Comprehensive Evaluation of Polyaniline-Doped Lignosulfonate in Adsorbing Dye and Heavy Metal Ions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Adsorbent Input, pH, and Initial Concentration on the Adsorption Performance of Dyes and Adsorption Capacity of LS/PANI for Different Dyes
2.2. Adsorption Isotherms and Thermodynamic Analysis
- where Qe—equilibrium adsorption amount, mg/g;
- Ce—equilibrium concentration, mg/L;
- KF—adsorption equilibrium constant;
- n—intensity factor.
- where KL—Langmuir’s constant, L/mg;
- Qm—the maximum adsorption capacity per unit mass of adsorbent, mg/g.
2.3. Effect of Adsorption Temperature on Dye Adsorption Properties and Thermodynamic Analysis
- where R—standard molar constant, 8.314 × 10−3 J/(mol·K);
- ΔG0—Gibbs free energy, kJ/mol;
- ΔS0—standard entropy change, kJ/(mol·K);
- ΔH0—standard enthalpy change, kJ/mol;
- Kd—partition coefficient;
- m—mass of adsorbent, g;
- V—volume of dye solution, L.
2.4. Effect of Adsorption Time on Dye Adsorption Properties and Adsorption Kinetics
- where qe—equilibrium adsorption amount, mg/g;
- k1—adsorption rate constant, min−1;
- qt—adsorption amount at time t, mg/g.
- where qe—equilibrium adsorption amount, mg/g;
- k2—adsorption rate constant in this model, g/mg/min;
- qt—adsorbed amount per unit mass of adsorbent at any adsorption time t, mg/g.
2.5. Mechanism of Adsorption Performance and Recycling Performance
2.6. Adsorption of Heavy Metal Ions by LS/PANI and Comprehensive Performance Evaluation
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Adsorbent Materials
3.3. Characterization and Adsorption Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghaly, A.; Ananthashankar, R.; Alhattab, M.; Ramakrishnan, V. Production, characterization and treatment of textile efuents: A critical review. J. Chem. Eng. Proc. Technol. 2014, 5, 1–18. [Google Scholar]
- Lellis, B.; Fávaro-Polonio, C.Z.; Pamphile, J.A.; Polonio, J.C. Effect of textile dyes on health and the environment and bioremediation potential of living organims. Biotechnol. Res. Innov. 2019, 3, 275–290. [Google Scholar] [CrossRef]
- Myrna, S.; Aida, S.; Herminia, I.P.; Norberto, M.; Maribel, F. Microbial decolouration of azo dyes: A review. Process Biochem. 2012, 47, 1723–1748. [Google Scholar]
- Salvador, C.; Javier, L.; Pablo, C.; Davide, C.; Giacomo, C.; Manuel, A.R.; Marco, P. Removal of procion Red MX-5B dye from wastewater by conductive-diamond electrochemical oxidation. Electrochim. Acta 2018, 263, 1–7. [Google Scholar]
- Said, B.; Souad, M.; Ahmed, E.H. Classifications, properties, recent synthesis and applications of azo dyes. Heliyon 2020, 6, e03271. [Google Scholar]
- Sharma, S.; Sharma, S.; Singh, P.K.; Swami, R.C.; Sharma, K.P. Exploring fish bioassay of textile dye wastewaters and their selected constituents in terms of mortality and erythrocyte disorders. Bull. Environ. Contam. Toxicol. 2009, 83, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Miretzky, P.; Cirelli, A.F. Hg(II) removal from water by chitosan and chitosan derivatives: A review. J. Hazard. Mater. 2009, 167, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.P. Removal of heavy metal ions from industrial wastewater based on chemical precipitation method. Ekoloji 2019, 28, 2443–2452. [Google Scholar]
- Ghoreishi, S.; Haghighi, R. Chemical catalytic reaction and biological oxidation for treatment of non-biodegradable textile effluent. Chem. Eng. J. 2003, 95, 163–169. [Google Scholar] [CrossRef]
- Vanitha, K.; Jibrail, K.; Sie, Y.L. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar]
- Gupta, V.K.; Suhas. Application of low-cost adsorbents for dye removal—A review. J. Environ. Manag. 2009, 90, 2313–2342. [Google Scholar] [CrossRef] [PubMed]
- Nazmul, A.K.; Biswa, N.B.; Sung, H.J. Heteropoly acid-loaded ionic liquid@metal-organic frameworks: Effective and reusable adsorbents for the desulfurization of a liquid model fuel. Chem. Eng. J. 2018, 334, 2215–2221. [Google Scholar]
- Rafiqi, F.A.; Majid, K. Sequestration of methylene blue (MB) dyes from aqueous solution using polyaniline and polyaniline-nitroprusside composite. J. Mater. Sci. 2017, 52, 6506–6524. [Google Scholar] [CrossRef]
- Shen, C.; Zhao, Y.Q.; Li, W.X.; Yang, Y.; Liu, R.B.; Morgen, D. Global profile of heavy metals and semimetals adsorption using drinking water treatment residual. Chem. Eng. J. 2019, 372, 1019–1027. [Google Scholar] [CrossRef]
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 2014, 209, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Nasar, A.; Mashkoor, F. Application of polyaniline-based adsorbents for dye removal from water and wastewater—A review. Environ. Sci. Pollut. R. 2019, 26, 5333–5356. [Google Scholar] [CrossRef] [PubMed]
- Hajjaoui, H.; Soufi, A.; Boumya, W.; Abdennouri, M.; Barka, N. Polyaniline/nanomaterial composites for the removal of heavy metals by adsorption: A review. J. Compos. Sci. 2021, 5, 233. [Google Scholar] [CrossRef]
- Bhadra, S.; Khastgir, D.; Singha, N.K.; Lee, J.H. Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 2009, 34, 783–810. [Google Scholar] [CrossRef]
- Genies, E.M.; Boyle, A.; Lapkowski, M.; Tsintavis, C. Polyaniline: A historical survey. Synth. Met. 1990, 36, 139–182. [Google Scholar] [CrossRef]
- Minisy, I.M.; Salahuddin, N.A.; Ayad, M.M. Chitosan/polyaniline hybrid for the removal of cationic and anionic dyes from aqueous solutions. J. Appl. Polym. Sci. 2019, 136, 47056. [Google Scholar] [CrossRef]
- Ahmad, K. Remediation of anionic dye from aqueous solution through adsorption on polyaniline/FO nanocomposite-modelling by artificial neural network (ANN). J. Mol. Liq. 2022, 360, 119497. [Google Scholar]
- Wang, T.; Jiang, M.W.; Yu, X.L.; Niu, N.; Chen, L.G. Application of lignin adsorbent in wastewater Treatment: A review. Sep. Purif. Technol. 2022, 302, 122116. [Google Scholar] [CrossRef]
- Paola, S.; Bryan, B.; Estefanía, O.; Mauricio, Y.; Xiao, L.P.; Julio, S. Lignin-based adsorbent materials for metal ion removal from wastewater: A review. Ind. Crop. Prod. 2021, 167, 113510. [Google Scholar]
- Chen, H.; Liu, T.; Meng, Y.; Cheng, Y.; Lu, J.; Wang, H. Novel graphene oxide/aminated lignin aerogels for enhanced adsorption of malachite green in wastewater. Colloids Surf. A 2020, 603, 125281. [Google Scholar] [CrossRef]
- Albadarin, A.B.; Collins, M.N.; Naushad, M.; Shirazian, S.; Walker, G.; Mangwandi, C. Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chem. Eng. J. 2017, 307, 264–272. [Google Scholar] [CrossRef]
- Li, C.Z.; Zhao, X.C.; Wang, A.Q.; Huber, G.W.; Zhang, T. Catalytic transformation of lignin for the production of chemicals and fuels. Chem. Rev. 2015, 115, 11559–11624. [Google Scholar] [CrossRef]
- Dianat, N.; Rahmanifar, M.S.; Noori, A.; El-Kady, M.F.; Chang, X.; Kaner, R.B.; Mousavi, M.F. Polyaniline-lignin interpenetrating network for supercapacitive energy storage. Nano Lett. 2021, 21, 9485–9493. [Google Scholar] [CrossRef]
- Seo, J.H.; Choi, C.S.; Bae, J.H.; Jeong, H.; Lee, S.H.; Kim, Y.S. Preparation of a lignin/Polyaniline composite and its application in Cr (VI) removal from aqueous solutions. BioResources 2019, 14, 9169–9182. [Google Scholar] [CrossRef]
- Lu, Q.F.; Luo, J.J.; Lin, T.T.; Zhang, Y.Z. Novel lignin–Poly(N-methylaniline) composite sorbent for silver ion removal and recovery. ACS Sustain. Chem. Eng. 2013, 2, 465–471. [Google Scholar] [CrossRef]
- AL-Othman, Z.A.; Ali, R.; Naushad, M. Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: Adsorption kinetics, equilibrium and thermodynamic studies. Chem. Eng. J. 2012, 184, 238–247. [Google Scholar] [CrossRef]
- Rout, D.R.; Jena, H.M. Chitosan cross-linked polyaniline grafted graphene oxide composite: A new adsorbent to remove phenol and cationic dye from aqueous solutions. Int. J. Environ. Anal. Chem. 2022. [Google Scholar] [CrossRef]
- Aksu, Z. Biosorption of reactive dyes by dried activated sludge: Equilibrium and kinetic modelling. Biochem. Eng. J. 2001, 7, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Yang, C.; Wang, Y.; Su, W.; Wei, Y.; Wu, W. Adsorption Studies on the Removal of Anionic and Cationic Dyes from Aqueous Solutions Using Discarded Masks and Lignin. Molecules 2023, 28, 3349. [Google Scholar] [CrossRef] [PubMed]
- Zair, R.Z.; Alismaeel, Z.T.; Eyssa, M.Y.; M-Ridha, M.J. Optimization, equilibrium, kinetics and thermodynamic study of Congo red dye adsorption from aqueous solutions using Iraqi porcelanite rocks. Heat Mass Transfer 2022, 58, 1393–1410. [Google Scholar] [CrossRef]
- Alsenani, G. Removal of Congo red dye from aqueous solution by date palm leaf base. Am. J. Appl. Sci. 2014, 11, 1553–1557. [Google Scholar] [CrossRef]
- Mehrizad, A.; Behnajady, M.A.; Gharbani, P.; Sabbagh, S. Sonocatalytic degradation of Acid Red 1 by sonochemically synthesized zinc sulfide-titanium dioxide nanotubes: Optimization, kinetics and thermodynamics studies. J. Clean Prod. 2019, 215, 1341–1350. [Google Scholar] [CrossRef]
- Hu, L.; Guang, C.; Liu, Y.; Su, Z.Q.; Gong, S.D.; Yao, Y.J.; Wang, Y.P. Adsorption behavior of dyes from an aqueous solution onto composite magnetic lignin adsorbent. Chemosphere 2020, 246, 125757. [Google Scholar] [CrossRef]
- Asefa, M.T.; Feyisa, G.B.; Ponnusamy, S.K. Comparative Investigation on Two Synthesizing Methods of Zeolites for Removal of Methylene Blue from Aqueous Solution. Int. J. Chem. Eng. 2022, 2022, 9378712. [Google Scholar] [CrossRef]
- Tanzifi, M.; Yaraki, M.T.; Karami, M.; Karimi, S.; Kiadehi, A.D.; Karimipour, K.; Wang, S.B. Modelling of dye adsorption from aqueous solution on polyaniline/carboxymethyl cellulose/TiO2 nanocomposites. J. Colloid Interface Sci. 2018, 519, 154–173. [Google Scholar] [CrossRef]
- Ren, J.P.; Wu, C.W.; Liu, H.; Wu, W.J. Preparation of lignin-polyaniline composites and adsorption of Congo red. Chem. Ind. Eng. Prog. 2023, 42, 3087–3096. [Google Scholar]
- Li, P.H.; Wei, Y.M.; Wu, C.W.; Yang, C.; Jiang, B.; Wu, W.J. Lignin-based composites for high-performance supercapacitor electrode materials. RSC Adv. 2022, 12, 19485–19494. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.F.; Wang, W.J.; Li, M.; Wang, H.F.; Zhao, M.; Wang, C.Y. Preparation of PANI grafted at the edge of graphene oxide sheets and its adsorption of Pb(II) and methylene blue. Polym. Compos. 2018, 39, 1663–1673. [Google Scholar] [CrossRef]
- Li, X.X.; Wan, T.; Lei, Y.; Chen, P.C.; Lu, Z.; Huang, Z.G.; Lu, X.Q.; Gong, S.Y. Research on lead ion adsorption performance of phytic acid doped-polyaniline. China Plast. Ind. 2018, 46, 103–106+126. [Google Scholar]
- Sohni, S.; Hashim, R.; Nidaullah, H.; Lamaming, J.; Sulaiman, O. Chitosan/nano-lignin based composite as a new sorbent for enhanced removal of dye pollution from aqueous solutions. Int. J. Biol. Macromol. 2019, 132, 1304–1317. [Google Scholar] [CrossRef] [PubMed]
- Nair, V.; Panigrahy, A.; Vinu, R. Development of novel chitosan–lignin composites for adsorption of dyes and metal ions from wastewater. Chem. Eng. J. 2014, 254, 491–502. [Google Scholar] [CrossRef]
- Freitas, F.E.D.; Rocha, M.V.P. Study of the performance of lignin from cashew apple bagasse (Anarcadium occidentale L.) as adsorbent for industrial synthetic dye. J. Environ. Chem. Eng. 2023, 13, 110430. [Google Scholar] [CrossRef]
- Chen, T.; Liu, H.C.; Gao, J.; Hu, G.W.; Zhao, Y.; Tang, X.Q.; Han, X.B. Efficient removal of methylene blue by bio-based sodium alginate/lignin composite hydrogel beads. Polymers 2022, 14, 2917. [Google Scholar] [CrossRef]
- Wu, Z.J.; Huang, W.X.; Shan, X.Y.; Li, Z.L. Preparation of a porous graphene oxide/alkali lignin aerogel composite and its adsorption properties for methylene blue. Int. J. Biol. Macromol. 2020, 143, 325–333. [Google Scholar] [CrossRef]
- He, Z.W.; Lv, Q.F.; Zhang, J.Y. Facile preparation of hierarchical polyaniline-lignin composite with a reactive silver-ion adsorbability. ACS Appl. Mater. Interfaces 2012, 4, 369–374. [Google Scholar] [CrossRef]
- Zhou, F.; Feng, X.Z.; Yu, J.G.; Jiang, X.Y. High performance of 3D porous graphene/lignin/sodium alginate composite for adsorption of Cd(II) and Pb(II). Environ. Sci. Pollut. Res. 2018, 25, 15651–15661. [Google Scholar] [CrossRef]
- Jiang, C.L.; Wang, X.H.; Hou, B.X.; Hao, C.; Li, X.; Wu, J.B. Construction of a lignosulfonate-lysine hydrogel for the adsorption of heavy metal ions. J. Agric. Food Chem. 2020, 68, 3050–3060. [Google Scholar] [CrossRef] [PubMed]
- Klapiszewski, L.; Siwinska-Stefanska, K.; Kolodynska, D. Preparation and characterization of novel TiO2/lignin and TiO2-SiO2/lignin hybrids and their use as functional biosorbents for Pb(II). Chem. Eng. J. 2017, 314, 169–181. [Google Scholar] [CrossRef]
- Ciesielczyk, F.; Bartczak, P.; Klapiszewski, L.; Jesionowski, T. Treatment of model and galvanic waste solutions of copper(II) ions using a lignin/inorganic oxide hybrid as an effective sorbent. J. Hazard. Mater. 2017, 328, 150–159. [Google Scholar] [CrossRef] [PubMed]
Samples | Langmuir Isotherm Model | Freundlich Isotherm Model | ||||
---|---|---|---|---|---|---|
(mg·g−1) | R2 | R2 | ||||
PANI | 3.33 × 10−3 | 210.20 | 0.94 | 3.43 | 1.67 | 0.91 |
LS/PANI | 2.76 × 10−3 | 513.36 | 0.98 | 6.11 | 1.57 | 0.96 |
Samples | ||||||||
---|---|---|---|---|---|---|---|---|
283 K | 298 K | 313 K | 328 K | 343 K | 358 K | |||
PANI | 3.66 | 2.85 | 2.03 | 1.22 | 0.41 | −0.41 | 18.99 | 54.17 |
LS/PANI | −3.50 | −4.50 | −5.51 | −6.51 | −7.51 | −8.51 | 15.43 | 66.89 |
Samples | Pseudo-First-Order Kinetic Model | Pseudo-Second-Order Kinetic Model | ||||
---|---|---|---|---|---|---|
(min−1) | R2 | (mg·g−1) | (g·mg−1·min−1) | R2 | ||
PANI | 58.02 | 5.31 × 10−3 | 0.95 | 83.95 | 4.80 × 10−5 | 0.96 |
LS/PANI | 101.55 | 2.35 × 10−2 | 0.71 | 113.70 | 3.02 × 10−4 | 0.90 |
Samples | (mg·g−1·min−0.5) | (mg·g−1) | (mg·g−1·min−0.5) | (mg·g−1) | ||
---|---|---|---|---|---|---|
PANI | 3.51 | −11.40 | 0.96 | −5.60 | 144.11 | 0.83 |
LS/PANI | 3.74 | 45.42 | 0.96 | 0.42 | 99.51 | 0.30 |
Lignin Composite Materials | Dye/Heavy Metal Ion Type | Adsorption Capacity (mg·g−1) | Ref. |
---|---|---|---|
Graphene oxide/aminated lignin aerogels | MG | 113.50 | [24] |
Activated lignin/chitosan | MB | 36.25 | [25] |
Chitosan/nano-lignin | MB | 74.07 | [44] |
Chitosan/alkali lignin | Remazol Brilliant Blue R | 111.11 | [45] |
Lignin–magnetic nanoparticle composite | Turquoise blue QG-125 | 72.83 | [46] |
Bio-based sodium alginate/lignin | MB | 254.30 | [47] |
Porous graphene oxide/alkali lignin | MB | 98.30 | [48] |
Enzymatic hydrolysis lignin/PANI | Ag+ | 662 | [49] |
Porous graphene/lignin/sodium alginate | Cd2+ | 79.88 | [50] |
Pb2+ | 226.24 | ||
Sodium lignosulfonate/lysine | Cu2+ | 365.10 | [51] |
TiO2/lignin | Pb2+ | 35.70 | [52] |
TiO2-SiO2/lignin | Pb2+ | 59.93 | [52] |
Lignin/MgO-SiO2 | Cu2+ | 83.98 | [53] |
LS/PANI | MG/Pb2+ | 250.01/79.81 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Li, P.; Wang, M.; Liu, H.; Zhao, X.; Wu, C.; Ren, J. Comprehensive Evaluation of Polyaniline-Doped Lignosulfonate in Adsorbing Dye and Heavy Metal Ions. Int. J. Mol. Sci. 2024, 25, 133. https://doi.org/10.3390/ijms25010133
Wu W, Li P, Wang M, Liu H, Zhao X, Wu C, Ren J. Comprehensive Evaluation of Polyaniline-Doped Lignosulfonate in Adsorbing Dye and Heavy Metal Ions. International Journal of Molecular Sciences. 2024; 25(1):133. https://doi.org/10.3390/ijms25010133
Chicago/Turabian StyleWu, Wenjuan, Penghui Li, Mingkang Wang, Huijun Liu, Xiufu Zhao, Caiwen Wu, and Jianpeng Ren. 2024. "Comprehensive Evaluation of Polyaniline-Doped Lignosulfonate in Adsorbing Dye and Heavy Metal Ions" International Journal of Molecular Sciences 25, no. 1: 133. https://doi.org/10.3390/ijms25010133
APA StyleWu, W., Li, P., Wang, M., Liu, H., Zhao, X., Wu, C., & Ren, J. (2024). Comprehensive Evaluation of Polyaniline-Doped Lignosulfonate in Adsorbing Dye and Heavy Metal Ions. International Journal of Molecular Sciences, 25(1), 133. https://doi.org/10.3390/ijms25010133