NinaB and BCO Collaboratively Participate in the β-Carotene Catabolism in Crustaceans: A Case Study on Chinese Mitten Crab Eriocheir sinensis
Abstract
:1. Introduction
2. Results
2.1. Sequence Characterization and Phylogenetic Analysis of NinaB and BCO1
2.2. Gene Expression Patterns of EsNinaBl and EsBCO1l
2.3. Recombinant EsBCO1l and EsNinaBl Could Cleave β-Carotene
2.4. Knockdown of EsNinaBl and EsBCO1l Increases β-Carotene Deposition in the Hepatopancreas
2.5. Carotenoid Intake Influences the Expression of NinaBl and BCO1l
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. RNA Extraction and cDNA Synthesis
4.3. Gene Bioinformatic Analysis
4.4. In vivo Verification of EsNinaBl and EsBCO1l Functions
4.5. In Vitro Verification of EsNinaBl and EsBCO1l Function in E. coli
4.6. Carotenoid Feeding
4.7. Quantitative PCR
4.8. Carotenoid Extraction and HPLC Analysis
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stahl, W.; Sies, H. Bioactivity and protective effects of natural carotenoids. Biochim. Biophys. Acta-Mol. Basis Dis. 2005, 1740, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Šesták, Z.; Britton, G.; Liaaen-Jensen, S.; Pfander, H. Carotenoids. Handbook. Photosynthetica 2004, 42, 186. [Google Scholar] [CrossRef]
- Maoka, T. Carotenoids in marine animals. Mar. Drugs 2011, 9, 278–293. [Google Scholar] [CrossRef] [PubMed]
- Poliakov, E.; Soucy, J.; Gentleman, S.; Rogozin, I.B.; Redmond, T.M. Phylogenetic analysis of the metazoan carotenoid oxygenase superfamily: A new ancestral gene assemblage of BCO-like (BCOL) proteins. Sci. Rep. 2017, 7, 13192. [Google Scholar] [CrossRef] [PubMed]
- Giuliano, G.; Al-Babili, S.; von Lintig, J. Carotenoid oxygenases: Cleave it or leave it. Trends Plant Sci. 2003, 8, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Amengual, J.; Widjaja-Adhi, M.A.K.; Rodriguez-Santiago, S.; Hessel, S.; Golczak, M.; Palczewski, K.; von Lintig, J. Two carotenoid oxygenases contribute to mammalian provitamin A metabolism. J. Biol. Chem. 2013, 288, 34081–34096. [Google Scholar] [CrossRef] [PubMed]
- Oberhauser, V.; Voolstra, O.; Bangert, A.; von Lintig, J.; Vogt, K. NinaB combines carotenoid oxygenase and retinoid isomerase activity in a single polypeptide. Proc. Natl. Acad. Sci. USA 2008, 105, 19000–19005. [Google Scholar] [CrossRef] [PubMed]
- von Lintig, J.; Vogt, K. Vitamin A formation in animals: Molecular identification and functional characterization of carotene cleaving enzymes. J. Nutr. 2004, 134, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Redmond, T.M.; Gentleman, S.; Duncan, T.; Yu, S.; Wiggert, B.; Gantt, E.; Cunningham, F.X. Identification, expression, and substrate specificity of a mammalian β-carotene 15,15′-dioxygenase. J. Biol. Chem. 2001, 276, 6560–6565. [Google Scholar] [CrossRef]
- Hessel, S.; Eichinger, A.; Isken, A.; Amengual, J.; Hunzelmann, S.; Hoeller, U.; Elste, V.; Hunziker, W.; Goralczyk, R.; Oberhauser, V.; et al. CMO1 deficiency abolishes vitamin A production from β-carotene and alters lipid metabolism in mice. J. Biol. Chem. 2007, 282, 33553–33561. [Google Scholar] [CrossRef]
- Redmond, T.M.; Poliakov, E.; Yu, S.; Tsai, J.Y.; Lu, Z.J.; Gentleman, S. Mutation of key residues of RPE65 abolishes its enzymatic role as isomerohydrolase in the visual cycle. Proc. Natl. Acad. Sci. USA 2005, 102, 13658–13663. [Google Scholar] [CrossRef] [PubMed]
- Lampert, J.M.; Holzschuh, J.; Hessel, S.; Driever, W.; Vogt, K.; von Lintig, J. Provitamin A conversion to retinal via the β, β-carotene-15,15′-oxygenase (bcox) is essential for pattern formation and differentiation during zebrafish embryogenesis. Development 2003, 130, 2173–2186. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Li, S.; Moghrabi, W.N.; Philp, A.R.; Travis, G.H.; Jin, M.; Li, S.; Moghrabi, W.N.; Philp, A.R.; Travis, G.H. Mutational analysis to determine key residues essential for activity and membrane association of RPE65 isomerohydrolase. Algebr. Geom. Topol. 2006, 12, 805–827. [Google Scholar]
- von Lintig, J.; Dreher, A.; Kiefer, C.; Wernet, M.F.; Vogt, K. Analysis of the blind Drosophila mutant ninaB identifies the gene encoding the key enzyme for vitamin A formation in vivo. Proc. Natl. Acad. Sci. USA 2001, 98, 1130–1135. [Google Scholar] [CrossRef] [PubMed]
- Chai, C.L.; Xu, X.; Sun, W.Z.; Zhang, F.; Ye, C.; Ding, G.S.; Li, J.T.; Zhong, G.X.; Xiao, W.; Liu, B.B.; et al. Characterization of the novel role of NinaB orthologs from Bombyx mori and Tribolium castaneum. Insect Biochem. Mol. Biol. 2019, 109, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.L.; Pan, C.X.; Zhang, M.J. A novel gene Bombyx mori carotenoid oxygenases and retinal isomerase (BmCORI) related to β-carotene depletion. Biochem. Genet. 2020, 58, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Yu, Y.; Zhang, C.S.; Li, S.H.; Zhang, X.J.; Li, F.H. Characterization and function analysis of the beta-carotene oxygenase-like genes in carotenoids metabolism of the ridgetail white prawn Exopalaemon carinicauda. Front. Physiol. 2020, 11, 745. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.Y.; Yan, C.C.; Liu, M.F.; Liu, Y.J.; Wang, W.Z.; Cheng, W.Z.; Yang, F.S.; Zhang, J.Q. CRISPR/Cas9-mediated deletion of one carotenoid isomerooxygenase gene (EcNinaB-X1) from Exopalaemon carinicauda. Fish Shellfish. Immunol. 2020, 97, 421–431. [Google Scholar] [CrossRef]
- During, A.; Albaugh, G.; Smith, J.C. Characterization of β-carotene 15,15′-dioxygenase activity in TC7 clone of human intestinal cell line Caco-2. Biochem. Biophys. Res. Commun. 1998, 249, 467–474. [Google Scholar] [CrossRef]
- Cai, X.; Conley, S.M.; Naash, M.I. RPE65: Role in the visual cycle, human retinal disease, and gene therapy. Ophthalmic Genet. 2009, 30, 57–62. [Google Scholar] [CrossRef]
- Marlhens, F.; Bareil, C.; Griffoin, J.M.; Zrenner, E.; Amalric, P.; Eliaou, C.; Liu, S.Y.; Harris, E.; Redmond, T.M.; Arnaud, B.; et al. Mutations in RPE65 cause Leber’s congenital amaurosis. Nat. Genet. 1997, 17, 139–141. [Google Scholar] [CrossRef]
- Wang, P.; Liu, B.; Zhang, D.L.; Belew, M.Y.; Tissenbaum, H.A.; Cheng, J.X. Imaging lipid metabolism in live Caenorhabditis elegans using fingerprint vibrations. Angew. Chem. -Int. Ed. 2014, 53, 11787–11792. [Google Scholar] [CrossRef] [PubMed]
- Lei, C.; Li, J.H.; Zheng, Z.; Du, X.D.; Deng, Y.W. Molecular cloning, expression pattern of β-carotene 15,15-dioxygenase gene and association analysis with total carotenoid content in pearl oyster Pinctada fucata martensii. Comp. Biochem. Physiol. B-Biochem. Mol. Biol. 2019, 229, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, S.Y.; Xun, X.G.; Zhang, M.R.; Wang, S.; Li, H.D.; Zhao, L.; Fu, Q.; Wang, H.Z.; Li, T.T.; et al. A carotenoid oxygenase is responsible for muscle coloration in scallop. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2019, 1864, 966–975. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.Y.; Fu, X.Y.; Wang, X. C, Key lipid molecules in hepatopancreas of Eriocheir sinensis: Identification and thermal oxidative degradation characteristics. J. Food Biochem. 2021, 45, e13734. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Tao, N.-P.; Wu, X.G.; Wang, X.C. Metabolomics of the hepatopancreas in Chinese mitten crabs (Eriocheir sinensis). Food Res. Int. 2022, 152, 110914. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.Q.; Zu, L.; Cheng, Y.X.; Wade, N.M.; Liu, J.G.; Wu, X.G. Carapace color affects carotenoid composition and nutritional quality of the Chinese mitten crab, Eriochier sinensis. LWT-Food Sci. Technol. 2020, 126, 109286. [Google Scholar] [CrossRef]
- Long, X.W.; Wu, X.G.; Zhao, L.; Liu, J.G.; Cheng, Y.X. Effects of dietary supplementation with Haematococcus pluvialis cell powder on coloration, ovarian development and antioxidation capacity of adult female Chinese mitten crab, Eriocheir sinensis. Aquaculture 2017, 473, 545–553. [Google Scholar] [CrossRef]
- Liu, Y.F.; Li, M.J.; Zhang, M.; Yang, Z.L.; Chen, X.W.; Wu, X.G. Evolution and expression analysis of carotenoid cleavage oxygenase gene family in Chinese mitten crab Eriocheir sinensis. Int. J. Biol. Macromol. 2024, 257, 128475. [Google Scholar] [CrossRef]
- Jiang, X.D.; Zu, L.; Wang, Z.Y.; Cheng, Y.X.; Yang, Y.H.; Wu, X.G. Micro-algal astaxanthin could improve the antioxidant capability, immunity and ammonia resistance of juvenile Chinese mitten crab, Eriocheir sinensis. Fish Shellfish. Immunol. 2020, 102, 499–510. [Google Scholar] [CrossRef]
- Voolstra, O.; Oberhauser, V.; Sumser, E.; Meyer, N.E.; Maguire, M.E.; Huber, A.; von Lintig, J. NinaB is essential for Drosophila vision but induces retinal degeneration in opsin-deficient photoreceptors. J. Biol. Chem. 2010, 285, 2130–2139. [Google Scholar] [CrossRef] [PubMed]
- Lietz, G.; Lange, J.; Rimbach, G. Molecular and dietary regulation of beta, beta-carotene 15,15’-monooxygenase 1 (BCMO1). Arch. Biochem. Biophys. 2010, 502, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.B.; Nie, Z.J.; Cao, Z.M.; Hua, D.; Gu, R.B.; Xu, P. Carotenoid levels in soft tissues of triangle pearl mussel Hyriopsis cumingii with different color nacreous layer. J. Dalian Ocean. Univ. 2012, 27, 265–268. [Google Scholar]
- Wouters, R.; Lavens, P.; Nieto, J.; Sorgeloos, P. Penaeid shrimp broodstock nutrition: An updated review on research and development. Aquaculture 2001, 202, 1–21. [Google Scholar] [CrossRef]
- Wade, N.M.; Gabaudan, J.; Glencross, B.D. A review of carotenoid utilisation and function in crustacean aquaculture. Rev. Aquac. 2017, 9, 141–156. [Google Scholar] [CrossRef]
- Huang, S.; Wang, J.; Yue, W.C.; Chen, J.; Gaughan, S.; Lu, W.Q.; Lu, G.Q.; Wang, C.H. Transcriptomic variation of hepatopancreas reveals the energy metabolism and biological processes associated with molting in Chinese mitten crab, Eriocheir sinensis. Sci. Rep. 2015, 5, 14015. [Google Scholar] [CrossRef] [PubMed]
- Panganiban, G.; Sebring, A.; Nagy, L.; Carroll, S. The development of crustacean limbs and the evolution of arthropods. Science 1995, 270, 1363–1366. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Yuan, Y.; Jin, M.; Shi, B.; Zhu, T.T.; Luo, J.X.; Lu, J.J.; Wang, X.X.; Jiao, L.F.; Zhou, Q.C. Hepatopancreas transcriptome analysis reveals the molecular responses to different dietary n-3 PUFA lipid sources in the swimming crab Portunus trituberculatus. Aquaculture 2021, 543, 737016. [Google Scholar] [CrossRef]
- Wang, W.; Wu, X.G.; Liu, Z.J.; Zheng, H.J.; Cheng, Y.X. Insights into hepatopancreatic functions for nutrition metabolism and ovarian development in the crab Portunus trituberculatus: Gene discovery in the comparative transcriptome of different hepatopancreas stages. PLoS ONE 2014, 9, e84921. [Google Scholar] [CrossRef]
- McGrane, M.M. Vitamin A regulation of gene expression: Molecular mechanism of a prototype gene. J. Nutr. Biochem. 2007, 18, 497–508. [Google Scholar] [CrossRef]
- Yun, J.; Finkel, T. Mitohormesis. Cell Metab. 2014, 19, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.Y.; Liu, M.F.; Yan, C.C.; Yang, H.; Wu, Z.X.; Liu, Y.J.; Su, N.K.; Hou, J.L.; Zhang, J.H.; Yang, F.S.; et al. CRISPR/Cas9-mediated deletion of β, β-carotene 9′, 10′-oxygenase gene (EcBCO2) from Exopalaemon carinicauda. Int. J. Biol. Macromol. 2020, 151, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Ribaya-Mercado, J.D. Influence of dietary fat on beta-carotene absorption and bioconversion into vitamin A. Nutr. Rev. 2002, 60, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Boonyaratpalin, M.; Thongrod, S.; Supamattaya, K.; Britton, G.; Schlipalius, L.E. Effects of β-carotene source, Dunaliella salina, and astaxanthin on pigmentation, growth, survival and health of Penaeus monodon. Aquac. Res. 2001, 32, 182–190. [Google Scholar] [CrossRef]
- Supamattaya, K.; Kiriratnikom, S.; Boonyaratpalin, M.; Borowitzka, L. Effect of a Dunaliella extract on growth performance, health condition, immune response and disease resistance in black tiger shrimp (Penaeus monodon). Aquaculture 2005, 248, 207–216. [Google Scholar] [CrossRef]
- Green, A.S.; Fascetti, A.J. Meeting the vitamin A requirement: The efficacy and importance of β-carotene in animal species. Sci. World J. 2016, 2016, 7393620. [Google Scholar] [CrossRef]
- Wan, S.; Li, Q.; Yu, H.; Liu, S.K.; Kong, L.F. Transcriptome analysis based on dietary beta-carotene supplement reveals genes potentially involved in carotenoid metabolism in Crassostrea gigas. Gene 2022, 818, 146226. [Google Scholar] [CrossRef] [PubMed]
- Parker, R.S. Carotenoids .4. Absorption, metabolism, and transport of carotenoids. FASEB J. 1996, 10, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Vanvliet, T.; Schreurs, W.H.P.; Vandenberg, H. Intestinal beta-carotene absorption and cleavage in men-response of beta-carotene and retinyl esters in the triglyceride-rich lipoprotein fraction after a single oral dose of beta-carotene. Am. J. Clin. Nutr. 1995, 62, 110–116. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Peng, J.; Xiang, W.Z.; Tang, Q.M.; Sun, N.; Chen, F.; Yuan, J.P. Comparative analysis of astaxanthin and its esters in the mutant E1 of Haematococcus pluvialis and other green algae by HPLC with a C30 column. Sci. China Ser. C-Life Sci. 2008, 51, 1108–1115. [Google Scholar] [CrossRef] [PubMed]
Items | Control | β-Car-60 | β-Car-120 |
---|---|---|---|
Ingredients/% | |||
Soybean meal | 19.90 | 19.90 | 19.90 |
Rapeseed meal | 8.00 | 8.00 | 8.00 |
Peanut meal | 8.00 | 8.00 | 8.00 |
Fish meal | 22.00 | 22.00 | 22.00 |
Yeast extract | 2.00 | 2.00 | 2.00 |
High protein flour | 16.55 | 16.55 | 16.55 |
Fish slurry | 8.00 | 8.00 | 8.00 |
Soy lecithin | 2.00 | 2.00 | 2.00 |
Fish oil | 4.00 | 4.00 | 4.00 |
Rapeseed oil | 1.50 | 1.50 | 1.50 |
Soybean oil | 1.50 | 1.50 | 1.50 |
Carboxymethylcellulose | 3.00 | 3.00 | 3.00 |
Cholesterol | 0.40 | 0.40 | 0.40 |
Choline chloride | 0.40 | 0.40 | 0.40 |
Vitamin premix 1 | 0.20 | 0.20 | 0.20 |
Vitamin C palmitate | 0.15 | 0.15 | 0.15 |
Vitamin E | 0.05 | 0.05 | 0.05 |
Mineral premix 2 | 0.25 | 0.25 | 0.25 |
Ca(H2PO4)2 | 1.20 | 1.20 | 1.20 |
Taurine | 0.30 | 0.30 | 0.30 |
Cellulose | 0.60 | 0.544 | 0.488 |
Synthetic β-carotene | 0.00 | 0.056 | 0.112 |
Proximate composition/% | |||
Moisture | 8.76 ± 0.05 | 8.93 ± 0.06 | 8.83 ± 0.02 |
Crude protein | 40.51 ± 0.05 | 40.30 ± 0.21 | 40.17 ± 1.64 |
Crude lipid | 12.05 ± 0.31 | 11.98 ± 0.11 | 12.11 ± 0.09 |
Ash | 9.44 ± 0.04 | 9.13 ± 0.03 | 9.16 ± 0.02 |
Carotenoid concentration/(mg/kg) | |||
Total carotenoid | 9.30 ± 0.62 | 67.13 ± 2.41 | 131.15 ± 1.35 |
Astaxanthin | 0.12 ± 0.03 | 0.24 ± 0.08 | 0.23 ± 0.05 |
β-carotene | 3.17 ± 0.64 | 63.24 ± 1.56 | 127.33 ± 2.67 |
Primers | Sequence (5′-3′) | Purpose |
---|---|---|
NinaB-PF | ccggaattcATGTCCACGGACGAGGGTGGA | recombinant protein construction |
NinaB-PR | ccgggaattcCTGGGCCTCGGCGGGGATGAA | recombinant protein construction |
BCO1-PF | ccggaattcATGGAGCAGCAACAAGAAGAG | recombinant protein construction |
BCO1-PR | ccgggaattcGTAAGCGTGGACGTCCTGGCG | recombinant protein construction |
NinaB-qF | GGATTGACACCTACGACTACTC | qRT-PCR |
NinaB-qR | CGGACCGTTGTAAATGAGTTGT | qRT-PCR |
BCO1-qF | CAGCAACAAGAAGAGAACCG | qRT-PCR |
BCO1-qR | GCGAAGGAATCTGGAACGA | qRT-PCR |
β-actin-F | GCATCCACGAGACCACTTACA | qRT-PCR |
β-actin-R | CTCCTGCTTGCTGATCCACATC | qRT-PCR |
dsNinaB-F | tccccgcggCCACGGACGAGGGTGGAAGG | RNA interference |
dsNinaB-R | ggactagtCCGTCACCCCGACGCCCTGGC | RNA interference |
dsBCO1-F | tccccgcggGAGCAGCAACAAGAAGAGAAC | RNA interference |
dsBCO1-R | ggactagtGCAGCGAGAAGGAACAATCA | RNA interference |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Xiong, J.; Yang, Z.; Zhu, B.; Wu, Y.; Chen, X.; Wu, X. NinaB and BCO Collaboratively Participate in the β-Carotene Catabolism in Crustaceans: A Case Study on Chinese Mitten Crab Eriocheir sinensis. Int. J. Mol. Sci. 2024, 25, 5592. https://doi.org/10.3390/ijms25115592
Zhang M, Xiong J, Yang Z, Zhu B, Wu Y, Chen X, Wu X. NinaB and BCO Collaboratively Participate in the β-Carotene Catabolism in Crustaceans: A Case Study on Chinese Mitten Crab Eriocheir sinensis. International Journal of Molecular Sciences. 2024; 25(11):5592. https://doi.org/10.3390/ijms25115592
Chicago/Turabian StyleZhang, Min, Jingyi Xiong, Zonglin Yang, Boxiang Zhu, Yuting Wu, Xiaowu Chen, and Xugan Wu. 2024. "NinaB and BCO Collaboratively Participate in the β-Carotene Catabolism in Crustaceans: A Case Study on Chinese Mitten Crab Eriocheir sinensis" International Journal of Molecular Sciences 25, no. 11: 5592. https://doi.org/10.3390/ijms25115592
APA StyleZhang, M., Xiong, J., Yang, Z., Zhu, B., Wu, Y., Chen, X., & Wu, X. (2024). NinaB and BCO Collaboratively Participate in the β-Carotene Catabolism in Crustaceans: A Case Study on Chinese Mitten Crab Eriocheir sinensis. International Journal of Molecular Sciences, 25(11), 5592. https://doi.org/10.3390/ijms25115592