Current Insights and Future Directions in the Treatment of Heart Failure with Preserved Ejection Fraction
Abstract
:1. Introduction
2. Main Pathophysiological Mechanisms Involved in the Production of HFpEF
2.1. Ventricular Remodeling
- As a consequence of the systemic proinflammatory state, oxidative stress is primed in endothelial cells, and reactive oxygen species (ROS) are produced, limiting the bioavailability of nitric oxide (NO) from adjacent cardiomyocytes [10];
- Decreased bioavailability of NO in cardiomyocytes decreases protein kinase G (PKG) activity;
- Decreased activity of PKG in cardiomyocytes causes hypophosphorylation of cytoskeletal protein-titin, thereby inducing concentric remodeling of LV and hardening of cardiomyocytes;
- Both rigid cardiomyocytes and secondary increased collagen deposition by myofibroblasts cause diastolic dysfunction LV, the primary cardiac functional deficit in HFpEF [10].
2.2. Retrograde Stasis
2.3. Pulmonary Hypertension
2.4. Coronary Microvascular Dysfunction
2.5. Chronotropic Incompetence
2.6. Skeletal Muscle Damage
3. Main Phenotypes in HFpEF
4. Diagnosis of HFpEF
- It involves identifying characteristic symptoms of HF: effort dyspnea, orthopnea, etc. Pathologies with similar signs and symptoms will be excluded (renal/hepatic failure, chronic obstructive pulmonary disease, venous insufficiency [6]);
- In addition to the presence of characteristic signs and symptoms, for the diagnosis of HFpEF the following elements are necessary: a normal systolic function and evidence of left ventricular (LV) diastolic dysfunction or raised LV filling pressures (e’septal < 7 cm/s, e’lat < 10 cm/s, average E/e’ > 14, LA volume index > 34 mL/mp, peak TR velocity > 2.8 m/s) [24];
- Elevated serum levels of natriuretic peptides support; however, normal levels do not rule out a diagnosis of HFpEF as natriuretic peptides are largely influenced by the presence of obesity, gender, age, and kidney function [9];
- Non-invasive diagnosis or exclusion of HFpEF will not depend on a single parameter above or below a certain threshold but on a combination of parameters derived from clinical, laboratory, and imaging tests that together will give a probability for diagnosis. For normal LV filling pressure or a non-conclusive evaluation to estimate the probability of underlying HF, there are scores like H2FPEF score (recommended by the American Society of Cardiology) and HFA-PEFF score (recommended by the European Society of Cardiology) (Figure 3) or diastolic stress test [24].
- Other entities with preserved EF that should also be excluded from the diagnosis of primary HFpEF are as follows: valvular disease, congenital disease, constrictive pericarditis, restrictive cardiomyopathy, hypertrophic cardiomyopathy, storage disease, ischemic heart disease, high output HF, and primary right ventricular failure with similar symptoms [25].
5. Treatment of Patients with HFpEF
- SGLT2 inhibitors is recommended as the first line of treatment in patients with HFpEF. Subsequently, diuretics will be added to patients with signs of congestion [7].
- The main comorbidities will be identified, and the treatment will be adapted according to them (Figure 2).
- In patients who remain symptomatic, MRA and/or RNAs should be considered, especially in women. For patients who do not tolerate RNAs, ACE2 inhibitors should be administered. If patients need potassium supplements, these will be replaced with MRA. It should be taken into account that in some patients, treatment with beta-blockers, nitrates, or PDE-5 does not have a favorable effect on increasing exercise capacity. If the patient remains symptomatic and is being treated with any of these drugs, discontinuation should be considered [6].
6. Future Therapeutic Directions
- (a)
- metabolic therapy
- (b)
- micro ARN.
6.1. Metabolic Therapy
6.2. Genetic Therapies
No. | Genetic Targets | Expression | Function | Study |
---|---|---|---|---|
1. | SERCA-ATPase-2a (SERCA2a) | Up-regulation | Expression of SERCA2a in isolated human cardiomyocytes and experimental models | Gabisonia K et al. [71] Zhihao L et al. [72] |
No significant effects on clinical (NYHA functional class, 6-min walk test distance) or laboratory endpoints (NT-pro-BNP levels) | Gabisonia K et al. [71] | |||
2. | MicroRNAs | Great capacity for ‘ruling out’ patients with HFrEF or HFpEF | Parvan R et al. [75] (meta-analysis consisting of 45 studies) | |
3. | MicroRNA-1 | Up-regulation via AAV9 | Enhances contractile function by restoring intracellular Ca2+ | Park JH et colleagues. [73] |
4. | MicroRNA-24 MicroRNA-125b MicroRNA-195 MicroRNA-199a | Up-regulation | Intense cardiac remodeling in patients with end-stage HF and experimental models | |
5. | MicroRNA-210 | Protective role in cardiac remodeling by inhibiting apoptosis and stimulating cell proliferation, migration, differentiation, and angiogenesis. | Guan Y et al. [74] | |
Down-regulation | Altered expression in HF | |||
Down-regulation | Decreased levels in patients with improved NT-pro-BNP | |||
Up-regulation | Increased levels in the long living individuals (>90 years old) | |||
Significantly increased by crocin (antioxidant, antiinflammatory, antiatherosclerotic) | Guan Y et al. [74] Razmaraii N et al. [75] Ghorbanzadeh V et al. [77] | |||
6. | MicroRNA-146 | Inhibition | Prevents ventricular dysfunctions | Mahdavi FS et al. [78] |
Decreases apoptosis at the myocyte level | ||||
Regulates endothelial angiogenesis and heart regeneration | ||||
7. | CircARNs | Up-regulation | In the EAT of HFpEF subjects | He et al. [85] |
In cellular processes such as metabolic, macromolecule biosynthesis, protein binding response, transferase activity and catalytic | ||||
Helps regulating cell cycle and repairs damaged DNA | ||||
Regulates the formation of IL-6, TNF-α, IL-1β via HuR | Zhao H et colleagues. [86] | |||
Regulates myocardial fibrosis via fibroblasts activation and expansion via Hur | ||||
8. | SDF-1 | Induces cardiac repair | Gabisonia K et al. [71] | |
9. | NLRP3 | Inhibition | Beneficial effects on cardiac function via SGLT2 inhibitors | Philippaert K et al. [79] |
10. | AC6 | Up-regulation | Reversal of pathological LV remodeling | Gabisonia K et al. [71] |
Reduction in arrhythmic events | ||||
11. | sGC | Stimulation | Generates cGMP in HF | Filippatos G et al. [12] Dachs TM et al. [13] |
Strongly improved patient’s functional status via vericiguat | ||||
No significant effect on NT-pro-BNP or left atrial volume | ||||
Significant improvement in cardiac output and pulmonary vascular resistance in patients with HFpEF via riociguat |
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, S.; Pfeffer, M.A.; Swedberg, K.; Granger, C.B.; Held, P.; McMurray, J.J.V.; Michelson, E.L.; Olofsson, B.; Ostergren, J.; CHARM Investigators and Committees. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: The CHARM-preserved trial. Lancet 2003, 362, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, O.W.; Køber, L.; Torp-Pedersen, C. Heart failure with preserved ejection fraction: Dangerous, elusive, and difficult. Eur. Heart J. 2008, 29, 285–287. [Google Scholar] [CrossRef] [PubMed]
- Cleland, J.G.F.; Tendera, M.; Adamus, J.; Freemantle, N.; Polonski, L.; Taylor, J. The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur. Heart J. 2006, 27, 2338–2345. [Google Scholar] [CrossRef] [PubMed]
- Pitt, B.; Pfeffer, M.A.; Assmann, S.F.; Boineau, R.; Anand, I.S.; Claggett, B.; Clausell, N.; Desai, A.S.; Diaz, R.; Fleg, J.L.; et al. Spironolactone for heart failure with preserved ejection fraction. N. Engl. J. Med. 2014, 370, 1383–1392. [Google Scholar] [CrossRef]
- Kittleson, M.M.; Panjrath, G.S.; Amancherla, K.; Davis, L.L.; Deswal, A.; Dixon, D.L.; Januzzi, J.L.; Yancy, C.W. 2023 ACC Expert Consensus Decision Pathway on Management of Heart Failure with Preserved Ejection Fraction: A Report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2023, 81, 1835–1878. [Google Scholar] [CrossRef] [PubMed]
- Voors, A.A. Novel recommendations for the treatment of patients with heart failure: 2023 Focused Update of the 2021 ESC Heart Failure Guidelines. J. Card. Fail. 2023, 29, 1667–1671. [Google Scholar] [CrossRef]
- Kim, M.N.; Park, S.M. Heart failure with preserved ejection fraction: Insights from recent clinical researches. Korean J. Intern. Med. 2020, 35, 514–534. [Google Scholar] [CrossRef]
- Schwinger, R.H.G. Pathophysiology of heart failure. Cardiovasc. Diagn. Ther. 2021, 11, 263–276. [Google Scholar] [CrossRef]
- Paulus, W.J.; Tschöpe, C. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 2013, 62, 263–271. [Google Scholar] [CrossRef]
- Mocan, M.; Hognogi, L.D.M.; Anton, F.P.; Chiorescu, R.M.; Goidescu, C.M.; Stoia, M.A.; Farcas, A.D. Biomarkers of inflammation in left ventricular diastolic dysfunction. Dis. Markers 2019, 2, 7583690. [Google Scholar] [CrossRef] [PubMed]
- Farcaş, A.D.; Mocan, M.; Anton, F.P.; Diana, M.H.L.; Chiorescu, R.M.; Stoia, M.A.; Vonica, C.L.; Goidescu, C.M.; Vida-Simiti, L.A. Short-Term Prognosis Value of sST2 for an Unfavorable Outcome in Hypertensive Patients. Dis. Markers 2020, 2, 8143737. [Google Scholar] [CrossRef] [PubMed]
- D’Amario, D.; Migliaro, S.; Borovac, J.A.; Restivo, A.; Vergallo, R.; Galli, M.; Leone, A.M.; Montone, R.A.; Niccoli, G.; Aspromonte, N.; et al. Microvascular Dysfunction in Heart Failure with Preserved Ejection Fraction. Front. Physiol. 2019, 10, 1347. [Google Scholar] [CrossRef]
- Goidescu, C.M.; Chiorescu, R.M.; Diana, M.H.L.; Mocan, M.; Stoia, M.A.; Anton, F.P.; Farcaş, A.D. ACE2 and Apelin-13: Biomarkers with a Prognostic Value in Congestive Heart Failure. Dis. Markers 2021, 31, 5569410. [Google Scholar] [CrossRef] [PubMed]
- Chiorescu, R.M.; Lazar, R.-D.; Buksa, S.-B.; Mocan, M.; Blendea, D. Biomarkers of Volume Overload and Edema in Heart Failure with Reduced Ejection Fraction. Front. Cardiovasc. Med. 2022, 9, 910100. [Google Scholar] [CrossRef]
- Tona, F.; Montisci, R.; Iop, L.; Civieri, G. Role of coronary microvascular dysfunction in heart failure with preserved ejection fraction. Rev. Cardiovasc. Med. 2021, 22, 97. [Google Scholar] [CrossRef]
- Sinha, A.; Rahman, H.; Webb, A.; Shah, A.M.; Perera, D. Untangling the pathophysiologic link between coronary microvascular dysfunction and heart failure with preserved ejection fraction. Eur. Heart J. 2021, 42, 4431–4441. [Google Scholar] [CrossRef]
- Obokata, M.; Reddy, Y.N.V.; Melenovsky, V.; Kane, G.C.; Olson, T.P.; Jarolim, P.; Borlaug, B.A. Myocardial Injury and Cardiac Reserve in Patients With Heart Failure and Preserved Ejection Fraction. J. Am. Coll. Cardiol. 2018, 72, 29–40. [Google Scholar] [CrossRef]
- Mocan, M.; Anton, F.; Suciu, Š.; Rǎhian, R.; Blaga, S.N.; Fǎrcaş, A.D. Multimarker Assessment of Diastolic Dysfunction in Metabolic Syndrome Patients. Metab. Syndr. Relat. Disord. 2017, 15, 507–514. [Google Scholar] [CrossRef]
- Kumar, A.A.; Kelly, D.P.; Chirinos, J.A. Mitochondrial Dysfunction in Heart Failure with Preserved Ejection Fraction. Circulation 2019, 139, 1435–1450. [Google Scholar] [CrossRef]
- Espino-Gonzalez, E.; Tickle, P.G.; Benson, A.P.; Kissane, R.W.P.; Askew, G.N.; Egginton, S.; Bowen, T.S. Abnormal skeletal muscle blood flow, contractile mechanics and fibre morphology in a rat model of obese-HFpEF. J. Physiol. 2021, 599, 981–1001. [Google Scholar] [CrossRef] [PubMed]
- Anker, S.D.; Usman, M.S.; Anker, M.S.; Butler, J.; Böhm, M.; Abraham, W.T.; Adamo, M.; Chopra, V.K.; Cicoira, M.; Cosentino, F.; et al. Patient phenotype profiling in heart failure with preserved ejection fraction to guide therapeutic decision making. A scientific statement of the Heart Failure Association, the European Heart Rhythm Association of the European Society of Cardiology, and t. Eur. J. Heart Fail. 2023, 25, 936–955. [Google Scholar] [CrossRef] [PubMed]
- Heinzel, F.R.; Shah, S.J. The future of heart failure with preserved ejection fraction: Deep phenotyping for targeted therapeutics. Herz 2022, 47, 308–323. [Google Scholar] [CrossRef] [PubMed]
- Ha, J.W.; Andersen, O.S.; Smiseth, O.A. Diastolic Stress Test: Invasive and Noninvasive Testing. JACC Cardiovasc. Imaging 2020, 13, 272–282. [Google Scholar] [CrossRef] [PubMed]
- Smiseth, O.A.; Morris, D.A.; Cardim, N.; Cikes, M.; Delgado, V.; Donal, E.; A Flachskampf, F.; Galderisi, M.; Gerber, B.L.; Gimelli, A.; et al. Multimodality imaging in patients with heart failure and preserved ejection fraction: An expert consensus document of the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2022, 23, E34–E61. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Origasa, H.; Hori, M. Effects of carvedilol on heart failure with preserved ejection fraction: The Japanese Diastolic Heart Failure Study (J-DHF). Eur. J. Heart Fail. 2013, 15, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Flather, M.D.; Shibata, M.C.; Coats, A.J.S.; Van Veldhuisen, D.J.; Parkhomenko, A.; Borbola, J.; Cohen-Solal, A.; Dumitrascu, D.; Ferrari, R.; Lechat, P.; et al. FASTTRACK Randomized trial to determine the effect of nebivolol on mortality and cardiovascular hospital admission in elderly patients with heart failure (SENIORS). Eur. Heart J. 2005, 26, 215–225. [Google Scholar] [CrossRef]
- Fonarow, G.C.; Abraham, W.T.; Albert, N.M.; Gattis, W.A.; Gheorghiade, M.; Greenberg, B.; O’Connor, C.M.; Yancy, C.W.; Young, J. Organized program to initiate lifesaving treatment in hospitalized patients with heart failure (OPTIMIZE-HF): Rationale and design. Am. Heart J. 2004, 148, 43–51. [Google Scholar] [CrossRef]
- Tang, B.; Kang, P.; Guo, J.; Zhu, L.; Xu, Q.; Gao, Q.; Zhang, H.; Wang, H. Effects of mitochondrial aldehyde dehydrogenase 2 on autophagy-associated proteins in neonatal rat myocardial fibroblasts cultured in high glucose. Nan Fang Yi Ke Da Xue Xue Bao 2019, 39, 523–527. (In Chinese) [Google Scholar] [CrossRef]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Böhm, M.; Brunner-La Rocca, H.P.; Choi, D.J.; Chopra, V.; Chuquiure-Valenzuela, E.; et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N. Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef]
- Solomon, S.D.; McMurray, J.J.V.; Claggett, B.; de Boer, R.A.; DeMets, D.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N. Engl. J. Med. 2022, 387, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Ussher, J.R.; Drucker, D.J. Glucagon-like peptide 1 receptor agonists: Cardiovascular benefits and mechanisms of action. Nat. Rev. Cardiol. 2023, 20, 463–474. [Google Scholar] [CrossRef] [PubMed]
- Azuma, M.; Kato, S.; Fukui, K.; Horita, N.; Utsunomiya, D. Microvascular dysfunction in patients with heart failure with preserved ejection fraction: A meta-analysis. Microcirculation 2023, 30, e12822. [Google Scholar] [CrossRef] [PubMed]
- Claustrat, B.; Leston, J. Melatonin: Physiological effects in humans. Neurochirurgie 2015, 61, 77–84. [Google Scholar] [CrossRef]
- Galano, A.; Reiter, R.J. Melatonin and its metabolites vs oxidative stress: From individual actions to collective protection. J. Pineal Res. 2018, 65, e12514. [Google Scholar] [CrossRef] [PubMed]
- Koziróg, M.; Poliwczak, A.R.; Duchnowicz, P.; Koter-Michalak, M.; Sikora, J.; Broncel, M. Melatonin treatment improves blood pressure, lipid profile, and parameters of oxidative stress in patients with metabolic syndrome. J. Pineal Res. 2011, 50, 261–266. [Google Scholar] [CrossRef]
- Domínguez-Rodríguez, A.; Abreu-González, P.; García, M.J.; Sanchez, J.; Marrero, F.; de Armas-Trujillo, D. Decreased nocturnal melatonin levels during acute myocardial infarction. J. Pineal Res. 2002, 33, 248–252. [Google Scholar] [CrossRef]
- Dominguez-Rodriguez, A.; Abreu-Gonzalez, P.; Piccolo, R.; Galasso, G.; Reiter, R.J. Melatonin is associated with reverse remodeling after cardiac resynchronization therapy in patients with heart failure and ventricular dyssynchrony. Int. J. Cardiol. 2016, 221, 359–363. [Google Scholar] [CrossRef]
- Simko, F.; Pechanova, O.; Repova Bednarova, K.; Krajcirovicova, K.; Celec, P.; Kamodyova, N.; Zorad, S.; Kucharska, J.; Gvozdjakova, A.; Adamcova, M.; et al. Hypertension and cardiovascular remodelling in rats exposed to continuous light: Protection by ACE-inhibition and melatonin. Mediat. Inflamm. 2014, 2014, 703175. [Google Scholar] [CrossRef]
- Wang, Z.; Ni, L.; Wang, J.; Lu, C.; Ren, M.; Han, W.; Liu, C. The protective effect of melatonin on smoke-induced vascular injury in rats and humans: A randomized controlled trial. J. Pineal Res. 2016, 60, 217–227. [Google Scholar] [CrossRef]
- Torres, F.; González-Candia, A.; Montt, C.; Ebensperger, G.; Chubretovic, M.; Serõn-Ferré, M.; Reyes, R.V.; Llanos, A.J.; Herrera, E.A. Melatonin reduces oxidative stress and improves vascular function in pulmonary hypertensive newborn sheep. J. Pineal Res. 2015, 58, 362–373. [Google Scholar] [CrossRef]
- Fu, Z.; Jiao, Y.; Wang, J.; Zhang, Y.; Shen, M.; Reiter, R.J.; Xi, Q.; Chen, Y. Cardioprotective Role of Melatonin in Acute Myocardial Infarction. Front. Physiol. 2020, 11, 366. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y.; Xu, J.; Tian, F.; Hu, S.; Chen, Y.; Fu, Z. Melatonin attenuates myocardial ischemia-reperfusion injury via improving mitochondrial fusion/mitophagy and activating the AMPK-OPA1 signaling pathways. J. Pineal Res. 2019, 66, e12542. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Du, J.; Xu, R.; Shen, Y.; Yang, D.; Li, D.; Hu, H.; Pei, H.; Yang, Y. Melatonin alleviates angiotensin-II-induced cardiac hypertrophy via activating MICU1 pathway. Aging 2021, 13, 493–515. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Ma, Z.; Di, S.; Yang, Y.; Yang, J.; Xu, L.; Reiter, R.J.; Qiao, S.; Yuan, J. AMPK/PGC1α activation by melatonin attenuates acute doxorubicin cardiotoxicity via alleviating mitochondrial oxidative damage and apoptosis. Free. Radic. Biol. Med. 2018, 129, 59–72. [Google Scholar] [CrossRef]
- Dzida, G.; Prystupa, A.; Lachowska-Kotowska, P.; Kardas, T.; Kamieński, P.; Kimak, E.; Hałabiś, M.; Kiciński, P. Alteration in diurnal and nocturnal melatonin serum level in patients with chronic heart failure. Ann. Agric. Environ. Med. 2013, 20, 745–748. [Google Scholar] [PubMed]
- Hoseini, S.G.; Heshmat-Ghahdarijani, K.; Khosrawi, S.; Garakyaraghi, M.; Shafie, D.; Mansourian, M.; Roohafza, H.; Azizi, E.; Sadeghi, M. Melatonin supplementation improves N-terminal pro-B-type natriuretic peptide levels and quality of life in patients with heart failure with reduced ejection fraction: Results from MeHR trial, a randomized clinical trial. Clin. Cardiol. 2022, 45, 417–426. [Google Scholar] [CrossRef]
- Omote, K.; Verbrugge, F.H.; Borlaug, B.A. Heart Failure with Preserved Ejection Fraction: Mechanisms and Treatment Strategies. Annu. Rev. Med. 2022, 73, 321–337. [Google Scholar] [CrossRef]
- Budde, H.; Hassoun, R.; Mügge, A.; Kovács, Á.; Hamdani, N. Current Understanding of Molecular Pathophysiology of Heart Failure with Preserved Ejection Fraction. Front. Physiol. 2022, 13, 928232. [Google Scholar] [CrossRef]
- Boutin, J.A.; Saunier, C.; Guenin, S.P.; Berger, S.; Moulharat, N.; Gohier, A.; Delagrange, P.; Cogé, F.; Ferry, G. Studies of the melatonin binding site location onto quinone reductase 2 by directed mutagenesis. Arch. Biochem. Biophys. 2008, 477, 12–19. [Google Scholar] [CrossRef]
- Tan, D.X.; Manchester, L.C.; Terron, M.P.; Flores, L.J.; Reiter, R.J. One molecule, many derivatives: A never-ending interaction of melatonin with reactive oxygen and nitrogen species? J. Pineal Res. 2007, 42, 28–42. [Google Scholar] [CrossRef] [PubMed]
- Lopaschuk, G.D.; Karwi, Q.G.; Tian, R.; Wende, A.R.; Abel, E.D. Cardiac Energy Metabolism in Heart Failure. Circ. Res. 2021, 128, 1487–1513. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Feng, N.; Tang, D.; Feng, J.; Li, Z.; Jia, M.; Liu, Z.; Gu, X.; Wang, Y.; Fu, F.; et al. Melatonin prevents Drp1-mediated mitochondrial fission in diabetic hearts through SIRT1-PGC1α pathway. J. Pineal Res. 2018, 65, e12491. [Google Scholar] [CrossRef] [PubMed]
- Pongkan, W.; Piamsiri, C.; Dechvongya, S.; Punyapornwitthaya, V.; Boonyapakorn, C. Short-term melatonin supplementation decreases oxidative stress but does not affect left ventricular structure and function in myxomatous mitral valve degenerative dogs. BMC Vet. Res. 2022, 18, 24. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, L.N.; Guo, S.; Zhao, X.Y.; Liu, Y.Z.; Liang, C.; Tu, S.; Wang, D.; Li, L.; Dong, J.-Z.; et al. Melatonin improves cardiac function in a mouse model of heart failure with preserved ejection fraction. Redox Biol. 2018, 18, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Mizrak, B.; Parlakpinar, H.; Acet, A.; Turkoz, Y. Effects of pinealectomy and exogenous melatonin on rat hearts. Acta Histochem. 2004, 106, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Ma, Z.; Jiang, S.; Fan, C.; Deng, C.; Yan, X.; Di, S.; Lv, J.; Reiter, R.J.; Yang, Y. Melatonin: The dawning of a treatment for fibrosis? J. Pineal Res. 2016, 60, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Simko, F.; Bednarova, K.R.; Krajcirovicova, K.; Hrenak, J.; Celec, P.; Kamodyova, N.; Gajdosechova, L.; Zorad, S.; Adamcova, M. Melatonin reduces cardiac remodeling and improves survival in rats with isoproterenol-induced heart failure. J. Pineal Res. 2014, 57, 177–184. [Google Scholar] [CrossRef]
- Simko, F.; Pechanova, O.; Pelouch, V.; Krajcirovicova, K.; Celec, P.; Palffy, R.; Bednarova, K.; Vrankova, S.; Adamcova, M.; Paulis, L. Continuous light and L-NAME-induced left ventricular remodelling: Different protection with melatonin and captopril. J. Hypertens. 2010, 28, S13–S18. [Google Scholar] [CrossRef]
- Paulis, L.; Pechanova, O.; Zicha, J.; Krajcirovicova, K.; Barta, A.; Pelouch, V.; Adamcova, M.; Simko, F. Melatonin prevents fibrosis but not hypertrophy development in the left ventricle of N G-nitro-L-arginine-methyl ester hypertensive rats. J. Hypertens. 2009, 27, S11–S16. [Google Scholar] [CrossRef]
- De Mezer, M.; Rogaliński, J.; Przewoźny, S.; Chojnicki, M.; Niepolski, L.; Sobieska, M.; Przystańska, A. SERPINA3: Stimulator or Inhibitor of Pathological Changes. Biomedicines 2023, 11, 156. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Yang, J.; Lan, M.; Zou, T. Construction and analysis of a joint diagnosis model of random forest and artificial neural network for heart failure. Aging 2020, 12, 26221–26235. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Liu, Z.; Liu, J.; Li, C.; Zhang, G.; Shi, R. Bioinformatics analysis and identification of genes and pathways in ischemic cardiomyopathy. Int. J. Gen. Med. 2021, 14, 5927–5937. [Google Scholar] [CrossRef]
- Zhao, L.; Guo, Z.; Wang, P.; Zheng, M.; Yang, X.; Liu, Y.; Ma, Z.; Chen, M.; Yang, X. Proteomics of epicardial adipose tissue in patients with heart failure. J. Cell. Mol. Med. 2020, 24, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Delrue, L.; Vanderheyden, M.; Beles, M.; Paolisso, P.; Di Gioia, G.; Dierckx, R.; Verstreken, S.; Goethals, M.; Heggermont, W.; Bartunek, J. Circulating SERPINA3 improves prognostic stratification in patients with a de novo or worsened heart failure. ESC Heart Fail. 2021, 8, 4780–4790. [Google Scholar] [CrossRef] [PubMed]
- Delyani, J.A.; Murohara, T.; Lefer, A.M. Novel recombinant serpin, LEX-032, attenuates myocardial reperfusion injury in cats. Am. Physiol. Soc. J. 1996, 270, H881–H887. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2022, 79, e263–e421. [Google Scholar] [CrossRef]
- Meijers, W.C.; Maglione, M.; Bakker, S.J.L.; Oberhuber, R.; Kieneker, L.M.; De Jong, S.; Haubner, B.J.; Nagengast, W.B.; Lyon, A.R.; van der Vegt, B.; et al. Heart failure stimulates tumor growth by circulating factors. Circulation 2018, 138, 678–691. [Google Scholar] [CrossRef]
- Oghlakian, G.O.; Sipahi, I.; Fang, J.C. Treatment of heart failure with preserved ejection fraction. Mayo Clin. Proc. 2011, 86, 531–539. [Google Scholar] [CrossRef]
- Tannenbaum, S.; Sayer, G.T. Advances in the pathophysiology and treatment of heart failure with preserved ejection fraction. Curr. Opin. Cardiol. 2015, 30, 250–258. [Google Scholar] [CrossRef]
- Gabisonia, K.; Recchia, F.A. Gene Therapy for Heart Failure: New Perspectives. Curr. Heart Fail. Rep. 2018, 15, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Zhihao, L.; Jingyu, N.; Lan, L.; Michael, S.; Rui, G.; Xiyun, B.; Xiaozhi, L.; Guanwei, F. SERCA2a: A key protein in the Ca2+ cycle of the heart failure. Heart Fail. Rev. 2020, 25, 523–535. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Kho, C. MicroRNAs and Calcium Signaling in Heart Disease. Int. J. Mol. Sci. 2021, 22, 10582. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Song, X.; Sun, W.; Wang, Y.; Liu, B. Effect of Hypoxia-Induced MicroRNA-210 Expression on Cardiovascular Disease and the Underlying Mechanism. Oxidative Med. Cell. Longev. 2019, 2019, 4727283. [Google Scholar] [CrossRef]
- Parvan, R.; Hosseinpour, M.; Moradi, Y.; Devaux, Y.; Cataliotti, A.; da Silva, G.J.J. Diagnostic performance of microRNAs in the detection of heart failure with reduced or preserved ejection fraction: A systematic review and meta-analysis. Eur. J. Heart Fail. 2022, 24, 2212–2225. [Google Scholar] [CrossRef] [PubMed]
- Razmaraii, N.; Babaei, H.; Mohajjel Nayebi, A.; Assadnassab, G.; Ashrafi Helan, J.; Azarmi, Y. Crocin treatment prevents doxorubicin-induced cardiotoxicity in rats. Life Sci. 2016, 157, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Ghorbanzadeh, V.; Mohammadi, M.; Dariushnejad, H.; Abhari, A.; Chodari, L.; Mohaddes, G. Cardioprotective Effect of Crocin Combined with Voluntary Exercise in Rat: Role of Mir-126 and Mir-210 in Heart Angiogenesis. Arq. Bras. Cardiol. 2017, 109, 54–62. [Google Scholar] [CrossRef]
- Halkein, J.; Tabruyn, S.P.; Ricke-Hoch, M.; Haghikia, A.; Nguyen, N.Q.; Scherr, M.; Castermans, K.; Malvaux, L.; Lambert, V.; Thiry, M.; et al. MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J. Clin. Investig. 2013, 123, 2143–2154. [Google Scholar] [CrossRef]
- Philippaert, K.; Kalyaanamoorthy, S.; Fatehi, M.; Long, W.; Soni, S.; Byrne, N.J.; Barr, A.; Singh, J.; Wong, J.; Palechuk, T.; et al. Cardiac Late Sodium Channel Current Is a Molecular Target for the Sodium/Glucose Cotransporter 2 Inhibitor Empagliflozin. Circulation 2021, 143, 2188–2204. [Google Scholar] [CrossRef]
- Filippatos, G.; Maggioni, A.P.; Lam, C.S.P.; Pieske-Kraigher, E.; Butler, J.; Spertus, J.; Ponikowski, P.; Shah, S.J.; Solomon, S.D.; Scalise, A.V.; et al. Patient-reported outcomes in the SOluble guanylate Cyclase stimulatoR in heArT failurE patientS with PRESERVED ejection fraction (SOCRATES-PRESERVED) study. Eur. J. Heart Fail. 2017, 19, 782–791. [Google Scholar] [CrossRef]
- Dachs, T.M.; Duca, F.; Rettl, R.; Binder-Rodriguez, C.; Dalos, D.; Ligios, L.C.; Kammerlander, A.; Grünig, E.; Pretsch, I.; Steringer-Mascherbauer, R.; et al. Riociguat in pulmonary hypertension and heart failure with preserved ejection fraction: The haemoDYNAMIC trial. Eur. Heart J. 2022, 43, 3402–3413. [Google Scholar] [CrossRef] [PubMed]
- Malviya, A.; Bhuyan, R. The recent advancements in circRNA research: From biogenesis to therapeutic interventions. Pathol. Res. Pract. 2023, 248, 154697. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Zhu, Q. Circular RNAs: Emerging roles and new insights in human cancers. Biomed. Pharmacother. 2023, 165, 115217. [Google Scholar] [CrossRef] [PubMed]
- Packer, M. Drugs That Ameliorate Epicardial Adipose Tissue Inflammation May Have Discordant Effects in Heart Failure with a Preserved Ejection Fraction as Compared with a Reduced Ejection Fraction. J. Card. Fail. 2019, 25, 986–1003. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Zhu, H.; Zhang, J.; Yang, X.; Zhao, L. Genome-wide screening for circRNAs in epicardial adipose tissue of heart failure patients with preserved ejection fraction. Am. J. Transl. Res. 2023, 15, 4610–4619. [Google Scholar]
- Zhao, H.; Tan, Z.; Zhou, J.; Wu, Y.; Hu, Q.; Ling, Q.; Ling, J.; Liu, M.; Ma, J.; Zhang, D.; et al. The regulation of circRNA and lncRNAprotein binding in cardiovascular diseases: Emerging therapeutic targets. Biomed. Pharmacother. 2023, 165, 115067. [Google Scholar] [CrossRef]
- Inácio, J.M.; Cristo, F.; Pinheiro, M.; Vasques-Nóvoa, F.; Saraiva, F.; Nunes, M.M.; Rosas, G.; Reis, A.; Coimbra, R.; Oliveira, J.L.; et al. Myocardial RNA Sequencing Reveals New Potential Therapeutic Targets in Heart Failure with Preserved Ejection Fraction. Biomedicines 2023, 11, 2131. [Google Scholar] [CrossRef]
- Jankauskas, S.S.; Mone, P.; Avvisato, R.; Varzideh, F.; De Gennaro, S.; Salemme, L.; Macina, G.; Kansakar, U.; Cioppa, A.; Frullone, S.; et al. miR-181c targets Parkin and SMAD7 in human cardiac fibroblasts: Validation of differential microRNA expression in patients with diabetes and heart failure with preserved ejection fraction. Mech. Ageing Dev. 2023, 212, 111818. [Google Scholar] [CrossRef]
- Ghosh, N.; Fenton, S.; van Hout, I.; Jones, G.T.; Coffey, S.; Williams, M.J.A.; Sugunesegran, R.; Parry, D.; Davis, P.; Schwenke, D.O.; et al. Therapeutic knockdown of miR-320 improves deteriorated cardiac function in a pre-clinical model of non-ischemic diabetic heart disease. Mol. Ther. Nucleic Acids 2022, 29, 330–342. [Google Scholar] [CrossRef]
- Ottaviani, L.; Juni, R.P.; de Abreu, R.C.; Sansonetti, M.; Sampaio-Pinto, V.; Halkein, J.; Hegenbarth, J.C.; Ring, N.; Knoops, K.; Kocken, J.M.; et al. Intercellular transfer of miR-200c-3p impairs the angiogenic capacity of cardiac endothelial cells. Mol. Ther. 2022, 30, 2257–2273. [Google Scholar] [CrossRef]
- Jin, X.; Lian, J.S.; Hu, J.H.; Gao, J.; Zheng, L.; Zhang, Y.M.; Hao, S.R.; Jia, H.Y.; Cai, H.; Zhang, X.L.; et al. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut 2020, 69, 1002–1009. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiorescu, R.M.; Lazar, R.-D.; Ruda, A.; Buda, A.P.; Chiorescu, S.; Mocan, M.; Blendea, D. Current Insights and Future Directions in the Treatment of Heart Failure with Preserved Ejection Fraction. Int. J. Mol. Sci. 2024, 25, 440. https://doi.org/10.3390/ijms25010440
Chiorescu RM, Lazar R-D, Ruda A, Buda AP, Chiorescu S, Mocan M, Blendea D. Current Insights and Future Directions in the Treatment of Heart Failure with Preserved Ejection Fraction. International Journal of Molecular Sciences. 2024; 25(1):440. https://doi.org/10.3390/ijms25010440
Chicago/Turabian StyleChiorescu, Roxana Mihaela, Roxana-Daiana Lazar, Alexandru Ruda, Andreea Paula Buda, Stefan Chiorescu, Mihaela Mocan, and Dan Blendea. 2024. "Current Insights and Future Directions in the Treatment of Heart Failure with Preserved Ejection Fraction" International Journal of Molecular Sciences 25, no. 1: 440. https://doi.org/10.3390/ijms25010440
APA StyleChiorescu, R. M., Lazar, R. -D., Ruda, A., Buda, A. P., Chiorescu, S., Mocan, M., & Blendea, D. (2024). Current Insights and Future Directions in the Treatment of Heart Failure with Preserved Ejection Fraction. International Journal of Molecular Sciences, 25(1), 440. https://doi.org/10.3390/ijms25010440