Rapid Determination of Kinetic Constants for Slow-Binding Inhibitors and Inactivators of Human Histone Deacetylase 8
Abstract
:1. Introduction
2. Results
2.1. Reversible HDAC8 Inhibitors
2.2. Irreversible Covalent Inactivators
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Determining Time-Dependent IC50 Values
4.3. Calculation of Binding Constants and Kinetic Parameters
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Falkenberg, K.J.; Johnstone, R.W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov. 2014, 13, 673–691. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Tang, T.; Li, R.; Huang, Z.; Ling, D.; Zheng, L.; Ding, Y.; Liu, T.; Xu, W.; Zhu, F.; et al. Drug Repurposing of Quisinostat to Discover Novel Plasmodium falciparum HDAC1 Inhibitors with Enhanced Triple-Stage Antimalarial Activity and Improved Safety. J. Med. Chem. 2022, 65, 4156–4181. [Google Scholar] [CrossRef] [PubMed]
- Chua, M.J.; Arnold, M.S.; Xu, W.; Lancelot, J.; Lamotte, S.; Spath, G.F.; Prina, E.; Pierce, R.J.; Fairlie, D.P.; Skinner-Adams, T.S.; et al. Effect of clinically approved HDAC inhibitors on Plasmodium, Leishmania and Schistosoma parasite growth. Int. J. Parasitol. Drugs Drug Resist. 2016, 7, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Ranjbarvaziri, S.; Zeng, A.; Wu, I.; Greer-Short, A.; Farshidfar, F.; Budan, A.; Xu, E.; Shenwai, R.; Kozubov, M.; Li, C.; et al. Targeting HDAC6 to treat heart failure with preserved ejection fraction in mice. Nat. Commun. 2024, 15, 1352. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xie, C.; Chen, Q.; Zhuang, S. HDAC11, an emerging therapeutic target for metabolic disorders. Front. Endocrinol. (Lausanne) 2022, 13, 989305. [Google Scholar] [CrossRef] [PubMed]
- Bondarev, A.D.; Attwood, M.M.; Jonsson, J.; Chubarev, V.N.; Tarasov, V.V.; Schioth, H.B. Recent developments of HDAC inhibitors: Emerging indications and novel molecules. Br. J. Clin. Pharmacol. 2021, 87, 4577–4597. [Google Scholar] [CrossRef] [PubMed]
- Burli, R.W.; Luckhurst, C.A.; Aziz, O.; Matthews, K.L.; Yates, D.; Lyons, K.A.; Beconi, M.; McAllister, G.; Breccia, P.; Stott, A.J.; et al. Design, synthesis, and biological evaluation of potent and selective class IIa histone deacetylase (HDAC) inhibitors as a potential therapy for Huntington’s disease. J. Med. Chem. 2013, 56, 9934–9954. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.W.; Lee, J.Y.; Lancia, D.R., Jr.; Ng, P.Y.; Han, B.; Thomason, J.R.; Lynes, M.S.; Marshall, C.G.; Conti, C.; Collis, A.; et al. Discovery of novel N-hydroxy-2-arylisoindoline-4-carboxamides as potent and selective inhibitors of HDAC11. Bioorg. Med. Chem. Lett. 2018, 28, 2143–2147. [Google Scholar] [CrossRef]
- König, B.; Watson, P.R.; Reßing, N.; Cragin, A.D.; Schäker-Hübner, L.; Christianson, D.W.; Hansen, F.K. Difluoromethyl-1,3,4-oxadiazoles Are Selective, Mechanism-Based, and Essentially Irreversible Inhibitors of Histone Deacetylase 6. J. Med. Chem. 2023, 66, 13821–13837. [Google Scholar] [CrossRef]
- Whitehead, L.; Dobler, M.R.; Radetich, B.; Zhu, Y.; Atadja, P.W.; Claiborne, T.; Grob, J.E.; McRiner, A.; Pancost, M.R.; Patnaik, A.; et al. Human HDAC isoform selectivity achieved via exploitation of the acetate release channel with structurally unique small molecule inhibitors. Bioorg. Med. Chem. 2011, 19, 4626–4634. [Google Scholar] [CrossRef]
- Kattar, S.D.; Surdi, L.M.; Zabierek, A.; Methot, J.L.; Middleton, R.E.; Hughes, B.; Szewczak, A.A.; Dahlberg, W.K.; Kral, A.M.; Ozerova, N.; et al. Parallel medicinal chemistry approaches to selective HDAC1/HDAC2 inhibitor (SHI-1:2) optimization. Bioorg. Med. Chem. Lett. 2009, 19, 1168–1172. [Google Scholar] [CrossRef] [PubMed]
- Schweipert, M.; Jansch, N.; Sugiarto, W.O.; Meyer-Almes, F.J. Kinetically selective and potent inhibitors of HDAC8. Biol. Chem. 2019, 400, 733–743. [Google Scholar] [CrossRef]
- Wagner, F.; Zhang, Y.-L.; Fass, D.; Joseph, N.; Gale, J.; Weïwer, M.; McCarren, P.; Fisher, S.; Kaya, T.; Zhao, W.-N. Kinetically selective inhibitors of histone deacetylase 2 (HDAC2) as cognition enhancers. Chem. Sci. 2015, 6, 804–815. [Google Scholar] [CrossRef]
- Boike, L.; Henning, N.J.; Nomura, D.K. Advances in covalent drug discovery. Nat. Rev. Drug Discov. 2022, 21, 881–898. [Google Scholar] [CrossRef]
- Chang, A.; Schiebel, J.; Yu, W.; Bommineni, G.R.; Pan, P.; Baxter, M.V.; Khanna, A.; Sotriffer, C.A.; Kisker, C.; Tonge, P.J. Rational optimization of drug-target residence time: Insights from inhibitor binding to the Staphylococcus aureus FabI enzyme-product complex. Biochemistry 2013, 52, 4217–4228. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Hillger, J.M.; IJzerman, A.P.; Heitman, L.H. Drug-Target Residence Time—A Case for G Protein-Coupled Receptors. Med. Res. Rev. 2014, 34, 856–892. [Google Scholar] [CrossRef] [PubMed]
- Knockenhauer, K.E.; Copeland, R.A. The importance of binding kinetics and drug-target residence time in pharmacology. Br. J. Pharmacol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Dierynck, I.; De Wit, M.; Gustin, E.; Keuleers, I.; Vandersmissen, J.; Hallenberger, S.; Hertogs, K. Binding kinetics of darunavir to human immunodeficiency virus type 1 protease explain the potent antiviral activity and high genetic barrier. J. Virol. 2007, 81, 13845–13851. [Google Scholar] [CrossRef]
- Georgi, V.; Schiele, F.; Berger, B.T.; Steffen, A.; Marin Zapata, P.A.; Briem, H.; Menz, S.; Preusse, C.; Vasta, J.D.; Robers, M.B.; et al. Binding Kinetics Survey of the Drugged Kinome. J. Am. Chem. Soc. 2018, 140, 15774–15782. [Google Scholar] [CrossRef]
- Tummino, P.J.; Copeland, R.A. Residence Time of Receptor-Ligand Complexes and Its Effect on Biological Function. Biochemistry 2008, 47, 5481–5492. [Google Scholar] [CrossRef]
- Copeland, R.A.; Pompliano, D.L.; Meek, T.D. Drug–target residence time and its implications for lead optimization. Nat. Rev. Drug Discov. 2006, 5, 730–739. [Google Scholar] [CrossRef] [PubMed]
- Swinney, D.C. The role of binding kinetics in therapeutically useful drug action. Curr. Opin. Drug Discov. Dev. 2009, 12, 31–39. [Google Scholar]
- Zhang, R.; Monsma, F. The importance of drug-target residence time. Curr. Opin. Drug Discov. Dev. 2009, 12, 488. [Google Scholar]
- Lu, H.; England, K.; am Ende, C.; Truglio, J.J.; Luckner, S.; Reddy, B.G.; Marlenee, N.L.; Knudson, S.E.; Knudson, D.L.; Bowen, R.A.; et al. Slow-onset inhibition of the FabI enoyl reductase from francisella tularensis: Residence time and in vivo activity. ACS Chem. Biol. 2009, 4, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Walkup, G.K.; You, Z.; Ross, P.L.; Allen, E.K.; Daryaee, F.; Hale, M.R.; O’Donnell, J.; Ehmann, D.E.; Schuck, V.J.; Buurman, E.T.; et al. Translating slow-binding inhibition kinetics into cellular and in vivo effects. Nat. Chem. Biol. 2015, 11, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Lockwood, J.T.; Remington, G. Emerging drugs for antipsychotic-induced tardive dyskinesia: Investigational drugs in Phase II and Phase III clinical trials. Expert Opin. Emerg. Drugs 2015, 20, 407–421. [Google Scholar] [CrossRef] [PubMed]
- Byrd, J.C.; Furman, R.R.; Coutre, S.E.; Flinn, I.W.; Burger, J.A.; Blum, K.A.; Grant, B.; Sharman, J.P.; Coleman, M.; Wierda, W.G.; et al. Targeting BTK with Ibrutinib in Relapsed Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2013, 369, 32–42. [Google Scholar] [CrossRef]
- Yver, A. Osimertinib (AZD9291)-a science-driven, collaborative approach to rapid drug design and development. Ann. Oncol. 2016, 27, 1165–1170. [Google Scholar] [CrossRef]
- Clinical Trials of Covalent Drugs. Available online: https://classic.clinicaltrials.gov/ct2/results?term=covalent&Search=Apply&recrs=a&recrs=f&recrs=d&age_v=&gndr=&type=&rslt (accessed on 4 April 2024).
- Toke, O.; Monsey, J.D.; Cistola, D.P. Kinetic mechanism of ligand binding in human ileal bile acid binding protein as determined by stopped-flow fluorescence analysis. Biochemistry 2007, 46, 5427–5436. [Google Scholar] [CrossRef]
- Di Trani, J.M.; De Cesco, S.; O’Leary, R.; Plescia, J.; do Nascimento, C.J.; Moitessier, N.; Mittermaier, A.K. Rapid measurement of inhibitor binding kinetics by isothermal titration calorimetry. Nat. Commun. 2018, 9, 893. [Google Scholar] [CrossRef]
- Meyer-Almes, F.-J. Kinetic binding assays for the analysis of protein–ligand interactions. Drug Discov. Today Technol. 2015, 17, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Copeland, R.A. Evaluation of enzyme inhibitors in drug discovery. A guide for medicinal chemists and pharmacologists. Methods Biochem. Anal. 2005, 46, 1–265. [Google Scholar] [PubMed]
- Jansch, N.; Fruhauf, A.; Schweipert, M.; Debarnot, C.; Erhardt, M.; Brenner-Weiss, G.; Kirschhofer, F.; Jasionis, T.; Capkauskaite, E.; Zubriene, A.; et al. 3-Chloro-5-Substituted-1,2,4-Thiadiazoles (TDZs) as Selective and Efficient Protein Thiol Modifiers. ChemBioChem 2022, 23, e202200417. [Google Scholar] [CrossRef] [PubMed]
- Krippendorff, B.F.; Neuhaus, R.; Lienau, P.; Reichel, A.; Huisinga, W. Mechanism-based inhibition: Deriving K(I) and k(inact) directly from time-dependent IC(50) values. J. Biomol. Screen. 2009, 14, 913–923. [Google Scholar] [CrossRef] [PubMed]
- Polasek, T.M.; Elliot, D.J.; Lewis, B.C.; Miners, J.O. Mechanism-based inactivation of human cytochrome P4502C8 by drugs in vitro. J. Pharmacol. Exp. Ther. 2004, 311, 996–1007. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Iyer, K.R.; Hayes, R.N.; Sinz, M.W.; Woolf, T.F.; Hollenberg, P.F. Inactivation of cytochrome P450 3A4 by bergamottin, a component of grapefruit juice. Chem. Res. Toxicol. 1998, 11, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.J.; Jones, D.R.; Wang, Y.H.; Grimm, S.W.; Hall, S.D. Reversible and irreversible inhibition of CYP3A enzymes by tamoxifen and metabolites. Xenobiotica 2002, 32, 863–878. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.L.; Kent, U.M.; Hollenberg, P.F. Mechanism-based inactivation of cytochrome P450 3A4 by 17 alpha-ethynylestradiol: Evidence for heme destruction and covalent binding to protein. J. Pharmacol. Exp. Ther. 2002, 301, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Meyners, C.; Mertens, M.; Wessig, P.; Meyer-Almes, F.J. A Fluorescence-Lifetime-Based Binding Assay for Class IIa Histone Deacetylases. Chemistry 2017, 23, 3107–3116. [Google Scholar] [CrossRef] [PubMed]
- Meyners, C.; Baud, M.G.; Fuchter, M.J.; Meyer-Almes, F.J. Kinetic method for the large-scale analysis of the binding mechanism of histone deacetylase inhibitors. Anal. Biochem. 2014, 460, 39–46. [Google Scholar] [CrossRef]
- Schweipert, M.; Amurthavasan, A.; Meyer-Almes, F.J. Continuous enzyme activity assay for high-throughput classification of histone deacetylase 8 inhibitors. Explor. Target. Antitumor. Ther. 2023, 4, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, S.; Ramos, J.; Luo, W.; Sirisawad, M.; Verner, E.; Buggy, J.J. A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia 2008, 22, 1026–1034. [Google Scholar] [CrossRef]
- Muth, M.; Jansch, N.; Kopranovic, A.; Kramer, A.; Wossner, N.; Jung, M.; Kirschhofer, F.; Brenner-Weiss, G.; Meyer-Almes, F.J. Covalent inhibition of histone deacetylase 8 by 3,4-dihydro-2H-pyrimido [1,2-c][1,3]benzothiazin-6-imine. Biochim. Biophys. Acta Gen. Subj. 2019, 1863, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Jansch, N.; Sugiarto, W.O.; Muth, M.; Kopranovic, A.; Desczyk, C.; Ballweg, M.; Kirschhofer, F.; Brenner-Weiss, G.; Meyer-Almes, F.J. Switching the Switch: Ligand Induced Disulfide Formation in HDAC8. Chemistry 2020, 26, 13249–13255. [Google Scholar] [CrossRef]
- Wolff, B.; Jansch, N.; Sugiarto, W.O.; Fruhschulz, S.; Lang, M.; Altintas, R.; Oehme, I.; Meyer-Almes, F.J. Synthesis and structure activity relationship of 1, 3-benzo-thiazine-2-thiones as selective HDAC8 inhibitors. Eur. J. Med. Chem. 2019, 184, 111756. [Google Scholar] [CrossRef] [PubMed]
- Kleinschek, A.; Meyners, C.; Digiorgio, E.; Brancolini, C.; Meyer-Almes, F.J. Potent and Selective Non-hydroxamate Histone Deacetylase 8 Inhibitors. ChemMedChem 2016, 11, 2598–2606. [Google Scholar] [CrossRef] [PubMed]
- Gorin, G.; Martic, P.A.; Doughty, G. Kinetics of the reaction of N-ethylmaleimide with cysteine and some congeners. Arch. Biochem. Biophys. 1966, 115, 593–597. [Google Scholar] [CrossRef]
- Bulaj, G.; Kortemme, T.; Goldenberg, D.P. Ionization-reactivity relationships for cysteine thiols in polypeptides. Biochemistry 1998, 37, 8965–8972. [Google Scholar] [CrossRef]
- Volund, A. Application of the four-parameter logistic model to bioassay: Comparison with slope ratio and parallel line models. Biometrics 1978, 34, 357–365. [Google Scholar] [CrossRef]
- Cheng, Y.-C.; Prusoff, W.H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 1973, 22, 3099–3108. [Google Scholar]
Literature | Reanalysis | |||
---|---|---|---|---|
Substance | kinact (min−1) | KI (µM) | kinact (min−1) | KI (µM) |
Verapamil [36] (CYP2C8) | 0.065 | 17.45 | 0.082 ± 0.004 | 25 ± 4 |
Fluoxetine [36] (CYP2C8) | 0.083 | 294 | - | - |
Isoniazid [36] (CYP2C8) | 0.042 | 374 | 0.036 ± 0.003 | 280 ± 40 |
Phenelzine [36] (CYP2C8) | 0.243 | 1.2 | 0.21 ± 0.02 | 0.84 ± 0.24 |
Nortriptyine [36] (CYP2C8) | 0.036 | 49.9 | 0.044 ± 0.003 | 66 ± 12 |
Bergamottin [37] (CYP 3A4) | 0.3 | 7.7 | 0.39 ± 0.05 | 12 ± 5 |
Tamoxifen [38] (CYP3A4) | 0.04 | 0.2 | 0.043 ± 0.002 | 0.38 ± 0.12 |
N-desmethy-ltamoxifen [38] (CYP3A4) | 0.08 | 2.6 | 0.083 ± 0.007 | 2.5 ± 1.0 |
Ethynyl-estradiol [39] (CYP3A4) | 0.04 | 18 | 0.036 ± 0.008 | 5.4 ± 2.5 |
Cpd | IC50 (µM) | IC50 (µM) (Lit.) | kon × 103 (M−1s−1) | koff × 10−4 (s−1) | Ki (µM) * | kr × 10−4 (s−1) | k−r × 10−4 (s−1) | |
---|---|---|---|---|---|---|---|---|
SAHA | Fast reversible | 0.9 ± 0.2 | 1.9 [42] | - | - | |||
PCI-34051 | 0.11 ± 0.01 | 0.01 [43] | - | - | 0.04 | |||
SVE04 | 4.2 ± 1.1 | - | - | - | 1.3 | |||
SVE27 | 2.6 ± 0.4 | - | - | - | 0.8 | |||
mm182 | Slow 1-step | 0.16–1.3 | 0.31 [40] | 2.3 ± 0.2 | 7.3 ± 0.8 | 0.31 | ||
mm255 | 0.02–0.16 | 0.058 [40] | 37 ± 2 | 13 ± 2 | 0.04 | |||
mm220 | Slow 2-step | 0.19–1.88 | 0.14 [40] | 2.6 | 40 ± 3 | 7.7 ± 0.7 | ||
SATFMK | 0.02–0.10 | 0.021 [42] | 0.14 | 180 ± 67 | n.d. |
Cpd | IC50 (µM) | IC50 (µM) (Lit.) | kinact/KI (M−1s−1) | KI (µM) * | kinact (min−1) |
---|---|---|---|---|---|
Ebselen | 0.08 ± 0.03 | - | n.d. | - | - |
P2742 | 0.10 ± 0.02 | 0.11 [47] | n.d. | - | - |
NEM | 0.7–42 | - | 133 ± 3 | - | - |
TJ-19-24 | 0.4–4 | - | 2825 | 5.9 ± 0.8 | 1.0 ± 0.1 |
TJ-19-28 | 0.3–3 | - | 2500 | 12 ± 3 | 1.8 ± 0.2 |
SAH03 | 2.9–20 | 0.26 [46] | 12,500 | 2.0 ± 1.3 | 1.5 ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopranovic, A.; Meyer-Almes, F.-J. Rapid Determination of Kinetic Constants for Slow-Binding Inhibitors and Inactivators of Human Histone Deacetylase 8. Int. J. Mol. Sci. 2024, 25, 5593. https://doi.org/10.3390/ijms25115593
Kopranovic A, Meyer-Almes F-J. Rapid Determination of Kinetic Constants for Slow-Binding Inhibitors and Inactivators of Human Histone Deacetylase 8. International Journal of Molecular Sciences. 2024; 25(11):5593. https://doi.org/10.3390/ijms25115593
Chicago/Turabian StyleKopranovic, Aleksandra, and Franz-Josef Meyer-Almes. 2024. "Rapid Determination of Kinetic Constants for Slow-Binding Inhibitors and Inactivators of Human Histone Deacetylase 8" International Journal of Molecular Sciences 25, no. 11: 5593. https://doi.org/10.3390/ijms25115593
APA StyleKopranovic, A., & Meyer-Almes, F. -J. (2024). Rapid Determination of Kinetic Constants for Slow-Binding Inhibitors and Inactivators of Human Histone Deacetylase 8. International Journal of Molecular Sciences, 25(11), 5593. https://doi.org/10.3390/ijms25115593