVk | 370 nm, 450 nm | 440 nm, 520 * nm | Fluorescence spectroscopy | Amyloid fibers | ||
Nucleophosmin-derived peptide NPM1mutA (residues 264–298) | VEAKFINYVKNCFR | 336–440 nm, 405–520 nm | Fluorescence spectroscopy | Amyloid fibers | [93] | ||
440 nm, 460–600 nm | Fluorescence microscopy | Amyloid fibers | |||||
PEG8-F6 peptide | FFFFFF | 370 nm, 460 * nm, and 410 nm, 460 * nm | Fluorescence spectroscopy | Amyloid fibers | [75] | ||
FF dipeptide | FF | 350 nm, 430 nm | Fluorescence spectroscopy | Fibers | [40] | ||
255 nm, 350–500 nm | Fluorescence spectroscopy | Microtubes | [94] | ||||
FFF tripeptide | FFF | 265 nm, 460 nm, and 360 nm, 420–480 nm | 410 nm, 480–510 nm | Fluorescence spectroscopy | Irregular nanospheres in solid state | [95] | |
420 nm, 520 nm and 502 nm, 550 nm | 525 nm, 610 nm | Fluorescence spectroscopy and microscopy | Nanodots suspended in ethylenglicole | [96] | |||
405 nm, 460 nm | Fluorescence spectroscopy | Fibers | [97] | ||||
405 nm, 560 nm | Fluorescence spectroscopy | Fibers/nanospheres in solid state | [98] | ||||
370 nm, 450 nm | 410 nm, 520 nm | Fluorescence spectroscopy | Wafer and film in solid state | [99] | |||
365–400 nm, 482–484 nm | 425–600 nm, 500–620 nm | Fluorescence spectroscopy | Solution of dots | [52] | |||
365 nm, 425 nm | 365 nm, 570 nm | Fluorescence spectroscopy | Solid state | ||||
360 nm, 440 nm | 360 nm, 560 nm | Fluorescence spectroscopy | Solid state tapes | [100] | |||
Blue, yellow and red | Fluorescence spectroscopy | Nanospheres | [24] | ||||
α,β-peptide | Boc-(S-Ala-β-2R,3R-Fpg)3 | 315 nm, 385 nm | Fluorescence spectroscopy | Amyloid fiber suspension | [101] | ||
Peptide Boc-YW + Zn(II) | Boc-YW | 365 nm, 428 nm | Fluorescence spectroscopy and microscopy | Nanoparticles | [102] | ||
Peptide Boc-YW + Zn(II) | Boc-YW | 365 nm, 433 nm | Fluorescence spectroscopy and microscopy | Nanoparticles | |||
Bone Marrow Homing Peptide 1 (BMHP1)-derived peptide | Biotin-GGGAFASAKA | 350–500 nm, 450 nm | 350–500 nm, 510 nm | 350–500 nm, 610–620 nm | Fluorescence spectroscopy | Hydrogel | [103] |
LDLK12 peptide variant | (LDLK)3/SSL(LDLK)3/KLP(LDLK)3/tris(LDLK)3 | 350–500 nm, 450 nm | 350–500 nm, 510 nm | 350–500 nm, 610–620 nm | Fluorescence spectroscopy | Hydrogel | |
PEG-F6 (PEG8, 12, 18, and 24) peptides | PEG-FFFFFF | 450 nm, 460–480 nm | 520 nm, 530–560 nm | 635, 645–650 nm | Fluorescence microscopy | Peptide films and aggregates | [104] |
PEG8-F6 peptide | PEG8-FFFFFF | 370 nm, 460 * nm, and 410 nm, 460 * nm | Fluorescence spectroscopy | Amyloid fibers | [75] | ||
405 nm, 490–510 nm | Fluorescence confocal microscopy | Amyloid fibers | |||||
PEG12-F6 peptide | PEG12-FFFFFF | 370 nm, 460 * nm 410 nm, 460 * nm | Fluorescence spectroscopy | Amyloid fibers | [76] | ||
405 nm, 490–510 nm | Fluorescence and confocal microscopy | Amyloid fibers | |||||
PEG18-F6 peptide | PEG18-FFFFFF | 370 nm, 460 nm, and 410 nm, 460 nm | Fluorescence spectroscopy | Amyloid fibers | [76] | ||
405 nm, 490–510 * nm | Fluorescence microscopy | Amyloid fibers | |||||
PEG24-F6 peptide | PEG24-FFFFFF | 370 nm, 460 * nm | 460 nm, 530 * nm | Fluorescence spectroscopy | Amyloid fibers | [76] | |
359 nm, 461 * nm | 488 nm, 507 * nm | 555 nm, 580 * nm | Fluorescence microscopy | Amyloid fibers | |||
PEG2-F2 peptide | PEG2-FF | 340–420 nm, 405–480 nm | Fluorescence spectroscopy | Amyloid fiber suspension | [36] | ||
PEG6-F2 peptide | PEG6-FF | 370–470 nm, 460–505 nm | Fluorescence spectroscopy | Amyloid fiber suspension | |||
F6 peptide | FFFFFF | 359 nm, 461 nm, and 330–430 nm, 400–490 nm | 488 nm, 507 nm | Fluorescence microscopy | Peptide films | [85] | |
Dip-Dip peptide | (β,β-diphenyl-A)2 | 280–410 nm, 415/475 nm | Fluorescence spectroscopy | Layered needle-like tubular structures | [105] | ||
Boc-Dip-Dip peptide | (Boc-β,β-diphenyl-A)2 | 370 nm, 411/436/462 nm | Fluorescence spectroscopy | Layered needle-like tubular structures | [105] | ||
Trp-Phe peptide | WF | 280 nm, 390/423 nm | Fluorescence spectroscopy | Nanoparticles | [106] | ||
Peptide fragments derived from hydrolysis of β-LG | N.R. ** | 375 nm, 460 nm | Fluorescence spectroscopy | Fibers | [107] | ||
ε-PLL peptide | ε-poly-K | 336 nm, 407 nm | Fluorescence spectroscopy | Solution | [74] | ||
PLL-OL peptide | α-poly-K sodium oleate | 310–400 nm, 380–475 nm | Fluorescence spectroscopy | Vesicle suspension | [108] | ||
300–380 nm, 462 nm | Fluorescence spectroscopy | Film | |||||
PBLG peptide | poly(γ-benzyl-glutamate) | 260–400 nm, 440 nm | Fluorescence spectroscopy | Solution | [109] | ||
PLGA peptide | poly-E | 260–400 nm, 440 nm | Fluorescence spectroscopy | Solution | [109] | ||
PLGA-Na peptide | poly-E sodium salt | 260–400 nm, 440 nm | Fluorescence spectroscopy | Solution | [109] | ||
Alanine oligopeptide (OALA) | AAAAA | 325 nm, 400 nm | Fluorescence spectroscopy and microscopy | Solid state | [110] | ||
Valine oligopeptide (OVAL) | VVVVV | 325 nm, 400 nm | Fluorescence spectroscopy and microscopy | Solid state | [110] | ||
Isoleucine oligopeptide (OILE) | IIIII | 325 nm, 400 nm | Fluorescence spectroscopy and microscopy | Solid state | [110] | ||
Alanine polypeptide (PALA-HT) | poly-A | 325 nm, 445nm | Fluorescence spectroscopy and microscopy | Solid state | [110] | ||
Alanine polypeptide (PALA-SS) | Guanidin-poly-A | 325 nm, 445 nm | Fluorescence spectroscopy and microscopy | Solid state | [110] |
System | Excitation, Emission Wavelength/Range (λexc, λem) | Methodology Used for the Experiment | Physical State of the Sample | Ref. | ||
---|---|---|---|---|---|---|
UV–Blue | Green | Red–NIR | ||||
c-FF | 359 nm, 461 * nm | 488 nm, 507 * nm | Fluorescence microscopy | Crystalline form | [77] | |
310 nm, 380 * nm | Fluorescence spectroscopy | Solution | ||||
g-FF | 359 nm, 461 * nm | 488 nm, 507 * nm | Fluorescence microscopy | Crystalline form | [77] | |
310 nm, 375 * nm | Fluorescence spectroscopy | Solution | ||||
a-FF | 359 nm, 461 * nm | 488 nm, 507 * nm | Fluorescence microscopy | Crystalline form | [77] | |
320 nm, 410 * nm | Fluorescence spectroscopy | Solution | ||||
t-FF | 359 nm, 461 * nm | 488 nm, 507 * nm | Fluorescence microscopy | Crystalline form | [77] | |
320 nm, 390 * nm | Fluorescence spectroscopy | Solution | ||||
cc-FF | 359 nm, 461 * nm | 488 nm, 507 * nm | Fluorescence microscopy | Crystalline form | [77] | |
320 nm, 364 * nm | Fluorescence spectroscopy | Solution | ||||
gg-FF | 359 nm, 461 * nm | 488 nm, 507 * nm | Fluorescence microscopy | Crystalline form | [77] | |
310 nm, 375 * nm | Fluorescence spectroscopy | Solution | ||||
aa-FF | 359 nm, 461 * nm | 488 nm, 507 * nm | Fluorescence microscopy | Crystalline form | [77] | |
340 nm, 420 * nm | Fluorescence spectroscopy | Solution | ||||
tt-FF | 359 nm, 461 * nm | 488 nm, 507 nm | Fluorescence microscopy | Crystalline form | [77] | |
330 nm, 390 * nm | Fluorescence spectroscopy | Solution | ||||
FF-gc | 340 nm, 460 nm | Fluorescence spectroscopy | Solution | [111] | ||
359 nm, 461 nm | 488 nm, 507 nm | 555 nm, 580 nm | Fluorescence microscopy | Solid state | ||
gc-FF | 340 nm, 400 nm | Fluorescence spectroscopy | Solution | [111] | ||
359 nm, 461 nm | 488 nm, 507 nm | 555 nm, 580 nm | Fluorescence microscopy | Solid state | ||
FF-gc | 340 nm, 460 nm | Fluorescence spectroscopy | Solution | [111] | ||
359 nm, 461 nm | 488 nm, 507 nm | 555 nm, 580 nm | Fluorescence microscopy | Solid state | ||
gc-FF | 310 nm, 380 nm | Fluorescence spectroscopy | Solution | [111] | ||
359 nm, 461 nm | 488 nm, 507 nm | 555 nm, 580 nm | Fluorescence microscopy | Solid state | [111] |
3.2.2. Cyclic Dipeptides
Peptide System | Excitation, Emission Wavelength/Range (λexc, λem) | Methodology Used for the Experiment | Physical State of the Sample | Ref. | |
---|---|---|---|---|---|
UV–Blue | Green | ||||
Cyclo-FW | 370 nm, 460 nm | Fluorescence spectroscopy | Needle-like crystals | [116] | |
Cyclo-WW | 425 nm, 520 nm | Fluorescence spectroscopy | Spherical nanoparticles | [116] | |
Cyclo-FW | 370 nm, 430 nm | Fluorescence spectroscopy | Multibranched nanoflower | [116] | |
Cyclo-HH | 370 nm, 480 nm | Fluorescence spectroscopy | Nanofibers | [116] | |
Cyclo-YY | 480 nm, 570 nm | Fluorescence spectroscopy | Nanorods | [116] | |
Cyclo-FF | 450 nm, 530 nm | Fluorescence spectroscopy | Spherical nanoparticles | [116] | |
Cyclo-GW | 300 nm, 420 nm, and 400 nm, 440 nm | Fluorescence spectroscopy | Monoclinic needle-like crystals | [117] | |
Cyclo-Dip-Dip | 280–410 nm, 415–475 nm | Fluorescence spectroscopy | Layered needle-like tubular structures | [105] | |
Cyclo-FF | 260 nm, 305 nm, and 370 nm, 450 nm | 305 nm, 400–500 nm | Fluorescence spectroscopy | Nanotubes in solid state on quartz | [112] |
265 nm, 300 nm | Fluorescence spectroscopy and microscopy | Coating of nanotubes in solid state on silicon | [115] | ||
265 nm, 300–440 nm | Fluorescence spectroscopy and microscopy | Peptide films and coating of nanotubes in solid state on silicon | |||
370 nm, 420–460 nm | Fluorescence spectroscopy | Nanofiber in solution | [113] | ||
265 nm, 460 nm, and 360 nm, 420–460 nm | Fluorescence spectroscopy | Fibers in solid state | [95] | ||
380 nm, 620 nm | Fluorescence spectroscopy, scanning near-field optical microscopy | Platelet solid state | [118] | ||
Cyclo-LL | 370 nm, 420–460 nm | Fluorescence spectroscopy | Nanofibers in solution | [113] | |
360 nm, 420–460 nm | Fluorescence spectroscopy | Ultrathin nanowires | [95] |
4. Intrinsic Visible Fluorescence Emitted by Individual Amino Acids and Their Variants
System | Excitation, Emission Wavelength/Range (λexc, λem) | Methodology Used for the Experiment | Physical State of the Sample | Ref. | |
---|---|---|---|---|---|
UV–Blue | Green | ||||
H | 360 nm, 424/445 nm, and 380 nm, 450 nm, and 400 nm, 452–500 nm | 405 nm, 488 nm, and 420 nm, 500 nm, and 440 nm, 515 nm, and 460 nm, 550 nm, and 480 nm, 560 nm | Fluorescence spectroscopy and confocal microscopy | Microplates | [120] |
Q | 360 nm, 430 nm | Fluorescence spectroscopy | Solid state | [122] | |
W | 350 nm, 400/450 nm | Emission-excitation matrices (EEMs) | Solution | [40] | |
Y | 350 nm, 400/440 nm | Emission-excitation matrices (EEMs) | Solution | [40] | |
pyro-Q | 340 nm, 420 nm | Fluorescence spectroscopy | Solid state | [122] | |
Amino acid crystals | 405 nm, N.R. ** | Confocal spectroscopy | Crystals | [121] | |
Ornitin | 405 nm, N.R. ** | Confocal spectroscopy | Crystals | [121] | |
2,4-diaminobutyric acid | 405 nm, N.R. ** | Confocal spectroscopy | Crystals | [121] | |
D-2,3-diaminopropionic acid | 405 nm, N.R. ** | Confocal spectroscopy | Crystals | [121] | |
F | 370 nm, 452 nm, and 380 nm, 454 nm, and 390 nm, 456 nm | 400 nm, 458 nm, and 410 nm, 500 nm, and 420 nm, 500–540 nm | Fluorescence spectroscopy | Fibrillar solution | [121] |
350 nm, 400/430 nm | Emission-excitation matrices | Solution | [40] | ||
K | 340 nm, 433 nm 365 nm, and 440/488 nm | 460 nm, 511 nm | Fluorescence spectroscopy | Concentrated solution | [74] |
K | 300–365 nm, 385–420 nm | 365 nm, 524 nm | Fluorescence spectroscopy | Recrystallized solids | |
S | 320–440 nm, 385–484 nm | 320 nm, 513 nm, and 440 nm, 484/598 nm | Fluorescence spectroscopy | Recrystallized solids | |
S | 312 nm, 427 nm | 480 nm, 529 nm | Fluorescence spectroscopy | Concentrated solution | |
I | 320–440 nm, 384–484 nm | 320 nm, 507 nm, and 440 nm, 484/598 nm | Fluorescence spectroscopy | Recrystallized solids | |
N-acetyl-A | 260–400 nm, 440 nm | Fluorescence spectroscopy | Solution | [109] | |
Amyloid metabolites (W Y, and F) | 405 nm, 450 nm | Fluorescence spectroscopy | Solution | [123] | |
GlyBA glycine catalyzed by boric acid (G-BA) | 452 nm, 460 nm | Fluorescence spectroscopy | Carbonaceous structures | [124] | |
Phe dimer assembly (F-DA) | 370 nm, 425 nm | Fluorescence spectroscopy and microscopy | Amyloid fibers/ hydrogel | [125] |
5. Open Issues: The Electronic Basis of the Fluorescence Emission and Its In Vivo Applications
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Uversky, V.N. Intrinsically Disordered Proteins and Their “Mysterious” (Meta)Physics. Front. Phys. 2019, 7, 10. [Google Scholar] [CrossRef]
- Ke, P.C.; Zhou, R.; Serpell, L.C.; Riek, R.; Knowles, T.P.J.; Lashuel, H.A.; Gazit, E.; Hamley, I.W.; Davis, T.P.; Fandrich, M.; et al. Half a century of amyloids: Past, present and future. Chem. Soc. Rev. 2020, 49, 5473–5509. [Google Scholar] [CrossRef] [PubMed]
- Sunde, M.; Serpell, L.C.; Bartlam, M.; Fraser, P.E.; Pepys, M.B.; Blake, C.C. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 1997, 273, 729–739. [Google Scholar] [CrossRef] [PubMed]
- Maury, C.P.J. Amyloid and the origin of life: Self-replicating catalytic amyloids as prebiotic informational and protometabolic entities. Cell. Mol. Life Sci. 2018, 75, 1499–1507. [Google Scholar] [CrossRef] [PubMed]
- Gatto, E.; Toniolo, C.; Venanzi, M. Peptide Self-Assembled Nanostructures: From Models to Therapeutic Peptides. Nanomaterials 2022, 12, 466. [Google Scholar] [CrossRef] [PubMed]
- Fichman, G.; Gazit, E. Self-assembly of short peptides to form hydrogels: Design of building blocks, physical properties and technological applications. Acta Biomater. 2014, 10, 1671–1682. [Google Scholar] [CrossRef] [PubMed]
- Diaferia, C.; Gianolio, E.; Accardo, A. Peptide-based building blocks as structural elements for supramolecular Gd-containing MRI contrast agents. J. Pept. Sci. 2019, 25, e3157. [Google Scholar] [CrossRef]
- Balasco, N.; Diaferia, C.; Morelli, G.; Vitagliano, L.; Accardo, A. Amyloid-Like Aggregation in Diseases and Biomaterials: Osmosis of Structural Information. Front. Bioeng. Biotechnol. 2021, 9, 641372. [Google Scholar] [CrossRef]
- Morzan, U.N.; Diaz Miròn, G.; Grisanti, L.; Gonzalez Lebrero, M.C.; Kaminski Schierle, G.S.; Hassanali, A. Non-Aromatic Fluorescence in Biological Matter: The Exception or the Rule? J. Phys. Chem. B 2022, 126, 7203–7211. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Z.; Yuan, W.Z. Intrinsic Luminescence from Nonaromatic Biomolecules. ChemPlusChem 2020, 85, 1065–1080. [Google Scholar] [CrossRef]
- Rosenman, G.; Apter, B. Bioinspired materials: Physical properties governed by biological refolding. Appl. Phys. Rev. 2022, 9, 021303. [Google Scholar] [CrossRef]
- Kumar, V.B.; Sher, I.; Rencus-Lazar, S.; Rotenstreich, Y.; Gazit, E. Functional Carbon Quantum Dots for Ocular Imaging and Therapeutic Applications. Small 2023, 19, e2205754. [Google Scholar] [CrossRef] [PubMed]
- Iannuzzi, C.; Borriello, M.; Portaccio, M.; Irace, G.; Sirangelo, I. Insights into Insulin Fibril Assembly at Physiological and Acidic pH and Related Amyloid Intrinsic Fluorescence. Int. J. Mol. Sci. 2017, 18, 2551. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tao, K.; Ji, W.; Makam, P.; Rencus-Lazar, S.; Gazit, E. Self-Assembly of Cyclic Dipeptides: Platforms for Functional Materials. Protein Pept. Lett. 2020, 27, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Yang, T.; Zhao, Z.; Zhu, T.; Zhang, Q.; Hou, W.; Yuan, W.Z. Nonconventional luminophores: Characteristics, advancements and perspectives. Chem. Soc. Rev. 2021, 50, 12616–12655. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Z.; McGonigal, P.R.; Ye, R.; Liu, S.; Lam, J.W.Y.; Kwok, R.T.K.; Yuan, W.Z.; Xie, J.; Rogach, A.L.; et al. Clusterization-triggered emission: Uncommon luminescence from common materials. Mater. Today 2020, 32, 275–292. [Google Scholar] [CrossRef]
- Tao, S.; Zhu, S.; Feng, T.; Zheng, C.; Yang, B. Crosslink-Enhanced Emission Effect on Luminescence in Polymers: Advances and Perspectives. Angew. Chem. Int. Ed. Engl. 2020, 59, 9826–9840. [Google Scholar] [CrossRef]
- Apter, B.; Lapshina, N.; Barhom, H.; Fainberg, B.; Handelman, A.; Accardo, A.; Diaferia, C.; Ginzburg, G.; Morelli, G.; Rosenman, G. Fluorescence Phenomena in Amyloid and Amyloidogenic Bionanostructures. Crystals 2020, 10, 668. [Google Scholar] [CrossRef]
- Linse, S. Mechanism of amyloid protein aggregation and the role of inhibitors. Pure Appl. Chem. 2019, 91, 211–229. [Google Scholar] [CrossRef]
- Tomalia, D.A.; Klajnert-Maculewicz, B.; Johnson, K.A.M.; Brinkman, H.F.; Janaszewska, A.; Hedstrand, D.M. Non-traditional intrinsic luminescence: Inexplicable blue fluorescence observed for dendrimers, macromolecules and small molecular structures lacking traditional/conventional luminophores. Prog. Polym. Sci. 2019, 90, 35–117. [Google Scholar] [CrossRef]
- Sun, B.; Tao, K.; Jia, Y.; Yan, X.; Zou, Q.; Gazit, E.; Li, J. Photoactive properties of supramolecular assembled short peptides. Chem. Soc. Rev. 2019, 48, 4387–4400. [Google Scholar] [CrossRef] [PubMed]
- Ivana, S.; Margherita, B.; Gaetano, I.; Clara, I. Intrinsic blue-green fluorescence in amyloyd fibrils. AIMS Biophys. 2018, 5, 155–165. [Google Scholar]
- Villar-Piqué, A.; Schmitz, M.; Candelise, N.; Ventura, S.; Llorens, F.; Zerr, I. Molecular and Clinical Aspects of Protein Aggregation Assays in Neurodegenerative Diseases. Mol. Neurobiol. 2018, 55, 7588–7605. [Google Scholar] [CrossRef] [PubMed]
- Apter, B.; Lapshina, N.; Handelman, A.; Fainberg, B.D.; Rosenman, G. Peptide Nanophotonics: From Optical Waveguiding to Precise Medicine and Multifunctional Biochips. Small 2018, 14, e1801147. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J.H.; Lee, J.S.; Park, C.B. Beta-Sheet-Forming, Self-Assembled Peptide Nanomaterials towards Optical, Energy, and Healthcare Applications. Small 2015, 11, 3623–3640. [Google Scholar] [CrossRef]
- Kaminski, C.F.; Kaminski Schierle, G.S. Probing amyloid protein aggregation with optical superresolution methods: From the test tube to models of disease. Neurophotonics 2016, 3, 041807. [Google Scholar] [CrossRef]
- Chan, F.T.; Kaminski Schierle, G.S.; Kumita, J.R.; Bertoncini, C.W.; Dobson, C.M.; Kaminski, C.F. Protein amyloids develop an intrinsic fluorescence signature during aggregation. Analyst 2013, 138, 2156–2162. [Google Scholar] [CrossRef]
- Homchaudhuri, L.; Swaminathan, R. Near Ultraviolet Absorption Arising from Lysine Residues in Close Proximity: A Probe to Monitor Protein Unfolding and Aggregation in Lysine-Rich Proteins. Bull. Chem. Soc. Jpn. 2004, 77, 765–769. [Google Scholar] [CrossRef]
- Homchaudhuri, L.; Swaminathan, R. Novel Absorption and Fluorescence Characteristics of L-Lysine. Chem. Lett. 2001, 30, 844–845. [Google Scholar] [CrossRef]
- Sirangelo, I.; Malmo, C.; Iannuzzi, C.; Mezzogiorno, A.; Bianco, M.R.; Papa, M.; Irace, G. Fibrillogenesis and cytotoxic activity of the amyloid-forming apomyoglobin mutant W7FW14F. J. Biol. Chem. 2004, 279, 13183–13189. [Google Scholar] [CrossRef]
- Fandrich, M.; Forge, V.; Buder, K.; Kittler, M.; Dobson, C.M.; Diekmann, S. Myoglobin forms amyloid fibrils by association of unfolded polypeptide segments. Proc. Natl. Acad. Sci. USA 2003, 100, 15463–15468. [Google Scholar] [CrossRef] [PubMed]
- Pansieri, J.; Josserand, V.; Lee, S.J.; Rongier, A.; Imbert, D.; Sallanon, M.M.; Kövari, E.; Dane, T.G.; Vendrely, C.; Chaix-Pluchery, O.; et al. Ultraviolet–visible–near-infrared optical properties of amyloid fibrils shed light on amyloidogenesis. Nat. Photonics 2019, 13, 473–479. [Google Scholar] [CrossRef]
- Johansson, P.K.; Koelsch, P. Label-free imaging of amyloids using their intrinsic linear and nonlinear optical properties. Biomed. Opt. Express 2017, 8, 743–756. [Google Scholar] [CrossRef]
- Rao, S.C.; Rao, C.M. Red edge excitation shifts of crystallins and intact lenses. A study of segmental mobility and inter-protein interactions. FEBS Lett. 1994, 337, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Diaferia, C.; Schiattarella, C.; Gallo, E.; Della Ventura, B.; Morelli, G.; Velotta, R.; Vitagliano, L.; Accardo, A. Fluorescence Emission of Self-assembling Amyloid-like Peptides: Solution versus Solid State. ChemPhysChem 2021, 22, 2215–2221. [Google Scholar] [CrossRef]
- Diaferia, C.; Roviello, V.; Morelli, G.; Accardo, A. Self-Assembly of PEGylated Diphenylalanines into Photoluminescent Fibrillary Aggregates. ChemPhysChem 2019, 20, 2774–2782. [Google Scholar] [CrossRef]
- Shukla, A.; Mukherjee, S.; Sharma, S.; Agrawal, V.; Radha Kishan, K.V.; Guptasarma, P. A novel UV laser-induced visible blue radiation from protein crystals and aggregates: Scattering artifacts or fluorescence transitions of peptide electrons delocalized through hydrogen bonding? Arch. Biochem. Biophys. 2004, 428, 144–153. [Google Scholar] [CrossRef]
- Guptasarma, P. Solution-state characteristics of the ultraviolet A-induced visible fluorescence from proteins. Arch. Biochem. Biophys. 2008, 478, 127–129. [Google Scholar] [CrossRef]
- Borana, M.S.; Mishra, P.; Pissurlenkar, R.R.; Hosur, R.V.; Ahmad, B. Curcumin and kaempferol prevent lysozyme fibril formation by modulating aggregation kinetic parameters. Biochim. Biophys. Acta 2014, 1844, 670–680. [Google Scholar] [CrossRef]
- Tikhonova, T.N.; Rovnyagina, N.R.; Zherebker, A.Y.; Sluchanko, N.N.; Rubekina, A.A.; Orekhov, A.S.; Nikolaev, E.N.; Fadeev, V.V.; Uversky, V.N.; Shirshin, E.A. Dissection of the deep-blue autofluorescence changes accompanying amyloid fibrillation. Arch. Biochem. Biophys. 2018, 651, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Ziaunys, M.; Sneideris, T.; Smirnovas, V. Exploring the potential of deep-blue autofluorescence for monitoring amyloid fibril formation and dissociation. PeerJ 2019, 7, e7554. [Google Scholar] [CrossRef] [PubMed]
- Jesus, C.S.H.; Soares, H.T.; Piedade, A.P.; Cortes, L.; Serpa, C. Using amyloid autofluorescence as a biomarker for lysozyme aggregation inhibition. Analyst 2021, 146, 2383–2391. [Google Scholar] [CrossRef] [PubMed]
- Grelich-Mucha, M.; Lipok, M.; Rozycka, M.; Samoc, M.; Olesiak-Banska, J. One- and Two-Photon Excited Autofluorescence of Lysozyme Amyloids. J. Phys. Chem. Lett. 2022, 13, 4673–4681. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhu, L.; Feng, J.; Zhang, H.; Zhang, X.; Sun, J.Z.; Tang, B.Z. In situ monitoring of protein aggregation via clusteroluminescence. Mater. Chem. Front. 2023, 7, 713–719. [Google Scholar] [CrossRef]
- Tcherkasskaya, O. Photo-activity induced by amyloidogenesis. Protein Sci. 2007, 16, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Pinotsi, D.; Buell, A.K.; Dobson, C.M.; Kaminski Schierle, G.S.; Kaminski, C.F. A label-free, quantitative assay of amyloid fibril growth based on intrinsic fluorescence. ChemBioChem 2013, 14, 846–850. [Google Scholar] [CrossRef]
- Palazzi, L.; Leri, M.; Cesaro, S.; Stefani, M.; Bucciantini, M.; Polverino de Laureto, P. Insight into the molecular mechanism underlying the inhibition of alpha-synuclein aggregation by hydroxytyrosol. Biochem. Pharmacol. 2020, 173, 113722. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.W.; Stephens, A.D.; Ward, E.; Feng, Y.; Davis, M.J.; Kaminski, C.F.; Kaminski Schierle, G.S. Label-Free Characterization of Amyloids and Alpha-Synuclein Polymorphs by Exploiting Their Intrinsic Fluorescence Property. Anal. Chem. 2022, 94, 5367–5374. [Google Scholar] [CrossRef]
- Lu, Y.; Lim, L.; Tan, Y.; Wang, L.; Song, J. Mechanisms of self-assembly and fibrillization of the prion-like domains. bioRxiv 2016. [Google Scholar] [CrossRef]
- Lim, L.; Wei, Y.; Lu, Y.; Song, J. ALS-Causing Mutations Significantly Perturb the Self-Assembly and Interaction with Nucleic Acid of the Intrinsically Disordered Prion-Like Domain of TDP-43. PLoS Biol. 2016, 14, e1002338. [Google Scholar] [CrossRef]
- Obstarczyk, P.; Lipok, M.; Grelich-Mucha, M.; Samoc, M.; Olesiak-Banska, J. Two-Photon Excited Polarization-Dependent Autofluorescence of Amyloids as a Label-Free Method of Fibril Organization Imaging. J. Phys. Chem. Lett. 2021, 12, 1432–1437. [Google Scholar] [CrossRef] [PubMed]
- Lapshina, N.; Shishkin, I.I.; Nandi, R.; Noskov, R.E.; Barhom, H.; Joseph, S.; Apter, B.; Ellenbogen, T.; Natan, A.; Ginzburg, P.; et al. Bioinspired Amyloid Nanodots with Visible Fluorescence. Adv. Opt. Mater. 2019, 7, 1801400. [Google Scholar] [CrossRef]
- Hecker, L.; Wang, W.; Mela, I.; Fathi, S.; Poudel, C.; Soavi, G.; Huang, Y.Y.S.; Kaminski, C.F. Guided Assembly and Patterning of Intrinsically Fluorescent Amyloid Fibers with Long-Range Order. Nano Lett. 2021, 21, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Almohammadi, H.; Probst, J.; Mezzenga, R. Plasmonic Amyloid Tactoids. Adv. Mater. 2021, 33, e2106155. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Bhowmik, S.; Singh, A.K.; Kodgire, P.; Das, A.K.; Mukherjee, T.K. Direct Evidence of Intrinsic Blue Fluorescence from Oligomeric Interfaces of Human Serum Albumin. Langmuir 2017, 33, 10606–10615. [Google Scholar] [CrossRef]
- Saha, S.; Deep, S. Switch in the aggregation pathway of bovine serum albumin mediated by electrostatic interactions. J. Phys. Chem. B 2014, 118, 9155–9166. [Google Scholar] [CrossRef]
- Banerjee, S.; Maity, S.; Chakraborti, A.S. Methylglyoxal-induced modification causes aggregation of myoglobin. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 155, 1–10. [Google Scholar] [CrossRef]
- Fricano, A.; Librizzi, F.; Rao, E.; Alfano, C.; Vetri, V. Blue autofluorescence in protein aggregates "lighted on" by UV induced oxidation. Biochim. Biophys. Acta Proteins Proteom. 2019, 1867, 140258. [Google Scholar] [CrossRef]
- Gambucci, M.; Aluigi, A.; Seri, M.; Sotgiu, G.; Zampini, G.; Donnadio, A.; Torreggiani, A.; Zamboni, R.; Latterini, L.; Posati, T. Effect of Chemically Engineered Au/Ag Nanorods on the Optical and Mechanical Properties of Keratin Based Films. Front. Chem. 2020, 8, 158. [Google Scholar] [CrossRef]
- de Faria e Silva, A.L.; Elcoroaristizabal, S.; Ryder, A.G. Multi-attribute quality screening of immunoglobulin G using polarized Excitation Emission Matrix spectroscopy. Anal. Chim. Acta 2020, 1101, 99–110. [Google Scholar] [CrossRef]
- Reddy, S.T.; Uversky, V.N.; Costa-Filho, A.J. Nucleation-dependent amyloid fibrillation of human GRASP55 in aqueous solution. Eur. Biophys. J. 2020, 49, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Smaldone, G.; Caruso, D.; Sandomenico, A.; Iaccarino, E.; Foca, A.; Ruggiero, A.; Ruvo, M.; Vitagliano, L. Members of the GADD45 Protein Family Show Distinct Propensities to form Toxic Amyloid-Like Aggregates in Physiological Conditions. Int. J. Mol. Sci. 2021, 22, 10700. [Google Scholar] [CrossRef] [PubMed]
- De, D.; Pawar, N.; Gupta, A.N. Electric field-driven conformational changes in the elastin protein. Phys. Chem. Chem. Phys. 2021, 23, 4195–4204. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, E.; Bezara, P.; Ozyhar, A. Deep blue autofluorescence reveals the instability of human transthyretin. Int. J. Biol. Macromol. 2021, 191, 492–499. [Google Scholar] [CrossRef]
- Wieczorek, E.; Wygralak, Z.; Kedracka-Krok, S.; Bezara, P.; Bystranowska, D.; Dobryszycki, P.; Ozyhar, A. Deep blue autofluorescence reflects the oxidation state of human transthyretin. Redox Biol. 2022, 56, 102434. [Google Scholar] [CrossRef]
- Mignon, J.; Mottet, D.; Verrillo, G.; Matagne, A.; Perpete, E.A.; Michaux, C. Revealing Intrinsic Disorder and Aggregation Properties of the DPF3a Zinc Finger Protein. ACS Omega 2021, 6, 18793–18801. [Google Scholar] [CrossRef]
- Mignon, J.; Mottet, D.; Leyder, T.; Uversky, V.N.; Perpete, E.A.; Michaux, C. Structural characterisation of amyloidogenic intrinsically disordered zinc finger protein isoforms DPF3b and DPF3a. Int. J. Biol. Macromol. 2022, 218, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Leyder, T.; Mignon, J.; Mottet, D.; Michaux, C. Unveiling the Metal-Dependent Aggregation Properties of the C-terminal Region of Amyloidogenic Intrinsically Disordered Protein Isoforms DPF3b and DPF3a. Int. J. Mol. Sci. 2022, 23, 15291. [Google Scholar] [CrossRef]
- Pennacchio, A.; Giampaolo, F.; Piccialli, F.; Cuomo, S.; Notomista, E.; Spinelli, M.; Amoresano, A.; Piscitelli, A.; Giardina, P. A machine learning-enhanced biosensor for mercury detection based on an hydrophobin chimera. Biosens. Bioelectron. 2022, 196, 113696. [Google Scholar] [CrossRef]
- Mendes, L.F.S.; Batista, M.R.B.; Kava, E.; Bleicher, L.; Micheletto, M.C.; Costa-Filho, A.J. Resurrecting Golgi proteins to grasp Golgi ribbon formation and self-association under stress. Int. J. Biol. Macromol. 2022, 194, 264–275. [Google Scholar] [CrossRef]
- Del Mercato, L.L.; Pompa, P.P.; Maruccio, G.; Della Torre, A.; Sabella, S.; Tamburro, A.M.; Cingolani, R.; Rinaldi, R. Charge transport and intrinsic fluorescence in amyloid-like fibrils. Proc. Natl. Acad. Sci. USA 2007, 104, 18019–18024. [Google Scholar] [CrossRef] [PubMed]
- Monti, A.; Bruckmann, C.; Blasi, F.; Ruvo, M.; Vitagliano, L.; Doti, N. Amyloid-like Prep1 peptides exhibit reversible blue-green-red fluorescence in vitro and in living cells. Chem. Commun. 2021, 57, 3720–3723. [Google Scholar] [CrossRef] [PubMed]
- Doti, N.; Monti, A.; Bruckmann, C.; Calvanese, L.; Smaldone, G.; Caporale, A.; Falcigno, L.; D’Auria, G.; Blasi, F.; Ruvo, M.; et al. Identification and characterization of cytotoxic amyloid-like regions in human Pbx-regulating protein-1. Int. J. Biol. Macromol. 2020, 163, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Luo, W.; Ma, H.; Peng, Q.; Yuan, W.Z.; Zhang, Y. Prevalent intrinsic emission from nonaromatic amino acids and poly(amino acids). Sci. China Chem. 2018, 61, 351–359. [Google Scholar] [CrossRef]
- Diaferia, C.; Sibillano, T.; Balasco, N.; Giannini, C.; Roviello, V.; Vitagliano, L.; Morelli, G.; Accardo, A. Hierarchical Analysis of Self-Assembled PEGylated Hexaphenylalanine Photoluminescent Nanostructures. Chemistry 2016, 22, 16586–16597. [Google Scholar] [CrossRef]
- Diaferia, C.; Sibillano, T.; Altamura, D.; Roviello, V.; Vitagliano, L.; Giannini, C.; Morelli, G.; Accardo, A. Structural Characterization of PEGylated Hexaphenylalanine Nanostructures Exhibiting Green Photoluminescence Emission. Chemistry 2017, 23, 14039–14048. [Google Scholar] [CrossRef]
- Avitabile, C.; Diaferia, C.; Roviello, V.; Altamura, D.; Giannini, C.; Vitagliano, L.; Accardo, A.; Romanelli, A. Fluorescence and Morphology of Self-Assembled Nucleobases and Their Diphenylalanine Hybrid Aggregates. Chemistry 2019, 25, 14850–14857. [Google Scholar] [CrossRef]
- Grelich-Mucha, M.; Garcia, A.M.; Torbeev, V.; Ozga, K.; Berlicki, L.; Olesiak-Banska, J. Autofluorescence of Amyloids Determined by Enantiomeric Composition of Peptides. J. Phys. Chem. B 2021, 125, 5502–5510. [Google Scholar] [CrossRef]
- Sharpe, S.; Simonetti, K.; Yau, J.; Walsh, P. Solid-State NMR characterization of autofluorescent fibrils formed by the elastin-derived peptide GVGVAGVG. Biomacromolecules 2011, 12, 1546–1555. [Google Scholar] [CrossRef] [PubMed]
- Nepovimova, E.; Svobodova, L.; Dolezal, R.; Hepnarova, V.; Junova, L.; Jun, D.; Korabecny, J.; Kucera, T.; Gazova, Z.; Motykova, K.; et al. Tacrine—Benzothiazoles: Novel class of potential multitarget anti-Alzheimers drugs dealing with cholinergic, amyloid and mitochondrial systems. Bioorg. Chem. 2021, 107, 104596. [Google Scholar] [CrossRef] [PubMed]
- Pinotsi, D.; Grisanti, L.; Mahou, P.; Gebauer, R.; Kaminski, C.F.; Hassanali, A.; Kaminski Schierle, G.S. Proton Transfer and Structure-Specific Fluorescence in Hydrogen Bond-Rich Protein Structures. J. Am. Chem. Soc. 2016, 138, 3046–3057. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Khatun, S.; Nath Gupta, A. Simultaneous Detection of Tyrosine and Structure-Specific Intrinsic Fluorescence in the Fibrillation of Alzheimer’s Associated Peptides. ChemPhysChem 2020, 21, 2585–2598. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, A.; Forbes, S.; Birch, D.J.S.; Vyshemirsky, V.; Rolinski, O.J. Detecting beta-amyloid glycation by intrinsic fluorescence—Understanding the link between diabetes and Alzheimer’s disease. Arch. Biochem. Biophys. 2021, 704, 108886. [Google Scholar] [CrossRef]
- Jong, K.H.; Azar, Y.T.; Grisanti, L.; Stephens, A.D.; Jones, S.T.E.; Credgington, D.; Kaminski Schierle, G.S.; Hassanali, A. Low energy optical excitations as an indicator of structural changes initiated at the termini of amyloid proteins. Phys. Chem. Chem. Phys. 2019, 21, 23931–23942. [Google Scholar] [CrossRef] [PubMed]
- Schiattarella, C.; Diaferia, C.; Gallo, E.; Della Ventura, B.; Morelli, G.; Vitagliano, L.; Velotta, R.; Accardo, A. Solid-state optical properties of self-assembling amyloid-like peptides with different charged states at the terminal ends. Sci. Rep. 2022, 12, 759. [Google Scholar] [CrossRef]
- Khatun, S.; Singh, A.; Pawar, N.; Gupta, A.N. Aggregation of amylin: Spectroscopic investigation. Int. J. Biol. Macromol. 2019, 133, 1242–1248. [Google Scholar] [CrossRef]
- Rodriguez Camargo, D.C.; Garg, D.; Buday, K.; Franko, A.; Rodriguez Camargo, A.; Schmidt, F.; Cox, S.J.; Suladze, S.; Haslbeck, M.; Mideksa, Y.G.; et al. hIAPP forms toxic oligomers in plasma. Chem. Commun. 2018, 54, 5426–5429. [Google Scholar] [CrossRef]
- Natarajan, A.; Rangan, K.; Vadrevu, R. Self-assembly of a peptide sequence, EKKE, composed of exclusively charged amino acids: Role of charge in morphology and lead binding. J. Pept. Sci. 2023, 29, e3451. [Google Scholar] [CrossRef]
- Venanzi, M.; Savioli, M.; Cimino, R.; Gatto, E.; Palleschi, A.; Ripani, G.; Cicero, D.; Placidi, E.; Orvieto, F.; Bianchi, E. A spectroscopic and molecular dynamics study on the aggregation process of a long-acting lipidated therapeutic peptide: The case of semaglutide. Soft Matter 2020, 16, 10122–10131. [Google Scholar] [CrossRef]
- Kong, J.; Zhang, J.; Wang, Y.; Qi, W.; Rao, H.; Hu, L.; Su, R.; He, Z. Bioinspired pH-Sensitive Fluorescent Peptidyl Nanoparticles for Cell Imaging. ACS Appl. Mater. Interfaces 2020, 12, 4212–4220. [Google Scholar] [CrossRef]
- Sun, L.; Li, A.; Hu, Y.; Li, Y.; Shang, L.; Zhang, L. Self-Assembled Fluorescent and Antibacterial GHK-Cu Nanoparticles for Wound Healing Applications. Part. Part. Syst. Charact. 2019, 36, 1800420. [Google Scholar] [CrossRef]
- Florio, D.; Di Natale, C.; Scognamiglio, P.L.; Leone, M.; La Manna, S.; Di Somma, S.; Netti, P.A.; Malfitano, A.M.; Marasco, D. Self-assembly of bio-inspired heterochiral peptides. Bioorg. Chem. 2021, 114, 105047. [Google Scholar] [CrossRef] [PubMed]
- Di Natale, C.; La Manna, S.; Malfitano, A.M.; Di Somma, S.; Florio, D.; Scognamiglio, P.L.; Novellino, E.; Netti, P.A.; Marasco, D. Structural insights into amyloid structures of the C-terminal region of nucleophosmin 1 in type A mutation of acute myeloid leukemia. Biochim. Biophys. Acta Proteins Proteom. 2019, 1867, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Nikitin, T.; Kopyl, S.; Shur, V.Y.; Kopelevich, Y.V.; Kholkin, A.L. Low-temperature photoluminescence in self-assembled diphenylalanine microtubes. Phys. Lett. A 2016, 380, 1658–1662. [Google Scholar] [CrossRef]
- Handelman, A.; Kuritz, N.; Natan, A.; Rosenman, G. Reconstructive Phase Transition in Ultrashort Peptide Nanostructures and Induced Visible Photoluminescence. Langmuir 2016, 32, 2847–2862. [Google Scholar] [CrossRef]
- Lapshina, N.; Jeffet, J.; Rosenman, G.; Ebenstein, Y.; Ellenbogen, T. Single Fluorescent Peptide Nanodots. ACS Photonics 2019, 6, 1626–1631. [Google Scholar] [CrossRef]
- Apter, B.; Lapsker, I.; Inberg, A.; Rosenman, G. Photon Recycling Effect and Lossless Fluorescence Propagation in β-Sheet Peptide Fibers. Adv. Opt. Mater. 2022, 10, 2102342. [Google Scholar] [CrossRef]
- Apter, B.; Lapshina, N.; Handelman, A.; Rosenman, G. Light waveguiding in bioinspired peptide nanostructures. J. Pept. Sci. 2019, 25, e3164. [Google Scholar] [CrossRef]
- Handelman, A.; Lapshina, N.; Apter, B.; Rosenman, G. Peptide Integrated Optics. Adv. Mater. 2018, 30, 1705776. [Google Scholar] [CrossRef]
- Amdursky, N.; Molotskii, M.; Gazit, E.; Rosenman, G. Elementary building blocks of self-assembled peptide nanotubes. J. Am. Chem. Soc. 2010, 132, 15632–15636. [Google Scholar] [CrossRef]
- Forlano, N.; Bucci, R.; Contini, A.; Venanzi, M.; Placidi, E.; Gelmi, M.L.; Lettieri, R.; Gatto, E. Non-Conventional Peptide Self-Assembly into a Conductive Supramolecular Rope. Nanomaterials 2023, 13, 333. [Google Scholar] [CrossRef] [PubMed]
- Sivagnanam, S.; Das, K.; Basak, M.; Mahata, T.; Stewart, A.; Maity, B.; Das, P. Self-assembled dipeptide based fluorescent nanoparticles as a platform for developing cellular imaging probes and targeted drug delivery chaperones. R. Soc. Chem. 2022, 4, 1694–1706. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, R.; Moretti, L.; Maiuri, M.; Romanazzi, T.; Cerullo, G.; Gelain, F. Superior mechanical and optical properties of a heterogeneous library of cross-linked biomimetic self-assembling peptides. Mater. Des. 2020, 194, 108901. [Google Scholar] [CrossRef]
- Apter, B.; Fainberg, B.; Handelman, A.; Lapsker, I.; Accardo, A.; Diaferia, C.; Morelli, G.; Rosenman, G. Long-Range Fluorescence Propagation in Amyloidogenic β-Sheet Films and Fibers. Adv. Opt. Mater. 2020, 8, 2000056. [Google Scholar] [CrossRef]
- Basavalingappa, V.; Bera, S.; Xue, B.; O’Donnell, J.; Guerin, S.; Cazade, P.A.; Yuan, H.; Haq, E.U.; Silien, C.; Tao, K.; et al. Diphenylalanine-Derivative Peptide Assemblies with Increased Aromaticity Exhibit Metal-like Rigidity and High Piezoelectricity. ACS Nano 2020, 14, 7025–7037. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Sun, L.; Huang, Y.; Wang, Y.; Zhang, M. Bioinspired fluorescent dipeptide nanoparticles for targeted cancer cell imaging and real-time monitoring of drug release. Nat. Nanotechnol. 2016, 11, 388–394. [Google Scholar] [CrossRef]
- Ye, X.; Hedenqvist, M.S.; Langton, M.; Lendel, C. On the role of peptide hydrolysis for fibrillation kinetics and amyloid fibril morphology. RSC Adv. 2018, 8, 6915–6924. [Google Scholar] [CrossRef]
- Liao, P.; Zang, S.; Wu, T.; Jin, H.; Wang, W.; Huang, J.; Tang, B.Z.; Yan, Y. Generating circularly polarized luminescence from clusterization-triggered emission using solid phase molecular self-assembly. Nat. Commun. 2021, 12, 5496. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, W.; Dang, D.; Zhang, H.; Sun, J.Z.; Tang, B.Z. The role of amide (n,π∗) transitions in polypeptide clusteroluminescence. Cell Rep. Phys. Sci. 2022, 3, 100716. [Google Scholar] [CrossRef]
- Ye, R.; Liu, Y.; Zhang, H.; Su, H.; Zhang, Y.; Xu, L.; Hu, R.; Kwok, R.T.K.; Wong, K.S.; Lam, J.W.Y.; et al. Non-conventional fluorescent biogenic and synthetic polymers without aromatic rings. Polym. Chem. 2017, 8, 1722–1727. [Google Scholar] [CrossRef]
- Diaferia, C.; Avitabile, C.; Leone, M.; Gallo, E.; Saviano, M.; Accardo, A.; Romanelli, A. Diphenylalanine Motif Drives Self-Assembling in Hybrid PNA-Peptide Conjugates. Chemistry 2021, 27, 14307–14316. [Google Scholar] [CrossRef] [PubMed]
- Amdursky, N.; Molotskii, M.; Aronov, D.; Adler-Abramovich, L.; Gazit, E.; Rosenman, G. Blue luminescence based on quantum confinement at peptide nanotubes. Nano Lett. 2009, 9, 3111–3115. [Google Scholar] [CrossRef] [PubMed]
- Handelman, A.; Natan, A.; Rosenman, G. Structural and optical properties of short peptides: Nanotubes-to-nanofibers phase transformation. J. Pept. Sci. 2014, 20, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Manchineella, S.; Govindaraju, T. Molecular Self-Assembly of Cyclic Dipeptide Derivatives and Their Applications. ChemPlusChem 2017, 82, 88–106. [Google Scholar] [CrossRef] [PubMed]
- Amdursky, N.; Koren, I.; Gazit, E.; Rosenman, G. Adjustable photoluminescence of peptide nanotubes coatings. J. Nanosci. Nanotechnol. 2011, 11, 9282–9286. [Google Scholar] [CrossRef]
- Tao, K.; Fan, Z.; Sun, L.; Makam, P.; Tian, Z.; Ruegsegger, M.; Shaham-Niv, S.; Hansford, D.; Aizen, R.; Pan, Z.; et al. Quantum confined peptide assemblies with tunable visible to near-infrared spectral range. Nat. Commun. 2018, 9, 3217. [Google Scholar] [CrossRef] [PubMed]
- Tao, K.; Hu, W.; Xue, B.; Chovan, D.; Brown, N.; Shimon, L.J.W.; Maraba, O.; Cao, Y.; Tofail, S.A.M.; Thompson, D.; et al. Bioinspired Stable and Photoluminescent Assemblies for Power Generation. Adv. Mater. 2019, 31, e1807481. [Google Scholar] [CrossRef]
- Yan, X.; Su, Y.; Li, J.; Fruh, J.; Mohwald, H. Uniaxially oriented peptide crystals for active optical waveguiding. Angew. Chem. Int. Ed. Engl. 2011, 50, 11186–11191. [Google Scholar] [CrossRef]
- Niyangoda, C.; Miti, T.; Breydo, L.; Uversky, V.; Muschol, M. Carbonyl-based blue autofluorescence of proteins and amino acids. PLoS ONE 2017, 12, e0176983. [Google Scholar] [CrossRef]
- Handelman, A.; Lapsker, I.; Jacob, A.; Laikhtman, A. Passive Polarized Light Guiding and Thermally Induced Visible Fluorescence in Histidine Microstructures with Optical Switching Function. Adv. Funct. Mater. 2021, 31, 2008183. [Google Scholar] [CrossRef]
- Arnon, Z.A.; Kreiser, T.; Yakimov, B.; Brown, N.; Aizen, R.; Shaham-Niv, S.; Makam, P.; Qaisrani, M.N.; Poli, E.; Ruggiero, A.; et al. On-off transition and ultrafast decay of amino acid luminescence driven by modulation of supramolecular packing. iScience 2021, 24, 102695. [Google Scholar] [CrossRef] [PubMed]
- Stephens, A.D.; Qaisrani, M.N.; Ruggiero, M.T.; Díaz Mirón, G.; Morzan, U.N.; González Lebrero, M.C.; Jones, S.T.E.; Poli, E.; Bond, A.D.; Woodhams, P.J.; et al. Short hydrogen bonds enhance nonaromatic protein-related fluorescence. Proc. Natl. Acad. Sci. USA 2021, 118, e2020389118. [Google Scholar] [CrossRef] [PubMed]
- Shaham-Niv, S.; Arnon, Z.A.; Sade, D.; Lichtenstein, A.; Shirshin, E.A.; Kolusheva, S.; Gazit, E. Intrinsic Fluorescence of Metabolite Amyloids Allows Label-Free Monitoring of Their Formation and Dynamics in Live Cells. Angew. Chem. Int. Ed. Engl. 2018, 57, 12444–12447. [Google Scholar] [CrossRef] [PubMed]
- Cossu, F.L.; Poddighe, M.; Stagi, L.; Anedda, R.; Innocenzi, P. The Birth of Fluorescence from Thermally Polymerized Glycine. Macro Mol. Chem. Phys. 2022, 223, 2200052. [Google Scholar] [CrossRef]
- Singh, P.; Wangoo, N.; Sharma, R.K. Phenylalanine dimer assembly structure as the basic building block of an amyloid like photoluminescent nanofibril network. Soft Matter 2020, 16, 4105–4109. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer: Boston, MA, USA, 2006; ISBN 978-0-387-31278-1. [Google Scholar]
- Grisanti, L.; Sapunar, M.; Hassanali, A.; Doslic, N. Toward Understanding Optical Properties of Amyloids: A Reaction Path and Nonadiabatic Dynamics Study. J. Am. Chem. Soc. 2020, 142, 18042–18049. [Google Scholar] [CrossRef]
- Diaz Mirón, G.; Semelak, J.A.; Grisanti, L.; Rodriguez, A.; Conti, I.; Stella, M.; Seriani, N.; Došlić, N.; Rivalta, I.; Garavelli, M.; et al. The “Carbonyl-Lock” Mechanism Underlying Non-Aromatic Fluorescence in Biological Matter. ChemRxiv 2023. [Google Scholar] [CrossRef]
- Chen, Y.; Orr, A.A.; Tao, K.; Wang, Z.; Ruggiero, A.; Shimon, L.J.W.; Schnaider, L.; Goodall, A.; Rencus-Lazar, S.; Gilead, S.; et al. High-Efficiency Fluorescence through Bioinspired Supramolecular Self-Assembly. ACS Nano 2020, 14, 2798–2807. [Google Scholar] [CrossRef]
- Yuan, Y.; Solin, N. Mechanochemical Preparation and Self-Assembly of Protein:Dye Hybrids for White Luminescence. ACS Appl. Polym. Mater 2021, 3, 4825–4836. [Google Scholar] [CrossRef]
- Prasad, S.; Mandal, I.; Singh, S.; Paul, A.; Mandal, B.; Venkatramani, R.; Swaminathan, R. Near UV-Visible electronic absorption originating from charged amino acids in a monomeric protein. Chem. Sci. 2017, 8, 5416–5433. [Google Scholar] [CrossRef]
- Orr, A.A.; Chen, Y.; Gazit, E.; Tamamis, P. Computational and Experimental Protocols to Study Cyclo-dihistidine Self- and Co-assembly: Minimalistic Bio-assemblies with Enhanced Fluorescence and Drug Encapsulation Properties. Methods Mol. Biol. 2022, 2405, 179–203. [Google Scholar]
- Kumar, A.; Ahari, D.; Priyadarshi, A.; Ziauddin Ansari, M.; Swaminathan, R. Weak Intrinsic Luminescence in Monomeric Proteins Arising from Charge Recombination. J. Phys. Chem. B 2020, 124, 2731–2746. [Google Scholar] [CrossRef] [PubMed]
- Espinar-Barranco, L.; Paredes, J.M.; Orte, A.; Crovetto, L.; Garcia-Fernandez, E. A solvatofluorochromic dye as a fluorescent lifetime-based probe of β-amyloid aggregation. Dye. Pigment. 2022, 202, 110274. [Google Scholar] [CrossRef]
- Esbjorner, E.K.; Chan, F.; Rees, E.; Erdelyi, M.; Luheshi, L.M.; Bertoncini, C.W.; Kaminski, C.F.; Dobson, C.M.; Kaminski Schierle, G.S. Direct observations of amyloid beta self-assembly in live cells provide insights into differences in the kinetics of Abeta(1-40) and Abeta(1-42) aggregation. Chem. Biol. 2014, 21, 732–742. [Google Scholar] [CrossRef] [PubMed]
- Aliyan, A.; Cook, N.P.; Marti, A.A. Interrogating Amyloid Aggregates using Fluorescent Probes. Chem. Rev. 2019, 119, 11819–11856. [Google Scholar] [CrossRef]
- Roviello, G.N.; Vicidomini, C.; Costanzo, V.; Roviello, V. Nucleic acid binding and other biomedical properties of artificial oligolysines. Int. J. Nanomed. 2016, 11, 5897–5904. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Zhou, L.F.; Li, Y.K.; Chen, S.B.; Yan, J.W.; Zhang, L. In vivo near-infrared fluorescence imaging of amyloid-beta plaques with a dicyanoisophorone-based probe. Anal. Chim. Acta 2017, 961, 112–118. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balasco, N.; Diaferia, C.; Rosa, E.; Monti, A.; Ruvo, M.; Doti, N.; Vitagliano, L. A Comprehensive Analysis of the Intrinsic Visible Fluorescence Emitted by Peptide/Protein Amyloid-like Assemblies. Int. J. Mol. Sci. 2023, 24, 8372. https://doi.org/10.3390/ijms24098372
Balasco N, Diaferia C, Rosa E, Monti A, Ruvo M, Doti N, Vitagliano L. A Comprehensive Analysis of the Intrinsic Visible Fluorescence Emitted by Peptide/Protein Amyloid-like Assemblies. International Journal of Molecular Sciences. 2023; 24(9):8372. https://doi.org/10.3390/ijms24098372
Chicago/Turabian StyleBalasco, Nicole, Carlo Diaferia, Elisabetta Rosa, Alessandra Monti, Menotti Ruvo, Nunzianna Doti, and Luigi Vitagliano. 2023. "A Comprehensive Analysis of the Intrinsic Visible Fluorescence Emitted by Peptide/Protein Amyloid-like Assemblies" International Journal of Molecular Sciences 24, no. 9: 8372. https://doi.org/10.3390/ijms24098372
APA StyleBalasco, N., Diaferia, C., Rosa, E., Monti, A., Ruvo, M., Doti, N., & Vitagliano, L. (2023). A Comprehensive Analysis of the Intrinsic Visible Fluorescence Emitted by Peptide/Protein Amyloid-like Assemblies. International Journal of Molecular Sciences, 24(9), 8372. https://doi.org/10.3390/ijms24098372