Sorption Behavior of Azo Dye Congo Red onto Activated Biochar from Haematoxylum campechianum Waste: Gradient Boosting Machine Learning-Assisted Bayesian Optimization for Improved Adsorption Process
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of ABHC
2.2. Kinetic Study
2.3. Adsorption Isotherms of CR at Different Solution pH
2.4. Adsorption Isotherms of CR at Different Adsorbent Dose
2.5. Adsorption Isotherms of CR at Different Temperatures
2.6. Comparison of the Maximum Adsorption Capacity Qmax onto Different Activated Carbons
2.7. Adsorption and Desorption Cycles of CR
2.8. Machine Learning-Assisted Optimization for Improving the Adsorption Process
- ‘Initial concentration’ varies between 10 and 1000 (continuous).
- ‘Time’ varies between 15 and 2880 (discrete).
- ‘Temperature’ varies between 300.15 and 330.15 (continuous).
- ‘pH’ varies between 4 and 10 (continuous).
- ‘Dosis’ varies between 1 and 10 (continuous).
- gp_minimize is the function from scikit-optimize that performs the Bayesian optimization. It utilizes Gaussian Processes to model the probability distribution of the objective function and makes educated guesses where the function might achieve optimal values.
- The objective function is defined to return the negative predicted removal percentage by the model given a set of parameters. The negative sign is used because gp_minimize by default searches for the minimum value of the function, but since we want to maximize the removal percentage, we need to minimize its negative.
- n_calls = 50 specifies the number of evaluations of the objective function, or how many times the algorithm will try different sets of parameters.
- random_state = 42 ensures that the results are reproducible; the algorithm will start from the same random seed.
3. Materials and Methods
3.1. Adsorbate
3.2. Biochar Preparation
3.3. Characterization Techniques
3.4. Sorption
3.5. Desorption and Regeneration Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumari, D.; Mazumder, P.; Kumar, M.; Deka, J.P.; Shim, J. Simultaneous Removal of Cong Red and Cr (VI) in Aqueous Solution by Using Mn Powder Extracted from Battery Waste Solution. Groundw. Sustain. Dev. 2018, 7, 459–464. [Google Scholar] [CrossRef]
- Lakshmi, U.R.; Srivastava, V.C.; Mall, I.D.; Lataye, D.H. Rice Husk Ash as an Effective Adsorbent: Evaluation of Adsorptive Characteristics for Indigo Carmine Dye. J. Environ. Manag. 2009, 90, 710–720. [Google Scholar] [CrossRef] [PubMed]
- Gregory, P. Classification of Dyes by Chemical Structure. In The Chemistry and Application of Dyes. Topics in Applied Chemistry; Waring, D.R., Hallas, G., Eds.; Springer: Boston, MA, USA, 1990. [Google Scholar]
- Binupriya, A.R.; Sathishkumar, M.; Swaminathan, K.; Kuz, C.S.; Yun, S.E. Comparative Studies on Removal of Congo Red by Native and Modified Mycelial Pellets of Trametes Versicolor in Various Reactor Modes. Bioresour. Technol. 2008, 99, 1080–1088. [Google Scholar] [CrossRef] [PubMed]
- Wekoye, J.N.; Wanyonyi, W.C.; Wangila, P.T.; Tonui, M.K. Kinetic and Equilibrium Studies of Congo Red Dye Adsorption on Cabbage Waste Powder. Environ. Chem. Ecotoxicol. 2020, 2, 24–31. [Google Scholar] [CrossRef]
- Csillag, K.; Emri, T.; Rangel, D.E.N.; Pócsi, I. PH-Dependent Effect of Congo Red on the Growth of Aspergillus Nidulans and Aspergillus Niger. Fungal Biol. 2023, 127, 1180–1186. [Google Scholar] [CrossRef] [PubMed]
- Tarek, M.; Saleem, A. Methods for Staining Amyloid in Tissues. A Review. Stain Technol. 1988, 63, 201–212. [Google Scholar]
- Xue-Yun, Y.; Ji-Gang, C.; Yong-Ning, H. Studies on the Relation between Bladder Cancer and Benzidine or Its Derived Dyes in Shanghai. Br. J. Ind. Med. 1990, 47, 544–552. [Google Scholar]
- Leudjo Taka, A.; Fosso-Kankeu, E.; Pillay, K.; Yangkou Mbianda, X. Metal Nanoparticles Decorated Phosphorylated Carbon Nanotube/Cyclodextrin Nanosponge for Trichloroethylene and Congo Red Dye Adsorption from Wastewater. J. Environ. Chem. Eng. 2020, 8, 103602. [Google Scholar] [CrossRef]
- Olaru, S.; Andrei, L.; Hancu, E.; Costica, N.; Ivanescu, L.; Zamfirache, M. Toxicity Assessment of Congo Red Azo Dye towards Lemna minor L. 2016. Available online: https://www.researchgate.net/profile/Stefan-Olaru/publication/303626230_Toxicity_assessment_of_Congo_Red_azo_dye_towards_Lemna_minor_L/links/574a8e9008ae5c51e29e8f07/Toxicity-assessment-of-Congo-Red-azo-dye-towards-Lemna-minor-L.pdf (accessed on 8 April 2024).
- Hernández-Zamora, M.; Martínez-Jerónimo, F. Congo Red Dye Diversely Affects Organisms of Different Trophic Levels: A Comparative Study with Microalgae, Cladocerans, and Zebrafish Embryos. Environ. Sci. Pollut. Res. 2019, 26, 11743–11755. [Google Scholar] [CrossRef]
- Chatterjee, S.; Dey, S.; Sarma, M.; Chaudhuri, P.; Das, S. Biodegradation of Congo Red by Manglicolous Filamentous Fungus Aspergillus Flavus JKSC-7 Isolated from Indian Sundabaran Mangrove Ecosystem. Appl. Biochem. Microbiol. 2020, 56, 708–717. [Google Scholar] [CrossRef]
- Hamad, M.T.M.H.; Soliman, M.S.S. Application of Immobilized Aspergillus Niger in Alginate for Decolourization of Congo Red Dye by Using Kinetics Studies. J. Polym. Environ. 2020, 28, 3164–3180. [Google Scholar] [CrossRef]
- Ghany, T.; Abboud, M.; Alawlaqi, M.; Shater, A. Dead Biomass of Thermophilic Aspergillus Fumigatus for Congo Red Biosorption. Egypt. J. Exp. Biol. 2019, 15, 1–6. [Google Scholar] [CrossRef]
- Rafiq, A.; Ikram, M.; Ali, S.; Niaz, F.; Khan, M.; Khan, Q.; Maqbool, M. Photocatalytic Degradation of Dyes Using Semiconductor Photocatalysts to Clean Industrial Water Pollution. J. Ind. Eng. Chem. 2021, 97, 111–128. [Google Scholar] [CrossRef]
- Yashni, G.; Al-Gheethi, A.; Radin Mohamed, R.M.S.; Dai-Viet, N.V.; Al-Kahtani, A.A.; Al-Sahari, M.; Nor Hazhar, N.J.; Noman, E.; Alkhadher, S. Bio-Inspired ZnO NPs Synthesized from Citrus Sinensis Peels Extract for Congo Red Removal from Textile Wastewater via Photocatalysis: Optimization, Mechanisms, Techno-Economic Analysis. Chemosphere 2021, 281, 130661. [Google Scholar] [CrossRef]
- Pascariu, P.; Cojocaru, C.; Olaru, N.; Samoila, P.; Airinei, A.; Ignat, M.; Sacarescu, L.; Timpu, D. Novel Rare Earth (RE-La, Er, Sm) Metal Doped ZnO Photocatalysts for Degradation of Congo-Red Dye: Synthesis, Characterization and Kinetic Studies. J. Environ. Manag. 2019, 239, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Devi, V.S.; Sudhakar, B.; Prasad, K.; Jeremiah Sunadh, P.; Krishna, M. Adsorption of Congo Red from Aqueous Solution onto Antigonon Leptopus Leaf Powder: Equilibrium and Kinetic Modeling. Mater. Today Proc. 2019, 26, 3197–3206. [Google Scholar] [CrossRef]
- Adelaja, O.A.; Bankole, A.C.; Oladipo, M.E.; Lene, D.B. Biosorption of Hg(II) Ions, Congo Red and Their Binary Mixture Using Raw and Chemically Activated Mango Leaves. Int. J. Energy Water Resour. 2019, 3, 1–12. [Google Scholar] [CrossRef]
- Jabar, J.M.; Odusote, Y.A.; Alabi, K.A.; Ahmed, I.B. Kinetics and Mechanisms of Congo-Red Dye Removal from Aqueous Solution Using Activated Moringa Oleifera Seed Coat as Adsorbent. Appl. Water Sci. 2020, 10, 136. [Google Scholar] [CrossRef]
- Lim, L.B.L.; Priyantha, N.; Latip, S.A.A.; Lu, Y.C.; Mahadi, A.H. Converting Hylocereus Undatus (White Dragon Fruit) Peel Waste into a Useful Potential Adsorbent for the Removal of Toxic Congo Red Dye. Desalination Water Treat. 2020, 185, 307–317. [Google Scholar] [CrossRef]
- Jabar, J.M.; Odusote, Y.A. Removal of Cibacron Blue 3G-A (CB) Dye from Aqueous Solution Using Chemo-Physically Activated Biochar from Oil Palm Empty Fruit Bunch Fiber. Arab. J. Chem. 2020, 13, 5417–5429. [Google Scholar] [CrossRef]
- Gupta, V.K.; Agarwal, S.; Ahmad, R.; Mirza, A.; Mittal, J. Sequestration of Toxic Congo Red Dye from Aqueous Solution Using Ecofriendly Guar Gum/ Activated Carbon Nanocomposite. Int. J. Biol. Macromol. 2020, 158, 1310–1318. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Hanafy, H.; Zhang, L.; Sellaoui, L.; Schadeck Netto, M.; Oliveira, M.L.S.; Seliem, M.K.; Luiz Dotto, G.; Bonilla-Petriciolet, A.; Li, Q. Adsorption of Congo Red and Methylene Blue Dyes on an Ashitaba Waste and a Walnut Shell-Based Activated Carbon from Aqueous Solutions: Experiments, Characterization and Physical Interpretations. Chem. Eng. J. 2020, 388, 124263. [Google Scholar] [CrossRef]
- Patawat, C.; Silakate, K.; Chuan-Udom, S.; Supanchaiyamat, N.; Hunt, A.J.; Ngernyen, Y. Preparation of Activated Carbon FromDipterocarpus Alatusfruit and Its Application for Methylene Blue Adsorption. RSC Adv. 2020, 10, 21082–21091. [Google Scholar] [CrossRef] [PubMed]
- Njewa, J.B.; Vunain, E.; Biswick, T. Synthesis and Characterization of Activated Carbons Prepared from Agro-Wastes by Chemical Activation. J. Chem. 2022, 2022, 9975444. [Google Scholar] [CrossRef]
- Ausavasukhi, A.; Kampoosaen, C.; Kengnok, O. Adsorption Characteristics of Congo Red on Carbonized Leonardite. J. Clean Prod. 2016, 134, 506–514. [Google Scholar] [CrossRef]
- Jawad, A.H.; Ismail, K.; Ishak, M.A.M.; Wilson, L.D. Conversion of Malaysian Low-Rank Coal to Mesoporous Activated Carbon: Structure Characterization and Adsorption Properties. Chin. J. Chem. Eng. 2019, 27, 1716–1727. [Google Scholar] [CrossRef]
- Osman, A.I.; Blewitt, J.; Abu-Dahrieh, J.K.; Farrell, C.; Al-Muhtaseb, A.H.; Harrison, J.; Rooney, D.W. Production and Characterisation of Activated Carbon and Carbon Nanotubes from Potato Peel Waste and Their Application in Heavy Metal Removal. Environ. Sci. Pollut. Res. 2019, 26, 37228–37241. [Google Scholar] [CrossRef] [PubMed]
- Homagai, P.L.; Poudel, R.; Poudel, S.; Bhattarai, A. Adsorption and Removal of Crystal Violet Dye from Aqueous Solution by Modified Rice Husk. Heliyon 2022, 8, e09261. [Google Scholar] [CrossRef] [PubMed]
- Reck, I.M.; Paixão, R.M.; Bergamasco, R.; Vieira, M.F.; Vieira, A.M.S. Removal of Tartrazine from Aqueous Solutions Using Adsorbents Based on Activated Carbon and Moringa Oleifera Seeds. J. Clean Prod. 2018, 171, 85–97. [Google Scholar] [CrossRef]
- Bansode, R.R.; Losso, J.N.; Marshall, W.E.; Rao, R.M.; Portier, R.J. Pecan Shell-Based Granular Activated Carbon for Treatment of Chemical Oxygen Demand (COD) in Municipal Wastewater. Bioresour. Technol. 2004, 94, 129–135. [Google Scholar] [CrossRef]
- Mandal, S.; Calderon, J.; Marpu, S.B.; Omary, M.A.; Shi, S.Q. Mesoporous Activated Carbon as a Green Adsorbent for the Removal of Heavy Metals and Congo Red: Characterization, Adsorption Kinetics, and Isotherm Studies. J. Contam. Hydrol. 2021, 243, 103869. [Google Scholar] [CrossRef] [PubMed]
- Lorenc-Grabowska, E.; Gryglewicz, G. Adsorption Characteristics of Congo Red on Coal-Based Mesoporous Activated Carbon. Dye. Pigment. 2007, 74, 34–40. [Google Scholar] [CrossRef]
- Lafi, R.; Montasser, I.; Hafiane, A. Adsorption of Congo Red Dye from Aqueous Solutions by Prepared Activated Carbon with Oxygen-Containing Functional Groups and Its Regeneration. Adsorpt. Sci. Technol. 2019, 37, 160–181. [Google Scholar] [CrossRef]
- Igwegbe, C.A.; Ighalo, J.O.; Onyechi, K.K.; Onukwuli, O.D. Adsorption of Congo Red and Malachite Green Using H3PO4 and NaCl-Modified Activated Carbon from Rubber (Hevea Brasiliensis) Seed Shells. Sustain. Water Resour. Manag. 2021, 7, 63. [Google Scholar] [CrossRef]
- Bessaha, F.; Mahrez, N.; Marouf-Khelifa, K.; Çoruh, A.; Khelifa, A. Removal of Congo Red by Thermally and Chemically Modified Halloysite: Equilibrium, FTIR Spectroscopy, and Mechanism Studies. Int. J. Environ. Sci. Technol. 2019, 16, 4253–4260. [Google Scholar] [CrossRef]
- Tran, H.N.; Tomul, F.; Thi Hoang Ha, N.; Nguyen, D.T.; Lima, E.C.; Le, G.T.; Chang, C.T.; Masindi, V.; Woo, S.H. Innovative Spherical Biochar for Pharmaceutical Removal from Water: Insight into Adsorption Mechanism. J. Hazard Mater. 2020, 394, 122255. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption Kinetic Models: Physical Meanings, Applications, and Solving Methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef]
- Sabarinathan, C.; Karuppasamy, P.; Vijayakumar, C.T.; Arumuganathan, T. Development of Methylene Blue Removal Methodology by Adsorption Using Molecular Polyoxometalate: Kinetics, Thermodynamics and Mechanistic Study. Microchem. J. 2019, 146, 315–326. [Google Scholar] [CrossRef]
- Ho, Y.S.; Mckay, G. Sorption of Dye from Aqueous Solution by Peat. Chem. Eng. J. 1998, 70, 11–16. [Google Scholar] [CrossRef]
- Zhou, Q.; Xie, C.; Gong, W.; Xu, N.; Zhou, W. Comments on the Method of Using Maximum Absorption Wavelength to Calculate Congo Red Solution Concentration Published in J. Hazard. Mater. J. Hazard. Mater. 2011, 198, 381–382. [Google Scholar] [CrossRef]
- Nguyen, V.D.; Nguyen, H.T.H.; Vranova, V.; Nguyen, L.T.N.; Bui, Q.M.; Khieu, T.T. Artificial Neural Network Modeling for Congo Red Adsorption on Microwave-Synthesized Akaganeite Nanoparticles: Optimization, Kinetics, Mechanism, and Thermodynamics. Environ. Sci. Pollut. Res. 2021, 28, 9133–9145. [Google Scholar] [CrossRef] [PubMed]
- Batool, M.; Khurshid, S.; Qureshi, Z.; Daoush, W.M. Adsorption, Antimicrobial and Wound Healing Activities of Biosynthesised Zinc Oxide Nanoparticles. Chem. Pap. 2021, 75, 893–907. [Google Scholar] [CrossRef]
- Fawzy, M.A.; Gomaa, M. Low-Cost Biosorption of Methylene Blue and Congo Red from Single and Binary Systems Using Sargassum Latifolium Biorefinery Waste/Wastepaper Xerogel: An Optimization and Modeling Study. J. Appl. Phycol. 2021, 33, 675–691. [Google Scholar] [CrossRef]
- Yaneva, Z.; Georgieva, N.V.; Yaneva, Z.L. Insights into Congo Red Adsorption on Agro-Industrial Materials-Spectral, Equilibrium, Kinetic, Thermodynamic, Dynamic and Desorption Studies. A Review. Int. Rev. Chem. Eng. IRECHE 2012, 4, 127–146. [Google Scholar]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the Use and Interpretation of Adsorption Isotherm Models: A Review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef] [PubMed]
- Roy, T.K.; Mondal, N.K. Potentiality of Eichhornia Shoots Ash towards Removal of Congo Red from Aqueous Solution: Isotherms, Kinetics, Thermodynamics and Optimization Studies. Groundw. Sustain. Dev. 2019, 9, 100269. [Google Scholar] [CrossRef]
- Alghamdi, A.A.; Al-Odayni, A.B.; Saeed, W.S.; Almutairi, M.S.; Alharthi, F.A.; Aouak, T.; Al-Kahtani, A. Adsorption of Azo Dye Methyl Orange from Aqueous Solutions Using Alkali-Activated Polypyrrole-Based Graphene Oxide. Molecules 2019, 24, 3685. [Google Scholar] [CrossRef] [PubMed]
- Lawal, I.A.; Chetty, D.; Akpotu, S.O.; Moodley, B. Sorption of Congo Red and Reactive Blue on Biomass and Activated Carbon Derived from Biomass Modified by Ionic Liquid. Environ. Nanotechnol. Monit. Manag. 2017, 8, 83–91. [Google Scholar] [CrossRef]
- Amran, F.; Zaini, M.A.A. Sodium Hydroxide-Activated Casuarina Empty Fruit: Isotherm, Kinetics and Thermodynamics of Methylene Blue and Congo Red Adsorption. Environ. Technol. Innov. 2021, 23, 101727. [Google Scholar] [CrossRef]
- Ojedokun, A.T.; Bello, O.S. Kinetic Modeling of Liquid-Phase Adsorption of Congo Red Dye Using Guava Leaf-Based Activated Carbon. Appl. Water Sci. 2017, 7, 1965–1977. [Google Scholar] [CrossRef]
- Omidi Khaniabadi, Y.; Mohammadi, M.J.; Shegerd, M.; Sadeghi, S.; Basiri, H. Removal of Congo Red Dye from Aqueous Solutions by a Low-Cost Adsorbent: Activated Carbon Prepared from Aloe Vera Leaves Shell. Environ. Health Eng. Manag. 2016, 4, 29–35. [Google Scholar] [CrossRef]
- Sharma, A.; Siddiqui, Z.M.; Dhar, S.; Mehta, P.; Pathania, D. Adsorptive Removal of Congo Red Dye (CR) from Aqueous Solution by Cornulaca Monacantha Stem and Biomass-Based Activated Carbon: Isotherm, Kinetics and Thermodynamics. Sep. Sci. Technol. 2019, 54, 916–929. [Google Scholar] [CrossRef]
- Latinwo, G.K.; Alade, A.O.; Agarry, S.E.; Dada, E.O. Process Optimization and Modeling the Adsorption of Polycyclic Aromatic-Congo Red Dye onto Delonix Regia Pod-Derived Activated Carbon. Polycycl. Aromat. Compd. 2021, 41, 400–418. [Google Scholar] [CrossRef]
- Ojedokun, A.T.; Bello, O.S. Liquid Phase Adsorption of Congo Red Dye on Functionalized Corn Cobs. J. Dispers. Sci. Technol. 2017, 38, 1285–1294. [Google Scholar] [CrossRef]
- El Messaoudi, N.; El Khomri, M.; Chlif, N.; Chegini, Z.G.; Dbik, A.; Bentahar, S.; Lacherai, A. Desorption of Congo Red from Dye-Loaded Phoenix Dactylifera Date Stones and Ziziphus Lotus Jujube Shells. Groundw. Sustain. Dev. 2021, 12, 100552. [Google Scholar] [CrossRef]
- Shahzad, M.W.; Nguyen, V.H.; Xu, B.B.; Tariq, R.; Imran, M.; Ashraf, W.M.; Ng, K.C.; Jamil, M.A.; Ijaz, A.; Sheikh, N.A. Machine Learning Assisted Prediction of Solar to Liquid Fuel Production: A Case Study. Process Saf. Environ. Prot. 2024, 184, 1119–1130. [Google Scholar] [CrossRef]
- Yin, G.; Jameel Ibrahim Alazzawi, F.; Mironov, S.; Reegu, F.; El-Shafay, A.S.; Lutfor Rahman, M.; Su, C.H.; Lu, Y.Z.; Chinh Nguyen, H. Machine Learning Method for Simulation of Adsorption Separation: Comparisons of Model’s Performance in Predicting Equilibrium Concentrations. Arab. J. Chem. 2022, 15, 103612. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, W.; Zhang, Y.; Yang, Y.; Guo, D.; Liu, W.; Liu, L. Influence of Multivalent Background Ions Competition Adsorption on the Adsorption Behavior of Azo Dye Molecules and Removal Mechanism: Based on Machine Learning, DFT and Experiments. Sep. Purif. Technol. 2024, 341, 126810. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, K.; Xiong, B.; Guo, C.; Dang, Z. Prediction of Adsorption of Metal Cations by Clay Minerals Using Machine Learning. Sci. Total Environ. 2024, 924, 171733. [Google Scholar] [CrossRef]
- Cai, Q.Y.; Qiao, L.Z.; Yao, S.J.; Lin, D.Q. Machine Learning Assisted QSAR Analysis to Predict Protein Adsorption Capacities on Mixed-Mode Resins. Sep. Purif. Technol. 2024, 340, 126762. [Google Scholar] [CrossRef]
- Lee, H.; Choi, Y. Predicting Apparent Adsorption Capacity of Sediment-Amended Activated Carbon for Hydrophobic Organic Contaminants Using Machine Learning. Chemosphere 2024, 350, 141003. [Google Scholar] [CrossRef]
- Guo, L.; Xu, X.; Niu, C.; Wang, Q.; Park, J.; Zhou, L.; Lei, H.; Wang, X.; Yuan, X. Machine Learning-Based Prediction and Experimental Validation of Heavy Metal Adsorption Capacity of Bentonite. Sci. Total Environ. 2024, 926, 171986. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Guo, C.; Wang, C.; Zhao, S.; Lu, G.; Dang, Z. Using Machine Learning to Explore Oxyanion Adsorption Ability of Goethite with Different Specific Surface Area. Environ. Pollut. 2024, 343, 123162. [Google Scholar] [CrossRef]
- Selvaraj, R.; Jogi, S.; Murugesan, G.; Srinivasan, N.R.; Goveas, L.C.; Varadavenkatesan, T.; Samanth, A.; Vinayagam, R.; Ali Alshehri, M.; Pugazhendhi, A. Machine Learning and Statistical Physics Modeling of Tetracycline Adsorption Using Activated Carbon Derived from Cynometra Ramiflora Fruit Biomass. Environ. Res. 2024, 252, 118816. [Google Scholar] [CrossRef] [PubMed]
- Shboul, B.; Zayed, M.E.; Tariq, R.; Ashraf, W.M.; Odat, A.S.; Rehman, S.; Abdelrazik, A.S.; Krzywanski, J. New Hybrid Photovoltaic-Fuel Cell System for Green Hydrogen and Power Production: Performance Optimization Assisted with Gaussian Process Regression Method. Int. J. Hydrogen Energy 2024, 59, 1214–1229. [Google Scholar] [CrossRef]
- Ashraf, W.M.; Uddin, G.M.; Tariq, R.; Ahmed, A.; Farhan, M.; Nazeer, M.A.; Hassan, R.U.; Naeem, A.; Jamil, H.; Krzywanski, J.; et al. Artificial Intelligence Modeling-Based Optimization of an Industrial-Scale Steam Turbine for Moving toward Net-Zero in the Energy Sector. ACS Omega 2023, 8, 21709–21725. [Google Scholar] [CrossRef]
- Muhammad Ashraf, W.; Moeen Uddin, G.; Afroze Ahmad, H.; Ahmad Jamil, M.; Tariq, R.; Wakil Shahzad, M.; Dua, V. Artificial Intelligence Enabled Efficient Power Generation and Emissions Reduction Underpinning Net-Zero Goal from the Coal-Based Power Plants. Energy Convers. Manag. 2022, 268, 116025. [Google Scholar] [CrossRef]
- Ji, Y.; Zhang, X.; Chen, Z.; Xiao, Y.; Li, S.; Gu, J.; Hu, H.; Cheng, G. Silk Sericin Enrichment through Electrodeposition and Carbonous Materials for the Removal of Methylene Blue from Aqueous Solution. Int. J. Mol. Sci. 2022, 23, 1668. [Google Scholar] [CrossRef]
- Dada, A.O.; Adekola, F.A.; Odebunmi, E.O.; Ogunlaja, A.S.; Bello, O.S. Two–Three Parameters Isotherm Modeling, Kinetics with Statistical Validity, Desorption and Thermodynamic Studies of Adsorption of Cu(II) Ions onto Zerovalent Iron Nanoparticles. Sci. Rep. 2021, 11, 16454. [Google Scholar] [CrossRef]
Functional Group | Wavenumber (cm−1) | |
---|---|---|
ABHC | ABHC-CR | |
O-H and N-H | 3358 | 3368 |
C=O | 1705 | 1705 |
C=C | 1593 | 1600 |
C-C (in aromatic ring) | - | 1421 |
C-O | - | 1360 |
C-O | 1224 | 1196 |
S=O | - | 1045 |
N-H | 779 | 769 |
Ci (mg/L) | Pseudo-First-Order | Pseudo-Second-Order | Elovich | |||||||
---|---|---|---|---|---|---|---|---|---|---|
qe,exp (mg/g) | qe (mg/g) | k1/10−2 (1/min) | R2 | qe (mg/g) | k2/10−3 [g/(mg·min)] | R2 | α [mg/(g·min)] | β (g/mg) | R2 | |
25 | 15.21 | 13.87 | 1.187 | 0.957 | 15.09 | 1.056 | 0.988 | 0.8100 | 0.4183 | 0.928 |
50 | 23.74 | 21.95 | 0.5693 | 0.877 | 23.81 | 0.3724 | 0.939 | 0.7880 | 0.2590 | 0.968 |
Ci (mg/L) | Model | Error Functions | |||||
---|---|---|---|---|---|---|---|
ARE | SSE | ∆q (%) | χ2 | EABS | RMSE | ||
25 | PFO | 7.593 | 5.918 | 8.996 | 0.512 | 0.819 | 1.088 |
PSO | 7.669 | 1.599 | 15.085 | 0.373 | 0.389 | 0.565 | |
Elovich | 20.518 | 9.891 | 41.892 | 2.617 | 1.033 | 1.406 | |
50 | PFO | 19.160 | 37.763 | 32.024 | 4.476 | 1.974 | 2.748 |
PSO | 12.081 | 18.762 | 23.587 | 2.331 | 1.198 | 1.937 | |
Elovich | 7.818 | 10.001 | 10.337 | 0.693 | 1.040 | 1.414 |
Isotherm Models | Parameters | pH | ||||
---|---|---|---|---|---|---|
4 | 5.4 | 7 | 8.4 | 10.2 | ||
Langmuir | Qmax (mg/g) | 53.93 | 114.8 | 68.33 | 30.83 | 10.51 |
KL/10−2 (L/mg) | 7.252 | 1.108 | 3.679 | 0.832 | 9.695 | |
R2 | 0.982 | 0.994 | 0.972 | 0.988 | 0.962 | |
n | 2.479 | 1.335 | 1.830 | 1.362 | 3.4315 | |
Freundlich | KF (mg/g)(L/mg)1/n | 8.945 | 2.189 | 5.393 | 0.498 | 2.684 |
R2 | 0.940 | 0.990 | 0.992 | 0.983 | 0.941 | |
Redlich–Peterson | αRP (L/mg) | 0.085 | 0.001 | 1.726 | 0.015 | 0.214 |
KRP (L/g) | 4.088 | 1.141 | 12.761 | 0.270 | 1.395 | |
β | 0.973 | 1.453 | 0.516 | 0.887 | 0.895 | |
R2 | 0.982 | 0.995 | 0.992 | 0.988 | 0.969 |
pH | Model | Error Functions | |||||
---|---|---|---|---|---|---|---|
ARE | SSE | ∆q (%) | χ2 | EABS | RMSE | ||
4.0 | Langmuir | 4.440 | 11.51 | 5.922 | 0.394 | 1.161 | 1.696 |
Freundlich | 11.49 | 37.99 | 19.43 | 2.439 | 2.214 | 3.082 | |
Redlich–Peterson | 4.731 | 11.41 | 6.443 | 0.421 | 1.186 | 1.689 | |
5.4 | Langmuir | 6.050 | 6.119 | 9.495 | 0.495 | 0.816 | 1.106 |
Freundlich | 5.246 | 10.64 | 7.910 | 0.557 | 1.092 | 1.459 | |
Redlich–Peterson | 5.997 | 5.692 | 10.97 | 0.565 | 0.710 | 1.067 | |
7.0 | Langmuir | 10.32 | 32.09 | 15.52 | 1.933 | 1.811 | 2.533 |
Freundlich | 6.060 | 8.534 | 9.491 | 0.602 | 0.947 | 1.306 | |
Redlich–Peterson | 5.317 | 8.615 | 8.012 | 0.520 | 0.899 | 1.313 | |
8.4 | Langmuir | 5.612 | 1.246 | 7.802 | 0.153 | 0.354 | 0.499 |
Freundlich | 9.324 | 1.672 | 16.82 | 0.382 | 0.407 | 0.578 | |
Redlich–Peterson | 5.818 | 1.237 | 8.731 | 0.166 | 0.350 | 0.497 | |
10.2 | Langmuir | 4.587 | 1.049 | 5.899 | 0.143 | 0.325 | 0.458 |
Freundlich | 6.917 | 1.617 | 11.29 | 0.334 | 0.386 | 0.569 | |
Redlich–Peterson | 4.611 | 0.836 | 6.531 | 0.139 | 0.287 | 0.409 |
Isotherm Models | Parameters | Dose (g/L) | |||
---|---|---|---|---|---|
1 | 2 | 5 | 10 | ||
Langmuir | Qmax (mg/g) | 92.86 | 59.53 | 47.62 | 12.22 |
KL/10−2 (L/mg) | 1.887 | 0.369 | 0.125 | 0.685 | |
R2 | 0.940 | 0.988 | 0.970 | 0.966 | |
n | 3.079 | 2.051 | 1.579 | 2.551 | |
Freundlich | KF (mg/g)(L/mg)1/n | 10.85 | 1.747 | 0.346 | 0.787 |
R2 | 0.976 | 0.993 | 0.985 | 0.982 | |
Redlich–Peterson | αRP (L/mg) | 0.401 | 0.091 | 252.8 | 3.338 |
KRP (L/g) | 6.788 | 0.506 | 87.64 | 2.811 | |
β | 0.742 | 0.669 | 0.367 | 0.618 | |
R2 | 0.984 | 0.997 | 0.985 | 0.982 |
Dose (g/L) | Model | Error Functions | |||||
---|---|---|---|---|---|---|---|
ARE | SSE | ∆q (%) | χ2 | EABS | RMSE | ||
1 | Langmuir | 14.52 | 552.4 | 22.17 | 10.83 | 5.004 | 7.835 |
Freundlich | 16.67 | 224.9 | 32.14 | 10.60 | 3.950 | 4.999 | |
Redlich–Peterson | 7.262 | 151.7 | 10.66 | 2.813 | 2.886 | 4.105 | |
2 | Langmuir | 12.22 | 19.55 | 20.21 | 1.881 | 1.355 | 1.977 |
Freundlich | 9.945 | 12.46 | 19.84 | 1.215 | 1.083 | 1.579 | |
Redlich–Peterson | 4.830 | 4.912 | 6.941 | 0.332 | 0.698 | 0.991 | |
5 | Langmuir | 26.89 | 14.41 | 43.57 | 3.437 | 1.215 | 1.698 |
Freundlich | 13.67 | 7.352 | 26.16 | 1.264 | 0.777 | 1.213 | |
Redlich–Peterson | 13.68 | 7.356 | 26.18 | 1.266 | 0.778 | 1.213 | |
10 | Langmuir | 20.93 | 2.996 | 36.48 | 1.346 | 0.573 | 0.774 |
Freundlich | 9.020 | 1.549 | 13.55 | 0.315 | 0.363 | 0.557 | |
Redlich–Peterson | 9.977 | 1.543 | 14.89 | 0.342 | 0.375 | 0.556 |
Isotherm Models | Parameters | Temperature (K) | ||
---|---|---|---|---|
300.15 | 313.15 | 330.15 | ||
Langmuir | Qmax (mg/g) | 92.86 | 27.44 | 29.20 |
KL/10−2 (L/mg) | 1.887 | 26.78 | 1.917 | |
R2 | 0.940 | 0.709 | 0.980 | |
n | 3.079 | 7.411 | 3.878 | |
Freundlich | KF (mg/g)(L/mg)1/n | 10.85 | 12.38 | 5.106 |
R2 | 0.976 | 0.999 | 0.951 | |
Redlich–Peterson | αRP (L/mg) | 0.401 | 19.66 | 0.057 |
KRP (L/g) | 6.788 | 247.2 | 0.852 | |
β | 0.742 | 0.867 | 0.899 | |
R2 | 0.984 | 0.999 | 0.988 |
Temperature (K) | Model | Error Functions | |||||
---|---|---|---|---|---|---|---|
ARE | SSE | ∆q (%) | χ2 | EABS | RMSE | ||
300.15 | Langmuir | 14.52 | 552.4 | 22.17 | 10.83 | 5.004 | 7.835 |
Freundlich | 16.67 | 224.9 | 32.14 | 10.60 | 3.950 | 4.999 | |
Redlich–Peterson | 7.262 | 151.7 | 10.66 | 2.813 | 2.886 | 4.105 | |
313.15 | Langmuir | 13.64 | 71.57 | 16.61 | 3.316 | 2.978 | 3.783 |
Freundlich | 0.813 | 0.321 | 1.211 | 0.017 | 0.162 | 0.254 | |
Redlich–Peterson | 0.673 | 0.289 | 1.054 | 0.014 | 0.145 | 0.240 | |
330.15 | Langmuir | 6.921 | 8.183 | 14.16 | 0.958 | 0.746 | 1.279 |
Freundlich | 9.950 | 20.13 | 13.09 | 1.245 | 1.580 | 2.006 | |
Redlich–Peterson | 5.720 | 4.807 | 8.774 | 0.433 | 0.752 | 0.980 |
Substrate | Qmax (mg/g) | T (°C) | pH | Ci (mg/L) | References |
---|---|---|---|---|---|
Coffee waste | 90.90 | 25 | 3.0 | 20–120 | [35] |
Kenaf fiber (Hibiscus cannabinus) | 14.20 | 27 | 7 | 5–25 | [33] |
Guava leaves | 47.62 | 30 | 3 | 10–50 | [52] |
Rubber (Hevea brasiliensis) | 55.87 | 30 | 2 | 100–500 | [36] |
Aloe vera leaves | 91.00 | 25 | 2 | 100 | [53] |
Cornulaca monacantha | 78.19 | 55 | 2.0 | 20–160 | [54] |
Peanut shell | 153.4 | - | - | 20–200 | [50] |
Casuarinas waste | 232.0 | 25 | - | 5–1000 | [51] |
Delonix regia | 17.12 | 30 | - | 200–1200 | [55] |
Corn cobs | 41.67 | 50 | 3 | 10–50 | [56] |
Haematoxylum campechianum | 114.8 | 27 | 5 | 10–100 | This study |
Type of Data | MSE | SSE | MAPE | RMSE | MPE | COD |
---|---|---|---|---|---|---|
Training data | 4.052313 | 340.3943 | 5.947051 | 2.013036 | −0.92448 | 0.992258 |
Testing data | 33.1685 | 696.5386 | 23.08819 | 5.75921 | −14.2749 | 0.91353 |
Initial Concentration (mg/L) | Time (min) | Temperature (K) | pH | Removal Percentage |
---|---|---|---|---|
10.0 | 2880 | 313.15 | 4.0 | 90.4733 |
Parameter | Value |
---|---|
Molecular weight | 696.66 g/mol |
Density | 0.995 g/mL at 25 °C |
Solubility | H2O: 25 g/L |
Water solubility pKa | Soluble 4.5 [44] |
pH | 6.7 (10 g/L, H2O and at 20 °C) |
Color and pH range | 3 (blue)–5.2 (red) |
λmax | 567 nm at pH 2.18–3.16 and 497 nm at pH ≥ 3.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gamboa, D.M.P.; Abatal, M.; Lima, E.; Franseschi, F.A.; Ucán, C.A.; Tariq, R.; Elías, M.A.R.; Vargas, J. Sorption Behavior of Azo Dye Congo Red onto Activated Biochar from Haematoxylum campechianum Waste: Gradient Boosting Machine Learning-Assisted Bayesian Optimization for Improved Adsorption Process. Int. J. Mol. Sci. 2024, 25, 4771. https://doi.org/10.3390/ijms25094771
Gamboa DMP, Abatal M, Lima E, Franseschi FA, Ucán CA, Tariq R, Elías MAR, Vargas J. Sorption Behavior of Azo Dye Congo Red onto Activated Biochar from Haematoxylum campechianum Waste: Gradient Boosting Machine Learning-Assisted Bayesian Optimization for Improved Adsorption Process. International Journal of Molecular Sciences. 2024; 25(9):4771. https://doi.org/10.3390/ijms25094771
Chicago/Turabian StyleGamboa, Diego Melchor Polanco, Mohamed Abatal, Eder Lima, Francisco Anguebes Franseschi, Claudia Aguilar Ucán, Rasikh Tariq, Miguel Angel Ramírez Elías, and Joel Vargas. 2024. "Sorption Behavior of Azo Dye Congo Red onto Activated Biochar from Haematoxylum campechianum Waste: Gradient Boosting Machine Learning-Assisted Bayesian Optimization for Improved Adsorption Process" International Journal of Molecular Sciences 25, no. 9: 4771. https://doi.org/10.3390/ijms25094771
APA StyleGamboa, D. M. P., Abatal, M., Lima, E., Franseschi, F. A., Ucán, C. A., Tariq, R., Elías, M. A. R., & Vargas, J. (2024). Sorption Behavior of Azo Dye Congo Red onto Activated Biochar from Haematoxylum campechianum Waste: Gradient Boosting Machine Learning-Assisted Bayesian Optimization for Improved Adsorption Process. International Journal of Molecular Sciences, 25(9), 4771. https://doi.org/10.3390/ijms25094771