Studies on the Thermal Decomposition Course of Nitrogen-Rich Heterocyclic Esters as Potential Drug Candidates and Evaluation of Their Thermal Stability and Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Melting Points and the Melting Enthalpies Evaluated by the DSC
2.2. The TG/DTG Analyses (Inert Conditions)
2.3. The Decomposition Course of the Tested Compounds in Inert Conditions
2.4. The TG/DTG Analyses (Oxidative Conditions)
2.5. The Decomposition Course of the Tested Compounds in Oxidative Conditions
2.6. Haemolytic Activity of the Investigated Heterocyclic Esters (1–6)
2.7. Protective Effect of the Investigated Heterocyclic Esters (1–6) against Haemolysis Induced by Oxidative Stress
3. Materials and Methods
3.1. Heterocyclic Esters (1–6)
3.2. Differential Scanning Calorimetry (DSC)
3.3. Thermogravimetric Analysis/Differential Scanning Calorimetry Coupled On-Line with FTIR and QMS Analysers (TG/DTG/DSC/FTIR/QMS)
3.4. Haemolytic Activity Assay
3.5. Oxidative Haemolysis Inhibition Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sztanke, K., inventor; Medical University of Lublin, assignee. New Ethyl Esters of 7,8-Dihydro-6H-imidazo[2,1-c][1,2,4]triazin-4-oxo-3-carboxylic Acid and Method for Their Manufacture. Polish Patent 196751, 31 January 2008. [Google Scholar]
- Sztanke, K.; Rzymowska, J.; Niemczyk, M.; Dybała, I.; Kozioł, A.E. Synthesis, crystal structure and anticancer activity of novel derivatives of ethyl 1-(4-oxo-8-aryl-4,6,7,8-tetrahydroimidazo[2,1-c][1,2,4]triazin-3-yl)formate. Eur. J. Med. Chem. 2006, 41, 539–547. [Google Scholar] [CrossRef]
- Sztanke, M.; Rzymowska, J.; Sztanke, K. In vitro effects of a new fused azaisocytosine-like congener on relative cell proliferation, necrosis and cell cycle in cancer and normal cell cultures. Mol. Cell. Biochem. 2016, 418, 179–188. [Google Scholar] [CrossRef]
- Janicka, M.; Mycka, A.; Sztanke, M.; Sztanke, K. Predicting pharmacokinetic properties of potential anticancer agents via their chromatographic behavior on different reversed phase materials. Int. J. Mol. Sci. 2021, 22, 4257. [Google Scholar] [CrossRef] [PubMed]
- Sztanke, M.; Tuzimski, T.; Janicka, M.; Sztanke, K. Structure-retention behaviour of biologically active fused 1,2,4-triazinones—Correlation with in silico molecular properties. Eur. J. Pharm. Sci. 2015, 68, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Tyszczuk-Rotko, K.; Kozak, J.; Sztanke, M.; Sztanke, K.; Sadok, I. A screen-printed sensor coupled with flow system for quantitative determination of a novel promising anticancer agent candidate. Sensors 2020, 20, 5217. [Google Scholar] [CrossRef]
- Tzeng, C.-C.; Hwang, L.-C.; Wang, C.-J.; Lee, G.-H.; Wang, Y. Synthesis and structure assignment o 1-[(2-hydroxyethoxy)methyl]- and 1-[(1,3-dihydroxy-2-propoxy)methyl]-6-azaisocytosine. Heterocycles 1995, 41, 293. [Google Scholar] [CrossRef]
- Zálešák, F.; Slouka, J.; Stýskala, J. General synthesis of 1-aryl-6-azaisocytosines and their utilization for the preparation of related condensed 1,2,4-triazines. Molecules 2019, 24, 3558. [Google Scholar] [CrossRef]
- Mahfouz, R.Z.; Jankowska, A.; Ebrahem, Q.; Gu, X.; Visconte, V.; Tabarroki, A.; Terse, P.; Covey, J.; Chan, K.; Ling, Y.; et al. Increased CDA expression/activity in males contributes to decreased cytidine analog half-life and likely contributes to worse outcomes with 5-azacytidine or decitabine therapy. Clin. Cancer Res. 2013, 19, 938–948. [Google Scholar] [CrossRef]
- Kandefer-Szerszeń, M.; Szuster-Ciesielska, A.; Sztanke, K.; Pasternak, K., inventors; Maria Curie-Sklodowska University in Lublin, Medical University of Lublin, assignees. 8-(4-Methoxyphenyl)-4-oxo-4,6,7,8-tetrahydroimidazo[2,1-c][1,2,4]triazin-3-formic acid hydrazide used as a drug for liver diseases. Polish Patent 216264, 31 March 2014. [Google Scholar]
- Patrick, G.L. An Introduction to Medicinal Chemistry; Oxford University Press Inc.: New York, NY, USA, 2009. [Google Scholar]
- Rathore, M.S.; Kumar, S. Prodrug design and development for improved bioavailability across biological barriers. Int. J. Pharm. Pharm. Res. 2016, 7, 187–220. [Google Scholar]
- Hong, X.; Cai, Z.; Zhou, F.; Jin, X.; Wang, G.; Ouyang, B.; Zhang, J. Improved pharmacokinetics of tenofovir ester prodrugs strengthened the inhibition of HBV replication and the rebalance of hepatocellular metabolism in preclinical models. Front. Pharmacol. 2022, 13, 932934. [Google Scholar] [CrossRef]
- Wesolowski, M.; Leyk, E. Coupled and simultaneous thermal analysis techniques in the study of pharmaceuticals. Pharmaceutics 2023, 15, 1596. [Google Scholar] [CrossRef] [PubMed]
- Sikorska-Iwan, M.; Modzelewska-Banachiewicz, B. Thermal behaviour of 1,2,4-triazole and 1,2,4-triazine derivatives. J. Therm. Anal. Calorim. 2005, 81, 119–123. [Google Scholar] [CrossRef]
- Epishina, M.A.; Kulikov, A.S.; Fershtat, L.L. Revisiting the synthesis of functionally substituted 1,4-dihydrobenzo[e][1,2,4]triazines. Molecules 2022, 27, 2575. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Singh, B. Mesogens based on cholesterol derivatives: Synthesis and characterization. Mol. Cryst. Liq. Cryst. 2012, 562, 166–176. [Google Scholar] [CrossRef]
- Wang, X.; You, J. Study on the thermal decomposition of capecitabine. J. Therm. Anal. Calorim. 2016, 123, 2485–2497. [Google Scholar] [CrossRef]
- Attia, A.K.; Abdel-Moety, M.M.; Abdel-Hamid, S.G. Thermal analysis study of antihypertensive drug doxazosin mesilate. Arabian J. Chem. 2017, 10, S334–S338. [Google Scholar] [CrossRef]
- Hsieh, W.H.; Cheng, W.T.; Chen, L.C.; Lin, S.Y. Non-isothermal dehydration kinetic study of aspartame hemihydrate using DSC, TGA and DSC-FTIR microspectroscopy. Asian J. Pharm. Sci. 2018, 13, 212–219. [Google Scholar] [CrossRef]
- Sangeetha Margreat, S.; Ramalingam, S.; Sebastian, S.; Xavier, S.; Periandy, S.; Joseph, C.D.; Maria Julie, M. DFT, spectroscopic, DSC/TGA, electronic, biological and molecular docking investigation of 2,5-thiophenedicarboxylic acid: A promising anticancer agent. J. Mol. Struct. 2020, 1200, 127099. [Google Scholar] [CrossRef]
- Terekhov, R.P.; Selivanova, I.A.; Tyukavkina, N.A.; Ilyasov, I.R.; Zhevlakova, A.K.; Dzuban, A.V.; Bogdanov, A.G.; Davidovich, G.N.; Shylov, G.V.; Utenishev, A.N.; et al. Assembling the puzzle of taxifolin polymorphism. Molecules 2020, 25, 5437. [Google Scholar] [CrossRef]
- Yoshioka, S.; Stella, V.J. Stability of Drugs and Dosage Forms; Kluwer Academic Publisher: New York, NY, USA; Boston, MA, USA; Dordrecht, The Netherlands; London, UK; Moscow, Russia, 2002. [Google Scholar]
- Hogge, J.W.; Long, E.A.; Christian, M.L.; Fankhauser, A.D.; Quist, N.L.; Rice, D.M.; Wilding, W.V.; Knotts IV, T.A. Melting point, enthalpy of fusion and heat capacity measurements of several polyfunctional, industraially important compounds by differential scanning calorimetry. J. Chem. Eng. Data 2018, 63, 2500–2511. [Google Scholar] [CrossRef]
- Giron, D.; Mutz, M.; Garnier, S. Solid-state of pharmaceutical compounds. J. Therm. Anal. Calorim. 2004, 77, 709–747. [Google Scholar] [CrossRef]
- Guo, Y. Impact of solid-state characteristics to the physical stability of drug substance and drug product. In Handbook of Stability Testing in Pharmaceutical Development; Huynh-Ba, K., Ed.; Springer Science+Business Media, LLC: New York, NY, USA, 2009. [Google Scholar]
- Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=C64175&Type=IR-SPEC&Index=0#IR-SPEC (accessed on 27 February 2024).
- Available online: https://webbook.nist.gov/cgi/cbook.cgi?ID=C67561&Units=SI&Type=IR-SPEC&Index=0#IR-SPEC (accessed on 27 February 2024).
- Kerpel dos Santos, M.; Tassi Borille, B.; Flores Cruz, G.N.; Coppe, B.C.; Comiran, E.; Kaiser, S.; Fröehlich, P.E.; Limberger, R.P. Extraction optimization using Box-Behnken design and method validation for ethanol in oral fluid. Anal. Methods 2014, 6, 6095–6104. [Google Scholar] [CrossRef]
- Beynon, J.H.; Fontaine, A.E.; Lester, G.R. Mass spectrometry: The mass spectrum of methanol. Part I. Thermochemical information. Int. J. Mass Spectrom. Ion Physics 1968, 1, 1–24. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Clairotte, M. Fourier Transform Infrared (FTIR) spectroscopy for measurements of vehicle exhaust emissions: A review. Appl. Sci. 2021, 11, 7416. [Google Scholar] [CrossRef]
- Dammers, E.; Vigouroux, C.; Palm, M.; Mahieu, E.; Warneke, T.; Smale, D.; Langerock, B.; Franco, B.; Van Damme, M.; Schaap, M.; et al. Retrieval of ammonia from ground-based FTIR solar spectra. Atmos. Chem. Phys. 2015, 15, 12789–12803. [Google Scholar] [CrossRef]
- Griffith, D.W.T.; Galle, B. Flux measurements of NH3, N2O and CO2 using dual beam FTIR spectroscopy and the flux–gradient technique. Atmos. Environ. 2000, 34, 1087–1098. [Google Scholar] [CrossRef]
- Bai, M.; Suter, H.; Lam, S.K.; Davies, R.; Flesch, T.K.; Chen, D. Gaseous emissions from an intensive vegetable farm measured with slant-path FTIR technique. Agric. Forest. Meteorol. 2018, 258, 50–55. [Google Scholar] [CrossRef]
- Mellau, G.C.; Winnewisser, B.P.; Winnewisser, M. Near infrared emission spectrum of HCN. J. Mol. Spectrosc. 2008, 249, 23–42. [Google Scholar] [CrossRef]
- Choi, K.N.; Barker, E.F. Infrared absorption spectrum of hydrogen cyanide. Phys. Rev. 1932, 42, 777–785. [Google Scholar] [CrossRef]
- Gibier, M.; Girods, P.; Rogaume, Y. Development of an original and easy method for isocyanic acid (HNCO) calibration on FTIR spectrometer. Vib. Spectrosc. 2021, 116, 103290. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Yang, X.; Hu, L.; Liu, Y.; Wang, C. Evaluate the pyrolysis pathway of glycine and glycylglycine by TG–FTIR. J. Anal. Appl. Pyrolysis 2007, 80, 247–253. [Google Scholar] [CrossRef]
- Ruzi, M.; Anderson, D.T. Photodissociation of N-methylformamide isolated in solid parahydrogen. J. Chem. Phys. 2012, 137, 194313. [Google Scholar] [CrossRef] [PubMed]
- Fox, R.E. Threshold ionization of HCl by electron impact. J. Chem. Phys. 1960, 32, 385–386. [Google Scholar] [CrossRef]
- Ngohang, F.E.; Fontaine, G.; Gay, L.; Bourbigot, S. Revisited investigation of fire behavior of ethylene vinyl acetate/aluminum trihydroxide using a combination of mass loss cone, Fourier transform infrared spectroscopy and electrical low pressure impactor. Polym. Degrad. Stabil. 2014, 106, 26–35. [Google Scholar] [CrossRef]
- Galle, B.; Samuelsson, J.; Svensson, B.H.; Borjesson, G. Measurements of methane emissions from landfills using a time correlation tracer method based on FTIR absorption spectroscopy. Environ. Sci. Technol. 2001, 35, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Yu, B.; Shi, Y.; Mao, L.; Xie, J.; Pan, H.; Liu, Y.; Wang, W. Insight into hyper-branched aluminum phosphonate in combination with multiple phosphorus synergies for fire-safe epoxy resin composites. Polymers 2020, 12, 64. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Xu, Z.; Tao, R.; Mao, L.; Zhan, J.; Xiao, J.; Yu, T. Combustion and thermal properties of flame retardant polyurethane foam with ammonium polyphosphate synergized by phosphomolybdic acid. Front. Mater. Sci. 2022, 9, 944368. [Google Scholar] [CrossRef]
- Hao, J.; Che, Y.; Tian, Y.; Li, D.; Zhang, J.; Qiao, Y. Thermal cracking characteristics and kinetics of oil sand bitumen and its SARA fractions by TG–FTIR. Energ. Fuel. 2017, 31, 1295–1309. [Google Scholar] [CrossRef]
- Knaanie, R.; Sebek, J.; Tsuge, M.; Myllys, N.; Khriachtchev, L.; Rasanen, M.; Albee, B.; Potma, E.O.; Gerber, R.B. Infrared spectrum of toluene: Comparison of anharmonic isolated-molecule calculations and experiments in liquid phase and in a Ne matrix. J. Phys. Chem. A 2016, 120, 3380–3389. [Google Scholar] [CrossRef]
- Gellini, C.; Moroni, L.; Muniz-Miranda, M. High overtones of the C-H stretching vibrations in anisole and thioanisole. J. Phys. Chem. A 2002, 106, 10999–11007. [Google Scholar] [CrossRef]
- Chen, W.; Cazier, F.; Tittel, F.; Boucher, D. Measurements of benzene concentration by difference-frequency laser absorption spectroscopy. Appl. Opt. 2000, 39, 6238–6242. [Google Scholar] [CrossRef] [PubMed]
- Shamsipur, M.; Pourmortazavi, S.M.; Beigi, A.A.M.; Heydari, R.; Khatibi, M. Thermal stability and decomposition kinetic studies of acyclovir and zidovudine drug compounds. AAPS PharmSciTech 2013, 14, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.I.; Gomes, E.C.; Soares, C.D.; Oliveira, M.A. Thermal behavior study and decomposition kinetics of amiodarone hydrochloride under isothermal conditions. Drug Dev. Ind. Pharm. 2011, 37, 638–647. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Zou, L.; Shao, H.; Zhao, Q.; Wang, Y. Research on thermal behaviors and NOx release properties during combustion of sewage sludge, sawdust, and their blends. ASC Omega 2022, 7, 20172–20185. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Zheng, M.; Li, K.; Wang, H.; Wang, J.; Bao, G.; Wang, L. Characteristics of nitrogen oxide emissions from combustion synthesis of a CuO oxygen carrier. Fuel Process. Technol. 2022, 233, 107295. [Google Scholar] [CrossRef]
- Pagano, M.; Faggio, C. The use of erythrocyte fragility to assess xenobiotic cytotoxicity. Cell Biochem. Funct. 2015, 33, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Sæbø, I.P.; Bjørås, M.; Franzyk, H.; Helgesen, E.; Booth, J.A. Optimization of the hemolysis assay for the assessment of cytotoxicity. Int. J. Mol. Sci. 2023, 24, 2914. [Google Scholar] [CrossRef] [PubMed]
- Tzankova, D.; Vladimirova, S.; Aluani, D.; Yordanov, Y.; Peikova, L.; Georgieva, M. Synthesis, in vitro safety and antioxidant activity of new pyrrole hydrazones. Acta Pharm. 2020, 70, 303–324. [Google Scholar] [CrossRef]
- Séguy, L.; Groo, A.-C.; Goux, D.; Hennequin, D.; Malzert-Fréon, A. Design of non-haemolytic nanoemulsions for intravenous administration of hydrophobic APIs. Pharmaceutics 2020, 12, 1141. [Google Scholar] [CrossRef]
- Kundishora, A.; Sithole, S.; Mukanganyama, S. Determination of the cytotoxic effect of different leaf extracts from Parinari curatellifolia (Chrysobalanaceae). J. Toxicol. 2020, 2020, 8831545. [Google Scholar] [CrossRef]
Compound | Inert Atmosphere | Oxidative Atmosphere | ||||
---|---|---|---|---|---|---|
Tonset/°C | Tmelt/°C | ΔH/J/g | Tonset/°C | Tmelt/°C | ΔH/J/g | |
1 | 213 | 215 | 135.8 | 212 | 215 | 147.3 |
2 | 171 | 173 | 152.2 | 170 | 172 | 161.6 |
3 | 207 | 210 | 143.6 | 206 | 211 | 151.9 |
4 | 218 | 220 | 123.8 | 217 | 221 | 134.3 |
5 | 194 | 196 | 135.1 | 194 | 196 | 143.9 |
6 | 183 | 185 | 126.7 | 182 | 185 | 135.1 |
Compound | Decomposition Process | |||||||
---|---|---|---|---|---|---|---|---|
First Decomposition Stage | Second Decomposition Stage | |||||||
T5%/°C | Tmax1/°C | Δm1/% | Tmax1a/°C | Δm1a/% | Tmax2/°C | Δm2/% | rm/% | |
1 | 278 | 301 | 40.0 | 354/448 | 32.0 | 726 | 28.0 | 0 |
2 | 273 | 298 | 36.9 | 345/498 | 31.8 | 715 | 31.3 | 0 |
3 | 280 | 300 | 38.7 | 382 | 37.1 | 733 | 24.2 | 0 |
T5%/°C | Tmax1/Tmax1′°C | - | Tmax1a/ °C | Δm1 + Δm1a/% | Tmax2/°C | Δm2/% | rm/% | |
4 | 260 | 288/309 | - | 407 | 65.7 | - | 9.0 | 25.3 |
5 | 256 | 278/326 | - | 486 | 68.4 | - | 4.0 | 27.6 |
6 | 257 | 280/335 | - | 381/401 | 63.1 | - | 9.3 | 27.5 |
Compound | Decomposition Process | ||||||
---|---|---|---|---|---|---|---|
First Decomposition Stage | Second Decomposition Stage | ||||||
T5%/°C | Tmax1/Tmax1′/°C | Δm1/% | Tmax1a/°C | Δm1a/% | Tmax2/°C | Δm2/% | |
1 | 280 | 297 | 38.6 | 359/431 | 29.5 | 611 | 35.2 |
2 | 277 | 299 | 33.9 | 357/422 | 31.9 | 595 | 34.2 |
3 | 276 | 297 | 33.5 | 364/393 | 31.2 | 562 | 35.3 |
4 | 259 | 281/326 | 36.8 | 433 | 16.8 | 609 | 46.4 |
5 | 252 | 274/339 | 33.5 | 383 | 9.7 | 577 | 56.8 |
6 | 257 | 279/337 | 38.8 | 403 | 13.8 | 581 | 47.4 |
Compound/Control | Haemolytic Activity (%) a | Inhibition (%) of Oxidative Haemolysis | |
---|---|---|---|
Induced by AAPH b | Induced by H2O2 c | ||
1 | 3.08 ± 0.22 | 81 ± 6.7 | 75 ± 7.0 |
2 | 3.29 ± 0.24 | 77 ± 5.5 | 48 ± 3.3 |
3 | 2.64 ± 0.11 | 81 ± 5.8 | 40 ± 3.8 |
4 | 3.13 ± 0.19 | 64 ± 4.0 | 82 ± 7.1 |
5 | 3.46 ± 0.25 | 61 ± 4.8 | 53 ± 3.8 |
6 | 3.05 ± 0.24 | 79 ± 6.1 | 52 ± 4.1 |
Triton X-100 | 100 | - | - |
Ascorbic acid | - | 100 | - |
Trolox | - | - | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Worzakowska, M.; Sztanke, K.; Sztanke, M. Studies on the Thermal Decomposition Course of Nitrogen-Rich Heterocyclic Esters as Potential Drug Candidates and Evaluation of Their Thermal Stability and Properties. Int. J. Mol. Sci. 2024, 25, 4768. https://doi.org/10.3390/ijms25094768
Worzakowska M, Sztanke K, Sztanke M. Studies on the Thermal Decomposition Course of Nitrogen-Rich Heterocyclic Esters as Potential Drug Candidates and Evaluation of Their Thermal Stability and Properties. International Journal of Molecular Sciences. 2024; 25(9):4768. https://doi.org/10.3390/ijms25094768
Chicago/Turabian StyleWorzakowska, Marta, Krzysztof Sztanke, and Małgorzata Sztanke. 2024. "Studies on the Thermal Decomposition Course of Nitrogen-Rich Heterocyclic Esters as Potential Drug Candidates and Evaluation of Their Thermal Stability and Properties" International Journal of Molecular Sciences 25, no. 9: 4768. https://doi.org/10.3390/ijms25094768
APA StyleWorzakowska, M., Sztanke, K., & Sztanke, M. (2024). Studies on the Thermal Decomposition Course of Nitrogen-Rich Heterocyclic Esters as Potential Drug Candidates and Evaluation of Their Thermal Stability and Properties. International Journal of Molecular Sciences, 25(9), 4768. https://doi.org/10.3390/ijms25094768