Therapeutic Peptides for Treatment of Lung Diseases: Infection, Fibrosis, and Cancer
Abstract
:1. Introduction
2. Therapeutic Peptides for Lung Infections
2.1. NF-κB Signaling Pathway
2.2. NLRP3 Inflammasome
2.3. Other Mechanisms
3. Peptides for Lung Fibrosis
3.1. NF-κB Signaling Pathway
3.2. TGF-β Signaling Pathway
3.3. RXFP1/LGR7 Receptor Pathway
3.4. Oxidative Stress
3.5. Extracellular Matrix Component
4. Peptides for Lung Cancer
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferkol, T.; Schraufnagel, D. The global burden of respiratory disease. Ann. Am. Thorac. Soc. 2014, 11, 404–406. [Google Scholar] [CrossRef] [PubMed]
- Collaborators, G.C.R.D. Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. Respir. Med. 2020, 8, 585–596. [Google Scholar] [CrossRef]
- Zhang, L.; Gallo, R. Antimicrobial peptides. Curr. Biol. 2016, 26, R14–R19. [Google Scholar] [CrossRef] [PubMed]
- Cookson, W.O.; Cox, M.J.; Moffatt, M.F. New opportunities for managing acute and chronic lung infections. Nat. Rev. Microbiol. 2018, 16, 111–120. [Google Scholar] [CrossRef]
- Molchanova, N.; Hansen, P.; Franzyk, H. Advances in Development of Antimicrobial Peptidomimetics as Potential Drugs. Molecules 2017, 22, 1430. [Google Scholar] [CrossRef]
- Haddar, H.; Aziz, G.; Al-Gelawi, M. Optimization of bacitracin production by Bacillus licheniformis B5. Pak. J. Biol. Sci. PJBS 2007, 10, 972–976. [Google Scholar] [CrossRef]
- Rabanal, F.; Cajal, Y. Recent advances and perspectives in the design and development of polymyxins. Nat. Prod. Rep. 2017, 34, 886–908. [Google Scholar] [CrossRef]
- Ware, L.; Matthay, M. The acute respiratory distress syndrome. N. Engl. J. Med. 2000, 342, 1334–1349. [Google Scholar] [CrossRef]
- Eisner, M.; Thompson, T.; Hudson, L.; Luce, J.; Hayden, D.; Schoenfeld, D.; Matthay, M. Efficacy of low tidal volume ventilation in patients with different clinical risk factors for acute lung injury and the acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2001, 164, 231–236. [Google Scholar] [CrossRef]
- Rincon, F.; Ghosh, S.; Dey, S.; Maltenfort, M.; Vibbert, M.; Urtecho, J.; McBride, W.; Moussouttas, M.; Bell, R.; Ratliff, J.; et al. Impact of acute lung injury and acute respiratory distress syndrome after traumatic brain injury in the United States. Neurosurgery 2012, 71, 795–803. [Google Scholar] [CrossRef]
- Matute-Bello, G.; Frevert, C.; Martin, T. Animal models of acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 2008, 295, L379–L399. [Google Scholar] [CrossRef] [PubMed]
- Jing, W.; Chunhua, M.; Shumin, W. Effects of acteoside on lipopolysaccharide-induced inflammation in acute lung injury via regulation of NF-κB pathway in vivo and in vitro. Toxicol. Appl. Pharmacol. 2015, 285, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Zhu, C.; Liao, Y.; Gao, Y.; Lu, G.; Zhong, W.; Zheng, Y.; Chen, W.; Ci, X. Tenuigenin ameliorates acute lung injury by inhibiting NF-κB and MAPK signalling pathways. Respir. Physiol. Neurobiol. 2015, 216, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Dolinay, T.; Kim, Y.; Howrylak, J.; Hunninghake, G.; An, C.; Fredenburgh, L.; Massaro, A.; Rogers, A.; Gazourian, L.; Nakahira, K.; et al. Inflammasome-regulated cytokines are critical mediators of acute lung injury. Am. J. Respir. Crit. Care Med. 2012, 185, 1225–1234. [Google Scholar] [CrossRef]
- Huang, J.; Li, L.; Yuan, W.; Zheng, L.; Guo, Z.; Huang, W. NEMO-Binding Domain Peptide Attenuates Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting the NF-κB Signaling Pathway. Mediat. Inflamm. 2016, 2016, 7349603. [Google Scholar] [CrossRef]
- Zheng, H.; Liang, W.; He, W.; Huang, C.; Chen, Q.; Yi, H.; Long, L.; Deng, Y.; Zeng, M. Ghrelin attenuates sepsis-induced acute lung injury by inhibiting the NF-κB, iNOS, and Akt signaling in alveolar macrophages. Am. J. Physiol. Lung Cell. Mol. Physiol. 2019, 317, L381–L391. [Google Scholar] [CrossRef]
- Zhou, X.; Xue, C. Ghrelin attenuates acute pancreatitis-induced lung injury and inhibits substance P expression. Am. J. Med. Sci. 2010, 339, 49–54. [Google Scholar] [CrossRef]
- Liao, W.; Wu, S.; Wu, G.; Pao, H.; Tang, S.; Huang, K.; Chu, S. Ac2-26, an Annexin A1 Peptide, Attenuates Ischemia-Reperfusion-Induced Acute Lung Injury. Int. J. Mol. Sci. 2017, 18, 1771. [Google Scholar] [CrossRef]
- Qin, X.; Zhu, G.; Huang, L.; Zhang, W.; Huang, Y.; Xi, X. LL-37 and its analog FF/CAP18 attenuate neutrophil migration in sepsis-induced acute lung injury. J. Cell. Biochem. 2019, 120, 4863–4871. [Google Scholar] [CrossRef]
- Nojiri, T.; Hosoda, H.; Tokudome, T.; Miura, K.; Ishikane, S.; Kimura, T.; Shintani, Y.; Inoue, M.; Sawabata, N.; Miyazato, M.; et al. Atrial natriuretic peptide inhibits lipopolysaccharide-induced acute lung injury. Pulm. Pharmacol. Ther. 2014, 29, 24–30. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, C.; Duan, J.; Li, Q.; Yang, H.; Sun, C.; Zhang, J.; Luo, X.; Liu, S. Vasoactive intestinal peptide suppresses the NLRP3 inflammasome activation in lipopolysaccharide-induced acute lung injury mice and macrophages. Biomed. Pharmacother. 2020, 121, 109596. [Google Scholar] [CrossRef]
- Zhou, F.; Zhang, Y.; Chen, J.; Hu, X.; Xu, Y. Liraglutide attenuates lipopolysaccharide-induced acute lung injury in mice. Eur. J. Pharmacol. 2016, 791, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Li, C.; Zhang, X.; Ye, C.; Tang, S.; Zhang, W.; Sun, J.; Huang, N.; Wen, F.; Wang, D.; et al. GLP-1 Analogue Liraglutide Enhances SP-A Expression in LPS-Induced Acute Lung Injury through the TTF-1 Signaling Pathway. Mediat. Inflamm. 2018, 2018, 3601454. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wei, G.; Wang, J.; Zhu, J.; Yu, M.; Zeng, X.; Wang, H.; Xie, W.; Kong, H. Glucagon-like peptide-1 receptor activation alleviates lipopolysaccharide-induced acute lung injury in mice via maintenance of endothelial barrier function. Lab. Investig. 2019, 99, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.; Dodia, C.; Chatterjee, S.; Feinstein, S. A Peptide Inhibitor of NADPH Oxidase (NOX2) Activation Markedly Decreases Mouse Lung Injury and Mortality Following Administration of Lipopolysaccharide (LPS). Int. J. Mol. Sci. 2019, 20, 2395. [Google Scholar] [CrossRef]
- Kimura, T.; Nojiri, T.; Hosoda, H.; Ishikane, S.; Shintani, Y.; Inoue, M.; Miyazato, M.; Okumura, M.; Kangawa, K. C-type natriuretic peptide attenuates lipopolysaccharide-induced acute lung injury in mice. J. Surg. Res. 2015, 194, 631–637. [Google Scholar] [CrossRef]
- Song, Z.; Cui, Y.; Ding, M.; Jin, H.; Gao, Y. Protective effects of recombinant human brain natriuretic peptide against LPS-Induced acute lung injury in dogs. Int. Immunopharmacol. 2013, 17, 508–512. [Google Scholar] [CrossRef]
- Song, Z.; Zhao, X.; Gao, Y.; Liu, M.; Hou, M.; Jin, H.; Cui, Y. Recombinant human brain natriuretic peptide ameliorates trauma-induced acute lung injury via inhibiting JAK/STAT signaling pathway in rats. J. Trauma Acute Care Surg. 2015, 78, 980–987. [Google Scholar] [CrossRef]
- Elder, A.; Bersten, A.; Saccone, G.; Dixon, D. Prevention and amelioration of rodent endotoxin-induced lung injury with administration of a novel therapeutic tripeptide feG. Pulm. Pharmacol. Ther. 2013, 26, 167–171. [Google Scholar] [CrossRef]
- Dong, H.; Shan, F.; Sun, Q.; Yang, B.; Li, C. The cyclic hexapeptide AcF attenuates sepsis-induced acute lung injury and mortality in rats. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 2727–2735. [Google Scholar]
- May, M.; D’Acquisto, F.; Madge, L.; Glöckner, J.; Pober, J.; Ghosh, S. Selective inhibition of NF-kappaB activation by a peptide that blocks the interaction of NEMO with the IkappaB kinase complex. Science 2000, 289, 1550–1554. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Morand, E.; Leech, M. Annexin A1: Potential for glucocorticoid sparing in RA. Nat. Rev. Rheumatol. 2013, 9, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Kahlenberg, J.; Kaplan, M. Little peptide, big effects: The role of LL-37 in inflammation and autoimmune disease. J. Immunol. 2013, 191, 4895–4901. [Google Scholar] [CrossRef] [PubMed]
- Dürr, U.; Sudheendra, U.; Ramamoorthy, A. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim. Biophys. Acta 2006, 1758, 1408–1425. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Wu, X.; Zhang, W.; Xiao, M. Glucagon Like Peptide-1 (GLP-1) modulates OVA-Induced airway inflammation and mucus secretion involving a protein kinase A (PKA)-dependent nuclear factor-κB (NF-κB) signaling pathway in mice. Int. J. Mol. Sci. 2015, 16, 20195–20211. [Google Scholar] [CrossRef]
- Steven, S.; Jurk, K.; Kopp, M.; Kröller-Schön, S.; Mikhed, Y.; Schwierczek, K.; Roohani, S.; Kashani, F.; Oelze, M.; Klein, T.; et al. Glucagon-like peptide-1 receptor signalling reduces microvascular thrombosis, nitro-oxidative stress and platelet activation in endotoxaemic mice. Br. J. Pharmacol. 2017, 174, 1620–1632. [Google Scholar] [CrossRef]
- Bao, Y.; Jiang, L.; Chen, H.; Zou, J.; Liu, Z.; Shi, Y. The neuroprotective effect of liraglutide is mediated by glucagon-like peptide 1 receptor-mediated activation of cAMP/PKA/CREB pathway. Cell Physiol. Biochem. 2015, 36, 2366–2378. [Google Scholar] [CrossRef]
- Rifai, Y.; Elder, A.; Carati, C.; Hussey, D.; Li, X.; Woods, C.; Schloithe, A.; Thomas, A.; Mathison, R.; Davison, J.; et al. The tripeptide analog feG ameliorates severity of acute pancreatitis in a caerulein mouse model. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 294, G1094–G1099. [Google Scholar] [CrossRef]
- Elder, A.; Bersten, A.; Saccone, G.; Dixon, D. Tripeptide feG prevents and ameliorates acute pancreatitis-associated acute lung injury in a rodent model. Chest 2013, 143, 371–378. [Google Scholar] [CrossRef]
- Elder, A.; Bersten, A.; Saccone, G.; Bonder, C.; Dixon, D. Prevention and Amelioration of Rodent Ventilation-Induced Lung Injury with Either Prophylactic or Therapeutic feG Administration. Lung 2019, 197, 671–680. [Google Scholar] [CrossRef]
- Pottier, N.; Cauffiez, C.; Perrais, M.; Barbry, P.; Mari, B. FibromiRs: Translating molecular discoveries into new anti-fibrotic drugs. Trends Pharmacol. Sci. 2014, 35, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Thannickal, V.; Toews, G.; White, E.; Lynch, J.; Martinez, F. Mechanisms of pulmonary fibrosis. Annu. Rev. Med. 2004, 55, 395–417. [Google Scholar] [CrossRef] [PubMed]
- Martinez, F.; Collard, H.; Pardo, A.; Raghu, G.; Richeldi, L.; Selman, M.; Swigris, J.; Taniguchi, H.; Wells, A. Idiopathic pulmonary fibrosis. Nat. Rev. Dis. Prim. 2017, 3, 17074. [Google Scholar] [CrossRef] [PubMed]
- Wuyts, W.; Agostini, C.; Antoniou, K.; Bouros, D.; Chambers, R.; Cottin, V.; Egan, J.; Lambrecht, B.; Lories, R.; Parfrey, H.; et al. The pathogenesis of pulmonary fibrosis: A moving target. Eur. Respir. J. 2013, 41, 1207–1218. [Google Scholar] [CrossRef] [PubMed]
- George, P.; Wells, A. Pirfenidone for the treatment of idiopathic pulmonary fibrosis. Expert Rev. Clin. Pharmacol. 2017, 10, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Richeldi, L.; Collard, H.; Jones, M. Idiopathic pulmonary fibrosis. Lancet 2017, 389, 1941–1952. [Google Scholar] [CrossRef] [PubMed]
- Samuel, C.; Royce, S.; Hewitson, T.; Denton, K.; Cooney, T.; Bennett, R. Anti-fibrotic actions of relaxin. Br. J. Pharmacol. 2017, 174, 962–976. [Google Scholar] [CrossRef]
- Kimura, T.; Nojiri, T.; Hino, J.; Hosoda, H.; Miura, K.; Shintani, Y.; Inoue, M.; Zenitani, M.; Takabatake, H.; Miyazato, M.; et al. C-type natriuretic peptide ameliorates pulmonary fibrosis by acting on lung fibroblasts in mice. Respir. Res. 2016, 17, 19. [Google Scholar] [CrossRef]
- Okamoto, A.; Nojiri, T.; Konishi, K.; Tokudome, T.; Miura, K.; Hosoda, H.; Hino, J.; Miyazato, M.; Kyomoto, Y.; Asai, K.; et al. Atrial natriuretic peptide protects against bleomycin-induced pulmonary fibrosis via vascular endothelial cells in mice : ANP for pulmonary fibrosis. Respir. Res. 2017, 18, 1. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ji, X.; Yao, W.; Pan, H.; Li, P.; Liu, Y.; Yuan, J.; Xu, Q.; Ni, C. M10 peptide attenuates silica-induced pulmonary fibrosis by inhibiting Smad2 phosphorylation. Toxicol. Appl. Pharmacol. 2019, 376, 46–57. [Google Scholar] [CrossRef]
- Conte, E.; Fagone, E.; Gili, E.; Fruciano, M.; Iemmolo, M.; Pistorio, M.; Impellizzeri, D.; Cordaro, M.; Cuzzocrea, S.; Vancheri, C. Preventive and therapeutic effects of thymosin β4 N-terminal fragment Ac-SDKP in the bleomycin model of pulmonary fibrosis. Oncotarget 2016, 7, 33841–33854. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Yan, Z.; Bu, L.; An, C.; Deng, B.; Zhang, J.; Rao, J.; Cheng, L.; Zhang, J.; Zhang, B.; et al. Protective effect of peptide DR8 on bleomycin-induced pulmonary fibrosis by regulating the TGF-β/MAPK signaling pathway and oxidative stress. Toxicol. Appl. Pharmacol. 2019, 382, 114703. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yu, D.; Wang, M.; Huang, T.; Wu, H.; Zhang, Y.; Zhang, T.; Wang, W.; Yin, J.; Ren, G.; et al. FGF21 attenuates pulmonary fibrogenesis through ameliorating oxidative stress in vivo and in vitro. Biomed. Pharmacother. 2018, 103, 1516–1525. [Google Scholar] [CrossRef] [PubMed]
- Chiang, H.; Chu, P.; Lee, T. R1R2 peptide ameliorates pulmonary fibrosis in mice through fibrocyte migration and differentiation. PLoS ONE 2017, 12, e0185811. [Google Scholar] [CrossRef] [PubMed]
- Nishimoto, T.; Mlakar, L.; Takihara, T.; Feghali-Bostwick, C. An endostatin-derived peptide orally exerts anti-fibrotic activity in a murine pulmonary fibrosis model. Int. Immunopharmacol. 2015, 28, 1102–1105. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Gou, S.; Chen, H.; Chen, Z. The Study of the Effect and Mechanism of Glucagon Like Peptide-1 in Bleomycin-induced Pulmonary Fibrosis in Mice. Sichuan Da Xue Xue Bao. Yi Xue Ban 2017, 48, 509–514. [Google Scholar]
- Zhao, S.; Zuo, W.; Chen, H.; Bao, T.; Liu, X.; Sun, T.; Wang, S. Effects of pilose antler peptide on bleomycin-induced pulmonary fibrosis in mice. Biomed. Pharmacother. 2019, 109, 2078–2083. [Google Scholar] [CrossRef]
- Rago, F.; Melo, E.; Kraemer, L.; Galvão, I.; Cassali, G.; Santos, R.; Russo, R.; Teixeira, M. Effect of preventive or therapeutic treatment with angiotensin 1-7 in a model of bleomycin-induced lung fibrosis in mice. J. Leukoc. Biol. 2019, 106, 677–686. [Google Scholar] [CrossRef]
- Pini, A.; Shemesh, R.; Samuel, C.; Bathgate, R.; Zauberman, A.; Hermesh, C.; Wool, A.; Bani, D.; Rotman, G. Prevention of bleomycin-induced pulmonary fibrosis by a novel antifibrotic peptide with relaxin-like activity. J. Pharmacol. Exp. Ther. 2010, 335, 589–599. [Google Scholar] [CrossRef]
- Del Ry, S. C-type natriuretic peptide: A new cardiac mediator. Peptides 2013, 40, 93–98. [Google Scholar] [CrossRef]
- Nishikimi, T.; Maeda, N.; Matsuoka, H. The role of natriuretic peptides in cardioprotection. Cardiovasc. Res. 2006, 69, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Nishikimi, T.; Inaba-Iemura, C.; Ishimura, K.; Tadokoro, K.; Koshikawa, S.; Ishikawa, K.; Akimoto, K.; Hattori, Y.; Kasai, K.; Minamino, N.; et al. Natriuretic peptide/natriuretic peptide receptor-A (NPR-A) system has inhibitory effects in renal fibrosis in mice. Regul. Pept. 2009, 154, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, I.; Tokudome, T.; Horio, T.; Garbers, D.; Nakao, K.; Kangawa, K. Natriuretic peptide signaling via guanylyl cyclase (GC)-A: An endogenous protective mechanism of the heart. Curr. Cardiol. Rev. 2009, 5, 45–51. [Google Scholar] [CrossRef]
- Kasama, S.; Furuya, M.; Toyama, T.; Ichikawa, S.; Kurabayashi, M. Effect of atrial natriuretic peptide on left ventricular remodelling in patients with acute myocardial infarction. Eur. Heart J. 2008, 29, 1485–1494. [Google Scholar] [CrossRef] [PubMed]
- Cavasin, M.; Rhaleb, N.; Yang, X.; Carretero, O. Prolyl oligopeptidase is involved in release of the antifibrotic peptide Ac-SDKP. Hypertension 2004, 43, 1140–1145. [Google Scholar] [CrossRef]
- Conte, E.; Iemmolo, M.; Fruciano, M.; Fagone, E.; Gili, E.; Genovese, T.; Esposito, E.; Cuzzocrea, S.; Vancheri, C. Effects of thymosin β4 and its N-terminal fragment Ac-SDKP on TGF-β-treated human lung fibroblasts and in the mouse model of bleomycin-induced lung fibrosis. Expert Opin. Biol. Ther. 2015, 15, 211–221. [Google Scholar] [CrossRef]
- Fisher, F.; Maratos-Flier, E. Understanding the Physiology of FGF21. Annu. Rev. Physiol. 2016, 78, 223–241. [Google Scholar] [CrossRef]
- Wynn, T. Cellular and molecular mechanisms of fibrosis. J. Pathol. 2008, 214, 199–210. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X. Separation, antitumor activities, and encapsulation of polypeptide from Chlorella pyrenoidosa. Biotechnol. Prog. 2013, 29, 681–687. [Google Scholar] [CrossRef]
- Smith, L.; Brown, K.; Carthew, P.; Lim, C.; Martin, E.; Styles, J.; White, I. Chemoprevention of breast cancer by tamoxifen: Risks and opportunities. Crit. Rev. Toxicol. 2000, 30, 571–594. [Google Scholar] [CrossRef]
- Mulder, K.; Lima, L.; Miranda, V.; Dias, S.; Franco, O. Current scenario of peptide-based drugs: The key roles of cationic antitumor and antiviral peptides. Front. Microbiol. 2013, 4, 321. [Google Scholar] [CrossRef] [PubMed]
- Thundimadathil, J. Cancer treatment using peptides: Current therapies and future prospects. J. Amino Acids 2012, 2012, 967347. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Sun, L.; Zhou, G.; Xie, P.; Ye, J. Sepia ink oligopeptide induces apoptosis and growth inhibition in human lung cancer cells. Oncotarget 2017, 8, 23202–23212. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, C.; Zhou, G.; Ye, J.; Yin, R.; Feng, D.; Zhang, S.; Wang, X.; Zhao, X.; Zhang, Z. Sepia Ink Oligopeptide Induces Apoptosis of Lung Cancer Cells via Mitochondrial Pathway. Cell. Physiol. Biochem. 2018, 45, 2095–2106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Yan, Y.; Wang, J.; Dong, X.; Zhang, G.; Zeng, Y.; Liu, Z. An Anti-Cancer Peptide LVTX-8 Inhibits the Proliferation and Migration of Lung Tumor Cells by Regulating Causal Genes’ Expression in p53-Related Pathways. Toxins 2020, 12, 367. [Google Scholar] [CrossRef]
- Huang, C.; Huang, H.; Forrest, M.; Pan, Y.; Wu, W.; Chen, H. Inhibition effect of a custom peptide on lung tumors. PLoS ONE 2014, 9, e109174. [Google Scholar] [CrossRef]
- Hu, C.; Chen, X.; Huang, Y.; Chen, Y. Synergistic effect of the pro-apoptosis peptide kla-TAT and the cationic anticancer peptide HPRP-A1. Apoptosis 2018, 23, 132–142. [Google Scholar] [CrossRef]
- Wang, M.; Du, Y.; Huang, H.; Zhu, Z.; Du, S.; Chen, S.; Zhao, H.; Yan, Z. Silk fibroin peptide suppresses proliferation and induces apoptosis and cell cycle arrest in human lung cancer cells. Acta Pharmacol. Sin. 2019, 40, 522–529. [Google Scholar] [CrossRef]
- Yu, S.; Koo, H.; Lee, S.; Kang, J.; Han, Y.; Yeom, Y.; Lee, D. A Synthetic CPP33-Conjugated HOXA9 Active Domain Peptide Inhibits Invasion Ability of Non-Small Lung Cancer Cells. Biomolecules 2020, 10, 1589. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, N.; Ma, M.; Huang, H.; Handley, M.; Bai, X.; Shan, F. Methionine enkephalin (MENK) suppresses lung cancer by regulating the Bcl-2/Bax/caspase-3 signaling pathway and enhancing natural killer cell-driven tumor immunity. Int. Immunopharmacol. 2021, 98, 107837. [Google Scholar] [CrossRef]
- Prateep, A.; Sumkhemthong, S.; Suksomtip, M.; Chanvorachote, P.; Chaotham, C. Peptides extracted from edible mushroom: Lentinus squarrosulus induces apoptosis in human lung cancer cells. Pharm. Biol. 2017, 55, 1792–1799. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhou, D.; Cui, B.; Zhang, C.; Tan, F.; Chang, S.; Li, K.; Lv, X.; Zhang, X.; Shang, S.; et al. Disruption of the EGFR-SQSTM1 interaction by a stapled peptide suppresses lung cancer via activating autophagy and inhibiting EGFR signaling. Cancer Lett. 2020, 474, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.; Wang, Z.; Wang, Q.; Wang, Y.; Huang, Z.; Su, N.; Jin, M.; Kuang, L.; Qi, H.; Ni, Z.; et al. A novel FGFR1-binding peptide exhibits anti-tumor effect on lung cancer by inhibiting proliferation and angiogenesis. Int. J. Biol. Sci. 2018, 14, 1389–1398. [Google Scholar] [CrossRef]
- Chen, C.; Statt, S.; Chiu, C.; Thai, P.; Arif, M.; Adler, K.; Wu, R. Targeting myristoylated alanine-rich C kinase substrate phosphorylation site domain in lung cancer. Mechanisms and therapeutic implications. Am. J. Respir. Crit. Care Med. 2014, 190, 1127–1138. [Google Scholar] [CrossRef] [PubMed]
- Simmons, T.; Andrianasolo, E.; McPhail, K.; Flatt, P.; Gerwick, W. Marine natural products as anticancer drugs. Mol. Cancer Ther. 2005, 4, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Xie, Y.; Ye, S.; He, K.; Yi, L.; Cui, R. Spider peptide toxin lycosin-I induces apoptosis and inhibits migration of prostate cancer cells. Exp. Biol. Med. 2018, 243, 725–735. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, J.; Yan, Y.; Chen, B.; Liu, B.; Jian, C.; Zhu, B.; Liang, S.; Zeng, Y.; Liu, Z. Arginine modification of lycosin-I to improve inhibitory activity against cancer cells. Org. Biomol. Chem. 2017, 15, 9379–9388. [Google Scholar] [CrossRef]
- Hultmark, D.; Engström, A.; Bennich, H.; Kapur, R.; Boman, H. Insect immunity: Isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae. Eur. J. Biochem. 1982, 127, 207–217. [Google Scholar] [CrossRef]
- Wang, W.; Smith, D.; Chen, H. The effect of pH on the structure, binding and model membrane lysis by cecropin B and analogs. Biochim. Biophys. Acta 1999, 1473, 418–430. [Google Scholar] [CrossRef]
- Srisailam, S.; Kumar, T.; Arunkumar, A.; Leung, K.; Yu, C.; Chen, H. Crumpled structure of the custom hydrophobic lytic peptide cecropin B3. Eur. J. Biochem. 2001, 268, 4278–4284. [Google Scholar] [CrossRef]
- Srisailam, S.; Arunkumar, A.; Wang, W.; Yu, C.; Chen, H. Conformational study of a custom antibacterial peptide cecropin B1: Implications of the lytic activity. Biochim. Biophys. Acta 2000, 1479, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Cruciani, R.; Barker, J.; Zasloff, M.; Chen, H.; Colamonici, O. Antibiotic magainins exert cytolytic activity against transformed cell lines through channel formation. Proc. Natl. Acad. Sci. USA 1991, 88, 3792–3796. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Clayton, A.; Wang, W.; Sawyer, W. Kinetics of membrane lysis by custom lytic peptides and peptide orientations in membrane. Eur. J. Biochem. 2001, 268, 1659–1669. [Google Scholar] [CrossRef]
- Zhang, N.; Fu, J.; Chou, T. Synergistic combination of microtubule targeting anticancer fludelone with cytoprotective panaxytriol derived from panax ginseng against MX-1 cells in vitro: Experimental design and data analysis using the combination index method. Am. J. Cancer Res. 2016, 6, 97–104. [Google Scholar] [PubMed]
- Koskimaki, J.; Lee, E.; Chen, W.; Rivera, C.; Rosca, E.; Pandey, N.; Popel, A. Synergy between a collagen IV mimetic peptide and a somatotropin-domain derived peptide as angiogenesis and lymphangiogenesis inhibitors. Angiogenesis 2013, 16, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Zhaorigetu, S.; Sasaki, M.; Watanabe, H.; Kato, N. Supplemental silk protein, sericin, suppresses colon tumorigenesis in 1,2-dimethylhydrazine-treated mice by reducing oxidative stress and cell proliferation. Biosci. Biotechnol. Biochem. 2001, 65, 2181–2186. [Google Scholar] [CrossRef]
- Kaewkorn, W.; Limpeanchob, N.; Tiyaboonchai, W.; Pongcharoen, S.; Sutheerawattananonda, M. Effects of silk sericin on the proliferation and apoptosis of colon cancer cells. Biol. Res. 2012, 45, 45–50. [Google Scholar] [CrossRef]
- Bhatlekar, S.; Fields, J.; Boman, B. HOX genes and their role in the development of human cancers. J. Mol. Med. 2014, 92, 811–823. [Google Scholar] [CrossRef]
- Son, J.; Jeong, K.; Jean, W.; Park, S.; Jheon, S.; Cho, H.; Park, C.; Lee, H.; Kang, J. Genome-wide combination profiling of DNA copy number and methylation for deciphering biomarkers in non-small cell lung cancer patients. Cancer Lett. 2011, 311, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.; Kim, K.; Kim, J.; Kim, H.; Lee, M.; Lee, C.; Lee, S.; Oh, T.; An, S. Detection of HOXA9 gene methylation in tumor tissues and induced sputum samples from primary lung cancer patients. Clin. Chem. Lab. Med. 2011, 49, 699–704. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Lee, D.; Sohn, H.; Lee, S.; Jeon, H.; Lee, J.; Park, C.; Lee, H.; Yeom, Y.; Son, J.; et al. Homeobox A9 directly targeted by miR-196b regulates aggressiveness through nuclear Factor-kappa B activity in non-small cell lung cancer cells. Mol. Carcinog. 2016, 55, 1915–1926. [Google Scholar] [CrossRef]
- Zhang, Q.; Bi, J.; Zheng, X.; Chen, Y.; Wang, H.; Wu, W.; Wang, Z.; Wu, Q.; Peng, H.; Wei, H.; et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat. Immunol. 2018, 19, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, C.; Chen, S.; Huang, H.; Ghanta, V.; Hiramoto, R. Activation of mu-opioid receptors are required for the conditioned enhancement of NK cell activity. Brain Res. 1996, 737, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Moscat, J.; Karin, M.; Diaz-Meco, M. p62 in Cancer: Signaling Adaptor Beyond Autophagy. Cell 2016, 167, 606–609. [Google Scholar] [CrossRef] [PubMed]
- Waghu, F.; Gopi, L.; Barai, R.; Ramteke, P.; Nizami, B.; Idicula-Thomas, S. CAMP: Collection of sequences and structures of antimicrobial peptides. Nucleic Acids Res. 2014, 42, D1154–D1158. [Google Scholar] [CrossRef]
- Lima, B.; Ricci, M.; Garro, A.; Juhász, T.; Szigyártó, I.; Papp, Z.; Feresin, G.; Garcia de la Torre, J.; Lopez Cascales, J.; Fülöp, L.; et al. New short cationic antibacterial peptides. Synthesis, biological activity and mechanism of action. Biochim. Biophys. Acta. Biomembr. 2021, 1863, 183665. [Google Scholar] [CrossRef]
- Rotem, S.; Mor, A. Antimicrobial peptide mimics for improved therapeutic properties. Biochim. Biophys. Acta 2009, 1788, 1582–1592. [Google Scholar] [CrossRef]
- Hu, J.; Chen, C.; Zhang, S.; Zhao, X.; Xu, H.; Zhao, X.; Lu, J. Designed antimicrobial and antitumor peptides with high selectivity. Biomacromolecules 2011, 12, 3839–3843. [Google Scholar] [CrossRef]
- Kang, H.; Kim, C.; Seo, C.; Park, Y. The therapeutic applications of antimicrobial peptides (AMPs): A patent review. J. Microbiol. 2017, 55, 1–12. [Google Scholar] [CrossRef]
- Renan, M. How many mutations are required for tumorigenesis? Implications from human cancer data. Mol. Carcinog. 1993, 7, 139–146. [Google Scholar] [CrossRef]
- Anselmo, A.; Gokarn, Y.; Mitragotri, S. Non-invasive delivery strategies for biologics. Nat. Rev. Drug Discov. 2019, 18, 19–40. [Google Scholar] [CrossRef] [PubMed]
- Drucker, D. Advances in oral peptide therapeutics. Nat. Rev. Drug Discov. 2020, 19, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Han, Z.; Lv, S.; Chen, C.; Chen, L.; Yin, L.; Cheng, J. Synthetic polypeptides: From polymer design to supramolecular assembly and biomedical application. Chem. Soc. Rev. 2017, 46, 6570–6599. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Cui, Y.; Anderson, C.; Zhang, C.; Li, Y.; Wang, R.; Cui, H. Peptide-based nanoprobes for molecular imaging and disease diagnostics. Chem. Soc. Rev. 2018, 47, 3490–3529. [Google Scholar] [CrossRef] [PubMed]
Peptide | Sequence |
---|---|
Liraglutide | HAEGTFTSDVSSYLEGQAAXEFIAWLVRGRG |
Ghrelin | GSSFLSPEHQRVQQRKESKKPPAKLQPR |
ANP | SLRRSSCFGGRMDRIGAQSGLGCNSFRY |
Ac2-26 | AMVSEFLKQAWFIENEEQEYVQTVK |
LL-37 | LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES |
FF/CAP18 | FRKSKEKIGKFFKRIVQRIFDFLRNLV |
VIP | HSDAVFTDNYTRLRKQMAVKKYLNSILN |
PIP-1 | LYEIKHQIL |
PIP-2 | LHDFRHQIL |
PIP-3 | LYDIRHQIL |
AcF | F-ornithine-PAWR |
FeG | FEG |
CNP | GLSKGCFGLKLDRIGSMSGLGC |
BNP | SPKMVQGSGCFGRKMDRISSSSGLGCKVLRRH |
CGEN25009 | GQKGQVGPPGAAVRRAYAAFSVGRRAYAAFSV |
M10 | TRPASFWETS |
Ac-SDKP | SDKP |
DR8 | DHNNPQIR |
FGF21 | HPIPDSSPLLQFGGQVRQRYLYTDDAQQTEAHLEIREDGTVGGAADQSPESLLQLKALKPG VIQILGVKTSRFLCQRPDGALYGSLHFDPEACSFRELLLEDGYNVYQSEAHGLPLHLPGNK SPHRDPAPRGPARFLPLPGLPPALPEPPGILAPQPPDVGSSDPLSMVGPSQGRSPSYAS |
R1R2 | GLNGENQKEPEQGERGEAGPPLSGLSGNNQGRPSLPGLNGENQKEPEQGERGEAGPP |
Oral E4 | SYCETWRTEAPSATGQASSLLGGRLLGQSAASCHHAYIVLCIENSFMT |
CPP33-HADP | RLWMRWYSP RTRAYGHARSTRKKRCPSGGSTERQVKIWFQNRRMKMKKINK |
HADP | HARSTRKKRCPSGGSTERQVKIWFQNRRMKMKKINK |
LVTX-8 | IWLTALKFLGKNLGKHLAKQQLSKL |
Cecropin B1a | KWKVFKKIEK-KWKVFKKIEKAGPKWKVFKKIEK |
Kla-TAT | KLAKLAKKLAKLAKGGRKKRRQRRR |
HPRP-A1 | FKKLKKLFSKLWNWK |
SAH-EJ2 | RRRHIVRKRTLRRLLQERE |
CSIO | QPK |
R1-P2 | FHDAWPNLSKSS |
Mans | GAQFSKTAAKG EAAAERPGEAAVA |
Peptide | Biological Effects | State Model/Object | Refs |
---|---|---|---|
NF-κB signaling pathway: | |||
NBD | TNF-α, IL-1β↓; IL-6↓; SOD↓; T-AOC activity↓; p-IKK, p-NF-κB, p65↓; NOX↓ | Mice model | [15] |
Ghrelin | TNF-α, IL-1β, IL-6↓; NF-κB, p65↓; p-IκBα↓; iNOS↓, p-Akt↓ | Mice model | [16] |
TNF-α, IL-1, IL-6↓; MPO activity↓; SP↓ | Rat model | [17] | |
Ac2-26 | TNF-α↓; MDA↓; Bcl-2↑; caspase-3↓; p-p38, p-ERK, p-JNK↓; MKP-1↑; p-NF-κB, p65↓; IκΒ-α↑ | Mice model, A549cell | [18] |
LL-37 | IL-6, IL-1β↓; ALT, AST, LDH↓; p-ERK, p-FAK, p-P38↓ | Mice model | [19] |
FF/CAP1 (sLL-37) | |||
ANP | E-selectin↓; TNF-α↓; IL-6, MCP-1, MIP-2, CINC-1↓; p-NF-kB↓ | Mice model, HPAECs | [20] |
NLRP3 inflammasome: | |||
VIP | NLRP3, caspase-1, IL-1β, IL-18↓; TNF-α, IL-17A↓; NOX1, NOX2↓ | Mice model, primary peritoneal macrophages | [21] |
Liraglutide | IL-1β, IL-18↓; MPO activity↓; wet/dry weight ratio↓; NLRP3, ASC, Caspase-1↓ | Mice model | [22] |
TNF-α, IL-6, IL-1β↓; TTF-1, SP-A↑ | Mice model, ATII Cell | [23] | |
Rho/NF-κB signaling↓; TLR4↓; occludin, ZO-1, VE-cadherin↑; ICAM-1, VCAM-1↓ | Mice model, HPMECs | [24] | |
Other mechanisms: | |||
PIP-2 | ROS↓; wet/dry weight ratio↓; cells, BALF↓ | Nox2 null mice | [25] |
CNP | TNF-α, MIP-2, IL-6, MCP-1, KC↓; S100A8, E-selectin↓ | Mice model | [26] |
RhBNP | IL-6, TNL-α↓; MPO, MDA activity↓ | Dog model | [27] |
JAK/STAT pathway↓; STAT1, p-STAT1↓; p-JAK2, STAT3↓ | Rat model | [28] | |
feG | MPO activity, BAL neutrophil infiltration↓ | Mice model | [29] |
AcF | MPO activity, TNF-α, IL-6, IL-1β, MIP-2↓ | Mice model | [30] |
Peptide | Biological Effects | State Model/Object | Refs |
---|---|---|---|
TGF-β signaling pathway: | |||
CNP | TGF-β/Smad2 signaling pathway↓; IL-1β, IL-6, bFGF mRNA↓; collagen 1A mRNA↓ | Mice model, CNP transgenic mice, LFhTERT/GC-B cell | [48] |
ANP | TGF-β/Smad2 signaling pathway↓; IL-6, MCP-1, TIMP1, IL-1β mRNA↓ | Mice model, GC-A overexpressed mice, SVEC/GC-A cell | [49] |
M10 | α-SMA, collagen I, vimentin, fibronectin, CTGF↓; E-cadherin↑; p-Smad2↓ | Mice model, A549, HBE, NIH-3T3, MRC-5 cells | [50] |
Ac-SDKP | IL-17↓; α-SMA↓; TGF-β↓ | Mice model | [51] |
Oxidative stress: | |||
DR8 | TGF-β/MAPK signaling pathway↓; ROS↓; IL-1β, IL-6, TNF-α↓; MCP-1, IL-8↓; HYP, CTGF, MMP-2↓ | Mice model, A549 cell, NIH3T3 cell | [52] |
FGF21 | collagen deposition↓; TGF-β, Col I and α-SMA↓; E-cadherin↓; MDA↓; Nrf-2↑; activity of T-AOC and SOD↑ | Mice model, A549 cell | [53] |
Extracellular matrix component | |||
R1R2 | collagen content↓; collagen type I content↓; myofibroblasts↓; SMAA↓; CXCR4↑; activity of MMP-9↓ | Mice model | [54] |
E4 peptide | Egr-1↓; LOX↓ | Mice model | [55] |
NF-κB signaling pathway: | |||
liraglutide | TGF-β1↓; α-SMA, VCAM-1↓; p-NF-κB, p65/total-NF-κB, p65↓; NF-κB p65 DNA binding activity↓ | Mice model | [56] |
PAP | IL-6, TNF-α, IL-1β↓; Rho, ROCK1, p-IκB, p-NF-κB↓ | Mice model | [57] |
Ang-(1-7) | total leukocytes↓; collagen deposition↓ | Mice model | [58] |
RXFP1/LGR7 Receptor Pathway: | |||
CGEN25009 | collagen deposition↓; MMP-2↑ | Mice model, THP-1 cell | [59] |
Peptide | Biological Effects | State Model/Object | Refs |
---|---|---|---|
CSIO | Bcl-2↓; P53, caspase-3↑ | A549 cells, H1299 cells | [73] |
Bcl-2↓; Bax, Caspase-9, CytoC↑; Drp1↓; Fas, Caspase-8, NIK↑; CHOP, GRP78↑ | A549 cells | [74] | |
LVTX-8 | FHL2, TAF1, MAPK8, ATM, NQO1↑; PLEC, BCAP31, DRNL, BIRC2, FNTA, LMNA, DSG2↓ | A549 cells, H460 cells, nude mice xenograft tumor model | [75] |
CB1a | kill cancer cells, disrupt tumor-like spheroids, inhibit the growth of lung tumors | Normal lung cells: WI-38, MRC-5, HEL-299 cells; NSCLC: A549, NCI-H209, NCI-H460, NCI-H520 cells; SCLC: NCI-H146 cells, nude strain mice | [76] |
kla-TAT and HPRP-A1 | anticancer activity and proliferation inhibition↑; membrane disruption, LDH leakage↑; Mitochondrial depolarization↑; ROS↑ | A549 cells | [77] |
SFP | Bcl-2↓; Bax↑ | A549 cells, H460 cells, tumor-bearing BALB/C | [78] |
HOXA9 | CDH1↑; SNAI2↓ | A549 cells, NCI-H1299 cells | [79] |
MENK | OGFr↓; Bax↑; Bcl-2↓; caspase-3↑ | A549 cells, LLC | [80] |
Lentinus squarrosulus | Bcl-2↓; Bax↑ | H460 cells, H292 cells, H23 cells | [81] |
SAH-EJ2 | LC3Ⅱ↑; EGFR↓ | A549 cells, H460 cells, HCC827 cells, H1975 cells, nude mice xenograft tumor model | [82] |
R1-P2 | FGFR↓; ERK1/2↓ | A549 cells, NCI-H1299 cells, nude mice xenograft tumor model | [83] |
MANS | p-MARCKS↓; AKT/Slug↓; p-PI3K↓; p-AKT↓ | A549 cells, CL1-0 cells, CL1-5 cells, PC9 cells, A549 cells, NCI-H292 cells | [84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Li, Y.; Liu, Y.; Wu, Y.; Wang, Q.; Jin, L.; Zhang, D. Therapeutic Peptides for Treatment of Lung Diseases: Infection, Fibrosis, and Cancer. Int. J. Mol. Sci. 2023, 24, 8642. https://doi.org/10.3390/ijms24108642
Li S, Li Y, Liu Y, Wu Y, Wang Q, Jin L, Zhang D. Therapeutic Peptides for Treatment of Lung Diseases: Infection, Fibrosis, and Cancer. International Journal of Molecular Sciences. 2023; 24(10):8642. https://doi.org/10.3390/ijms24108642
Chicago/Turabian StyleLi, Shujiao, Yuying Li, Ying Liu, Yifan Wu, Qiuyu Wang, Lili Jin, and Dianbao Zhang. 2023. "Therapeutic Peptides for Treatment of Lung Diseases: Infection, Fibrosis, and Cancer" International Journal of Molecular Sciences 24, no. 10: 8642. https://doi.org/10.3390/ijms24108642
APA StyleLi, S., Li, Y., Liu, Y., Wu, Y., Wang, Q., Jin, L., & Zhang, D. (2023). Therapeutic Peptides for Treatment of Lung Diseases: Infection, Fibrosis, and Cancer. International Journal of Molecular Sciences, 24(10), 8642. https://doi.org/10.3390/ijms24108642