Pathobiology of Cognitive Impairment in Parkinson Disease: Challenges and Outlooks
Abstract
:1. Introduction
2. Epidemiology of CI in PD
2.1. PDD—General Items
2.2. PD—Subjective Cognitive Impairment and MCI
3. Risk Factors of CI in PD
4. Genetic Factors of PD-CI
5. Development and Clinical Profile of CI in PD
6. Neuroimaging Findings in CI in PD (See Supplement Table S1 [152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215])
6.1. Gray Matter Changes in PD-MCI
6.2. White Matter Lesions in PD-MCI
6.3. Neuroimaging Findings in Converters to PDD (see Supplement Table S2)
6.4. Gray Matter Lesions in PDD (See Supplement Table S3)
6.5. White Matter Lesions in PDD
7. Brain Network Studies
7.1. Early PD and PD-MCI
7.2. Connectivity Changes in PDD (Figure 2)
8. Neurophysiological Studies in PD-CI
9. Involvement of Neuromodulatory Systems in PD-CI
9.1. Mapping Dopaminergic Modulation
9.2. Cholinergic Modulation
9.3. Noradrenergic Modulation
10. Brain Positron Emission Tomography Studies in PD-CI
11. Neuropathology of PD-MCI
12. Neuropathology of PDD
13. Cognitive Reserve and Resilience in PD
14. Impact of Other Co-Pathologies in Cognition in PD
15. Conclusions and Outlook
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Alzheimer disease |
ADNC | AD-related neuropathological changes |
aMCI | amnestic mild cognitive impairment |
Aβ | amyloid-β |
αSyn | α-synuclein |
BGN | basal ganglia network |
CAA | cerebral amyloid angiopathy |
CI | cognitive impairment |
CN | cerebellar network |
CR | cognitive reserve |
CSF | cerebrospinal fluid |
DLB | dementia with Lewy bodies |
DMN | default mode network |
DTI | diffusion tensor imaging |
EF | executive function |
FA | fractional anisotrophy |
FC | functional connectivity |
FOG | freezing of gait |
FPN | frontoparietal network |
GBA | glucocerebrosidase |
GDNF | glial cell line-derived neurotrophic factor |
GM | gray matter |
GMV | gray matter volume |
HCs | healthy controls |
LBs | Lewy bodies |
MCI | mild cognitive impairment |
MDS | Movement Disorder Society |
naMCI | non-amnestic mild cognitive impairment |
NBM | nucleus basalis of Meynert |
NfL | neurofilament light |
NFT | neurofibrillary tangle |
PD | Parkinson disease |
PDD | Parkinson disease dementia |
PD-MCI | Parkinson disease with mild cognitive impairment |
PD-NC | Parkinson disease with normal cognition |
PD-ND | Parkinson disease non-demented |
RBD | REM sleep behavior disorder |
rsfMRI | resting-state functional MRI |
SAN | salience network |
SCD | subtle cognitive decline |
SMN | sensorimotor network |
WM | white matter |
WMH | white matter hyperintensity |
References
- Calabresi, P.; Mechelli, A.; Natale, G.; Volpicelli-Daley, L.; Di Lazzaro, G.; Ghiglieri, V. Alpha-synuclein in Parkinson’s disease and other synucleinopathies: From overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis. 2023, 14, 176. [Google Scholar] [CrossRef] [PubMed]
- Jellinger, K.A. Neuropathology of sporadic Parkinson’s disease: Evaluation and changes of concepts. Mov. Disord. 2012, 27, 8–30. [Google Scholar] [CrossRef] [PubMed]
- Koros, C.; Stefanis, L.; Scarmeas, N. Parkinsonism and dementia. J. Neurol. Sci. 2022, 433, 120015. [Google Scholar] [CrossRef]
- Ye, H.; Robak, L.A.; Yu, M.; Cykowski, M.; Shulman, J.M. Genetics and pathogenesis of Parkinson’s Syndrome. Annu. Rev. Pathol. 2023, 18, 95–121. [Google Scholar] [CrossRef]
- Zaman, V.; Shields, D.C.; Shams, R.; Drasites, K.P.; Matzelle, D.; Haque, A.; Banik, N.L. Cellular and molecular pathophysiology in the progression of Parkinson’s disease. Metab. Brain Dis. 2021, 36, 815–827. [Google Scholar] [CrossRef] [PubMed]
- Hussein, A.; Guevara, C.A.; Del Valle, P.; Gupta, S.; Benson, D.L.; Huntley, G.W. Non-motor symptoms of Parkinson’s disease: The neurobiology of early psychiatric and cognitive dysfunction. Neuroscientist 2023, 29, 97–116. [Google Scholar] [CrossRef]
- Dickson, D.W.; Fujishiro, H.; Orr, C.; DelleDonne, A.; Josephs, K.A.; Frigerio, R.; Burnett, M.; Parisi, J.E.; Klos, K.J.; Ahlskog, J.E. Neuropathology of non-motor features of Parkinson disease. Park. Relat. Disord. 2009, 15 (Suppl. 3), S1–S5. [Google Scholar] [CrossRef]
- Tolosa, E.; Santamaria, J.; Gaig, C.; Compta, Y. Nonmotor aspects of Parkinson’s disease. In Movement Disorders 4; Schapira, A.H.V., Lang, A.E.T., Fahn, S., Eds.; Saunders-Elsevier: Philadelphia, PA, USA, 2010; pp. 229–251. [Google Scholar]
- Tremblay, C.; Achim, A.M.; Macoir, J.; Monetta, L. The heterogeneity of cognitive symptoms in Parkinson’s disease: A meta-analysis. J. Neurol. Neurosurg. Psychiatry 2013, 84, 1265–1272. [Google Scholar] [CrossRef]
- Charcot, J.-M. De la Paralysie Agitante. Oeuvres Complétes: Leçons sur les Maladies du Systéme Nerveux; On Parkinson’s disease. Lectures on the diseases of the nervous system; Sigerson, G., Translator; Bureaux du Progrés Mèdical: Paris, France; New Sydenham Society: London, UK, 1877; Volume 1. [Google Scholar]
- Flores-Torres, M.H.; Bjornevik, K.; Hung, A.Y.; Healy, B.C.; Schwarzschild, M.A.; Blacker, D.; Ascherio, A. Subjective cognitive decline in women with features suggestive of prodromal Parkinson’s disease. Mov. Disord. 2023, 38, 1473–1482. [Google Scholar] [CrossRef]
- Jessen, F.; Amariglio, R.E.; van Boxtel, M.; Breteler, M.; Ceccaldi, M.; Chételat, G.; Dubois, B.; Dufouil, C.; Ellis, K.A.; van der Flier, W.M.; et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimer’s Dement. 2014, 10, 844–852. [Google Scholar] [CrossRef]
- Oedekoven, C.; Egeri, L.; Jessen, F.; Wagner, M.; Dodel, R. Subjective cognitive decline in idiopathic Parkinson’s disease: A systematic review. Ageing Res. Rev. 2022, 74, 101508. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Yuan, X.; Chen, L.; Hu, B.; Jiang, L.; Shi, T.; Wang, H.; Huang, W. Subjective cognitive decline in patients with Parkinson’s disease: An updated review. Front. Aging Neurosci. 2023, 15, 1117068. [Google Scholar] [CrossRef] [PubMed]
- Ophey, A.; Krohm, F.; Kalbe, E.; Greuel, A.; Drzezga, A.; Tittgemeyer, M.; Timmermann, L.; Jessen, F.; Eggers, C.; Maier, F. Neural correlates and predictors of subjective cognitive decline in patients with Parkinson’s disease. Neurol. Sci. 2022, 43, 3153–3163. [Google Scholar] [CrossRef] [PubMed]
- Pike, K.E.; Cavuoto, M.G.; Li, L.; Wright, B.J.; Kinsella, G.J. Subjective cognitive decline: Level of risk for future dementia and mild cognitive impairment, a meta-analysis of longitudinal studies. Neuropsychol. Rev. 2022, 32, 703–735. [Google Scholar] [CrossRef] [PubMed]
- Litvan, I.; Goldman, J.G.; Troster, A.I.; Schmand, B.A.; Weintraub, D.; Petersen, R.C.; Mollenhauer, B.; Adler, C.H.; Marder, K.; Williams-Gray, C.H.; et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Mov. Disord. 2012, 27, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, K.F.; Larsen, J.P.; Tysnes, O.B.; Alves, G. Natural course of mild cognitive impairment in Parkinson disease: A 5-year population-based study. Neurology 2017, 88, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Hoogland, J.; Boel, J.A.; de Bie, R.M.A.; Geskus, R.B.; Schmand, B.A.; Dalrymple-Alford, J.C.; Marras, C.; Adler, C.H.; Goldman, J.G.; Tröster, A.I.; et al. Mild cognitive impairment as a risk factor for Parkinson’s disease dementia. Mov. Disord. 2017, 32, 1056–1065. [Google Scholar] [CrossRef]
- Emre, M.; Aarsland, D.; Brown, R.; Burn, D.J.; Duyckaerts, C.; Mizuno, Y.; Broe, G.A.; Cummings, J.; Dickson, D.W.; Gauthier, S.; et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov. Disord. 2007, 22, 1689–1707. [Google Scholar] [CrossRef]
- Goetz, C.G.; Emre, M.; Dubois, B. Parkinson’s disease dementia: Definitions, guidelines, and research perspectives in diagnosis. Ann. Neurol. 2008, 64 (Suppl. 2), S81–S92. [Google Scholar] [CrossRef]
- Kiesmann, M.; Chanson, J.B.; Godet, J.; Vogel, T.; Schweiger, L.; Chayer, S.; Kaltenbach, G. The Movement Disorders Society criteria for the diagnosis of Parkinson’s disease dementia: Their usefulness and limitations in elderly patients. J. Neurol. 2013, 260, 2569–2579. [Google Scholar] [CrossRef]
- Svenningsson, P.; Westman, E.; Ballard, C.; Aarsland, D. Cognitive impairment in patients with Parkinson’s disease: Diagnosis, biomarkers, and treatment. Lancet Neurol. 2012, 11, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Fengler, S.; Liepelt-Scarfone, I.; Brockmann, K.; Schäffer, E.; Berg, D.; Kalbe, E. Cognitive changes in prodromal Parkinson’s disease: A review. Mov. Disord. 2017, 32, 1655–1666. [Google Scholar] [CrossRef] [PubMed]
- Aarsland, D.; Batzu, L.; Halliday, G.M.; Geurtsen, G.J.; Ballard, C.; Ray Chaudhuri, K.; Weintraub, D. Parkinson disease-associated cognitive impairment. Nat. Rev. Dis. Primers 2021, 7, 47. [Google Scholar] [CrossRef] [PubMed]
- Carceles-Cordon, M.; Weintraub, D.; Chen-Plotkin, A.S. Cognitive heterogeneity in Parkinson’s disease: A mechanistic view. Neuron 2023, 111, 1531–1546. [Google Scholar] [CrossRef] [PubMed]
- Meireles, J.; Massano, J. Cognitive impairment and dementia in Parkinson’s disease: Clinical features, diagnosis, and management. Front. Neurol. 2012, 3, 88. [Google Scholar] [CrossRef] [PubMed]
- Jellinger, K.A. Morphological basis of Parkinson disease-associated cognitive impairment: An update. J. Neural Transm. 2022, 129, 977–999. [Google Scholar] [CrossRef] [PubMed]
- Oosterveld, L.P.; Allen, J.C., Jr.; Reinoso, G.; Seah, S.H.; Tay, K.Y.; Au, W.L.; Tan, L.C. Prognostic factors for early mortality in Parkinson’s disease. Park. Relat. Disord. 2015, 21, 226–230. [Google Scholar] [CrossRef]
- Chandler, J.M.; Nair, R.; Biglan, K.; Ferries, E.A.; Munsie, L.M.; Changamire, T.; Patel, N. Characteristics of Parkinson’s disease in patients with and without cognitive impairment. J. Park. Dis. 2021, 11, 1381–1392. [Google Scholar] [CrossRef]
- Lawson, R.A.; Yarnall, A.J.; Duncan, G.W.; Khoo, T.K.; Breen, D.P.; Barker, R.A.; Collerton, D.; Taylor, J.P.; Burn, D.J. Severity of mild cognitive impairment in early Parkinson’s disease contributes to poorer quality of life. Park. Relat. Disord. 2014, 20, 1071–1075. [Google Scholar] [CrossRef]
- Gonzalez, M.C.; Tovar-Rios, D.A.; Alves, G.; Dalen, I.; Williams-Gray, C.H.; Camacho, M.; Forsgren, L.; Bäckström, D.; Lawson, R.A.; Macleod, A.D.; et al. Cognitive and motor decline in dementia with Lewy bodies and Parkinson’s disease dementia. Mov. Disord. Clin. Pract. 2023, 10, 980–986. [Google Scholar] [CrossRef]
- Jellinger, K.A. Dementia with Lewy bodies and Parkinson’s disease-dementia: Current concepts and controversies. J. Neural Transm. 2018, 125, 615–650. [Google Scholar] [CrossRef] [PubMed]
- Jellinger, K.A. Morphological characteristics differentiate dementia with Lewy bodies from Parkinson disease with and without dementia. J. Neural Transm. 2023, 130, 891–904. [Google Scholar] [CrossRef] [PubMed]
- Jellinger, K.A.; Korczyn, A.D. Are dementia with Lewy bodies and Parkinson’s disease dementia the same disease? BMC Med. 2018, 16, 34. [Google Scholar] [CrossRef] [PubMed]
- Harvey, J.; Pishva, E.; Chouliaras, L.; Lunnon, K. Elucidating distinct molecular signatures of Lewy body dementias. Neurobiol. Dis. 2023, 188, 106337. [Google Scholar] [CrossRef] [PubMed]
- Rongve, A.; Aarsland, D. The Lewy body dementias: Dementia with Lewy bodies and Parkinson’s disease dementia. In Oxford Textbook of Old Age Psychiatry, 3rd ed.; Dening, T., Thomas, A., Stewart, R., Taylor, J.-P., Eds.; Oxford University Press: Oxford, UK, 2021; pp. 495–512. [Google Scholar]
- Habich, A.; Wahlund, L.O.; Westman, E.; Dierks, T.; Ferreira, D. (Dis-)connected dots in dementia with Lewy bodies—A systematic review of connectivity studies. Mov. Disord. 2023, 38, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Perez, F.; Helmer, C.; Foubert-Samier, A.; Auriacombe, S.; Dartigues, J.F.; Tison, F. Risk of dementia in an elderly population of Parkinson’s disease patients: A 15-year population-based study. Alzheimer’s Dement. 2012, 8, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Hely, M.A.; Reid, W.G.; Adena, M.A.; Halliday, G.M.; Morris, J.G. The Sydney multicenter study of Parkinson’s disease: The inevitability of dementia at 20 years. Mov. Disord. 2008, 23, 837–844. [Google Scholar] [CrossRef]
- Marder, K. Cognitive impairment and dementia in Parkinson’s disease. Mov. Disord. 2010, 25 (Suppl. 1), S110–S116. [Google Scholar] [CrossRef]
- Hall, J.M.; Lewis, S.J.G. Neural correlates of cognitive impairment in Parkinson’s disease: A review of structural MRI findings. Int. Rev. Neurobiol. 2019, 144, 1–28. [Google Scholar]
- Aarsland, D.; Bronnick, K.; Williams-Gray, C.; Weintraub, D.; Marder, K.; Kulisevsky, J.; Burn, D.; Barone, P.; Pagonabarraga, J.; Allcock, L.; et al. Mild cognitive impairment in Parkinson disease: A multicenter pooled analysis. Neurology 2010, 75, 1062–1069. [Google Scholar] [CrossRef]
- Aarsland, D.; Zaccai, J.; Brayne, C. A systematic review of prevalence studies of dementia in Parkinson’s disease. Mov. Disord. 2005, 20, 1255–1263. [Google Scholar] [CrossRef] [PubMed]
- Severiano, E.S.C.; Alarcão, J.; Pavão Martins, I.; Ferreira, J.J. Frequency of dementia in Parkinson’s disease: A systematic review and meta-analysis. J. Neurol. Sci. 2022, 432, 120077. [Google Scholar] [CrossRef] [PubMed]
- Rongve, A.; Aarsland, D. Dementia in Parkinson’s disease and dementia with Lewy bodies. In Oxford Textbook of Old Age Psychiatry 2e; Dening, T., Thomas, A., Eds.; Oxford Univ. Press: Oxford, UK, 2013; pp. 469–478. [Google Scholar]
- Bock, M.A.; Tanner, C.M. The epidemiology of cognitive function in Parkinson’s disease. Prog. Brain Res. 2022, 269, 3–37. [Google Scholar] [PubMed]
- Galtier, I.; Nieto, A.; Mata, M.; Lorenzo, J.N.; Barroso, J. Specific pattern of linguistic impairment in Parkinson’s disease patients with subjective cognitive decline and mild cognitive impairment predicts dementia. J. Int. Neuropsychol. Soc. 2023, 29, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.Y.; Lee, P.H. Subjective cognitive complaints in cognitively normal patients with Parkinson’s disease: A systematic review. J. Mov. Disord. 2023, 16, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Purri, R.; Brennan, L.; Rick, J.; Xie, S.X.; Deck, B.L.; Chahine, L.M.; Dahodwala, N.; Chen-Plotkin, A.; Duda, J.E.; Morley, J.F.; et al. Subjective cognitive complaint in Parkinson’s disease patients with normal cognition: Canary in the coal mine? Mov. Disord. 2020, 35, 1618–1625. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, R.P.; Mendonça, M.D.; Caetano, A.P.; Lampreia, T.M.; Miguel, R.; Bugalho, P.M. Cognitive complaints in Parkinson’s disease patients: From subjective cognitive complaints to dementia and affective disorders. J. Neural Transm. 2019, 126, 1329–1335. [Google Scholar] [CrossRef]
- Dujardin, K.; Duhamel, A.; Delliaux, M.; Thomas-Antérion, C.; Destée, A.; Defebvre, L. Cognitive complaints in Parkinson’s disease: Its relationship with objective cognitive decline. J. Neurol. 2010, 257, 79–84. [Google Scholar] [CrossRef]
- Erro, R.; Santangelo, G.; Barone, P.; Picillo, M.; Amboni, M.; Longo, K.; Giordano, F.; Moccia, M.; Allocca, R.; Pellecchia, M.T.; et al. Do subjective memory complaints herald the onset of mild cognitive impairment in Parkinson disease? J. Geriatr. Psychiatry Neurol. 2014, 27, 276–281. [Google Scholar] [CrossRef]
- Galtier, I.; Nieto, A.; Lorenzo, J.N.; Barroso, J. Subjective cognitive decline and progression to dementia in Parkinson’s disease: A long-term follow-up study. J. Neurol. 2019, 266, 745–754. [Google Scholar] [CrossRef]
- Hong, J.Y.; Lee, J.E.; Sohn, Y.H.; Lee, P.H. Neurocognitive and atrophic patterns in Parkinson’s disease based on subjective memory complaints. J. Neurol. 2012, 259, 1706–1712. [Google Scholar] [CrossRef] [PubMed]
- Siciliano, M.; Trojano, L.; De Micco, R.; Sant’Elia, V.; Giordano, A.; Russo, A.; Passamonti, L.; Tedeschi, G.; Chiorri, C.; Tessitore, A. Correlates of the discrepancy between objective and subjective cognitive functioning in non-demented patients with Parkinson’s disease. J. Neurol. 2021, 268, 3444–3455. [Google Scholar] [CrossRef] [PubMed]
- Erro, R.; Santangelo, G.; Picillo, M.; Vitale, C.; Amboni, M.; Longo, K.; Costagliola, A.; Pellecchia, M.T.; Allocca, R.; De Rosa, A.; et al. Link between non-motor symptoms and cognitive dysfunctions in de novo, drug-naive PD patients. J. Neurol. 2012, 259, 1808–1813. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, S.; Wang, S. Application of periventricular white matter hyperintensities combined with homocysteine into predicting mild cognitive impairment in Parkinson’s disease. Int. J. Gen. Med. 2023, 16, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Pourzinal, D.; Byrne, G.J.; McMahon, K.L.; Copland, D.A.; O’Sullivan, J.D.; Mitchell, L.; Dissanayaka, N.N. Global assessment, cognitive profile, and characteristics of mild cognitive impairment in Parkinson’s disease. Int. J. Geriatr. Psychiatry 2023, 38, e5955. [Google Scholar] [CrossRef] [PubMed]
- Monastero, R.; Cicero, C.E.; Baschi, R.; Davì, M.; Luca, A.; Restivo, V.; Zangara, C.; Fierro, B.; Zappia, M.; Nicoletti, A. Mild cognitive impairment in Parkinson’s disease: The Parkinson’s disease cognitive study (PACOS). J. Neurol. 2018, 265, 1050–1058. [Google Scholar] [CrossRef]
- Nicoletti, A.; Luca, A.; Baschi, R.; Cicero, C.E.; Mostile, G.; Davì, M.; Pilati, L.; Restivo, V.; Zappia, M.; Monastero, R. Incidence of mild cognitive impairment and dementia in Parkinson’s disease: The Parkinson’s disease cognitive impairment study. Front. Aging Neurosci. 2019, 11, 21. [Google Scholar] [CrossRef]
- Bernard, B.A.; Carns, D.; Stebbins, G.T.; Goldman, J.G.; Goetz, C.G. Relationship of Movement Disorders Society—Unified Parkinson’s Disease Rating Scale nonmotor symptoms to cognitive functioning in patients with Parkinson’s disease. Mov. Disord. Clin. Pract. 2020, 7, 279–283. [Google Scholar] [CrossRef]
- Petkus, A.J.; Filoteo, J.V.; Schiehser, D.M.; Gomez, M.E.; Hui, J.S.; Jarrahi, B.; McEwen, S.; Jakowec, M.W.; Petzinger, G.M. Mild cognitive impairment, psychiatric symptoms, and executive functioning in patients with Parkinson’s disease. Int. J. Geriatr. Psychiatry 2020, 35, 396–404. [Google Scholar] [CrossRef]
- Barone, P.; Aarsland, D.; Burn, D.; Emre, M.; Kulisevsky, J.; Weintraub, D. Cognitive impairment in nondemented Parkinson’s disease. Mov. Disord. 2011, 26, 2483–2495. [Google Scholar] [CrossRef]
- Poletti, M.; Frosini, D.; Pagni, C.; Baldacci, F.; Nicoletti, V.; Tognoni, G.; Lucetti, C.; Del Dotto, P.; Ceravolo, R.; Bonuccelli, U. Mild cognitive impairment and cognitive-motor relationships in newly diagnosed drug-naive patients with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2012, 83, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Domellöf, M.E.; Ekman, U.; Forsgren, L.; Elgh, E. Cognitive function in the early phase of Parkinson’s disease, a five-year follow-up. Acta Neurol. Scand. 2015, 132, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Baiano, C.; Barone, P.; Trojano, L.; Santangelo, G. Prevalence and clinical aspects of mild cognitive impairment in Parkinson’s disease: A meta-analysis. Mov. Disord. 2020, 35, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.; Knopman, D.S. Classification and epidemiology of MCI. Clin. Geriatr. Med. 2013, 29, 753–772. [Google Scholar] [CrossRef] [PubMed]
- Galtier, I.; Nieto, A.; Lorenzo, J.N.; Barroso, J. Mild cognitive impairment in Parkinson’s disease: Diagnosis and progression to dementia. J. Clin. Exp. Neuropsychol. 2016, 38, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Caviness, J.N.; Driver-Dunckley, E.; Connor, D.J.; Sabbagh, M.N.; Hentz, J.G.; Noble, B.; Evidente, V.G.; Shill, H.A.; Adler, C.H. Defining mild cognitive impairment in Parkinson’s disease. Mov. Disord. 2007, 22, 1272–1277. [Google Scholar] [CrossRef] [PubMed]
- Goldman, J.G.; Weis, H.; Stebbins, G.; Bernard, B.; Goetz, C.G. Clinical differences among mild cognitive impairment subtypes in Parkinson’s disease. Mov. Disord. 2012, 27, 1129–1136. [Google Scholar] [CrossRef]
- Gagnon, J.F.; Bertrand, J.A.; Génier Marchand, D. Cognition in rapid eye movement sleep behavior disorder. Front. Neurol. 2012, 3, 82. [Google Scholar] [CrossRef]
- Jozwiak, N.; Postuma, R.B.; Montplaisir, J.; Latreille, V.; Panisset, M.; Chouinard, S.; Bourgouin, P.A.; Gagnon, J.F. REM sleep behavior disorder and cognitive impairment in Parkinson’s disease. Sleep 2017, 40, zsx101. [Google Scholar] [CrossRef]
- Nagy, A.V.; Leschziner, G.; Eriksson, S.H.; Lees, A.; Noyce, A.J.; Schrag, A. Cognitive impairment in REM-sleep behaviour disorder and individuals at risk of Parkinson’s disease. Park. Relat. Disord. 2023, 109, 105312. [Google Scholar] [CrossRef]
- Dalrymple-Alford, J.C.; Livingston, L.; MacAskill, M.R.; Graham, C.; Melzer, T.R.; Porter, R.J.; Watts, R.; Anderson, T.J. Characterizing mild cognitive impairment in Parkinson’s disease. Mov. Disord. 2011, 26, 629–636. [Google Scholar] [CrossRef]
- Goldman, J.G.; Litvan, I. Mild cognitive impairment in Parkinson’s disease. Minerva Medica 2011, 102, 441–459. [Google Scholar] [PubMed]
- Sousa, N.M.F.; Brucki, S.M.D. Addenbrooke’s cognitive examination III: Diagnostic utility for detecting mild cognitive impairment and dementia in Parkinson’s disease. Arq. Neuro-Psiquiatr. 2023, 81, 155–163. [Google Scholar]
- Saredakis, D.; Collins-Praino, L.E.; Gutteridge, D.S.; Stephan, B.C.M.; Keage, H.A.D. Conversion to MCI and dementia in Parkinson’s disease: A systematic review and meta-analysis. Park. Relat. Disord. 2019, 65, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Hobson, P.; Meara, J. Mild cognitive impairment in Parkinson’s disease and its progression onto dementia: A 16-year outcome evaluation of the Denbighshire cohort. Int. J. Geriatr. Psychiatry 2015, 30, 1048–1055. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.J.; Yoo, H.S.; Lee, Y.H.; Lee, H.S.; Ye, B.S.; Sohn, Y.H.; Kwon, H.; Lee, P.H. Frontal atrophy as a marker for dementia conversion in Parkinson’s disease with mild cognitive impairment. Hum. Brain Mapp. 2019, 40, 3784–3794. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhao, D.; Wang, Q.; Bai, C.; Li, Y.; Guo, X.; Chen, B.; Zhang, L.; Yuan, J. Predictors of cognitive impairment in newly diagnosed Parkinson’s disease with normal cognition at baseline: A 5-year cohort study. Front. Aging Neurosci. 2023, 15, 1142558. [Google Scholar] [CrossRef]
- Aarsland, D.; Bronnick, K.; Ehrt, U.; De Deyn, P.P.; Tekin, S.; Emre, M.; Cummings, J.L. Neuropsychiatric symptoms in patients with Parkinson’s disease and dementia: Frequency, profile and associated care giver stress. J. Neurol. Neurosurg. Psychiatry 2007, 78, 36–42. [Google Scholar] [CrossRef]
- Lee, A.H.; Weintraub, D. Psychosis in Parkinson’s disease without dementia: Common and comorbid with other non-motor symptoms. Mov. Disord. 2012, 27, 858–863. [Google Scholar] [CrossRef]
- Verbaan, D.; van Rooden, S.M.; Visser, M.; Marinus, J.; Emre, M.; van Hilten, J.J. Psychotic and compulsive symptoms in Parkinson’s disease. Mov. Disord. 2009, 24, 738–744. [Google Scholar] [CrossRef]
- Santos-García, D.; de Deus Fonticoba, T.; Cores Bartolomé, C.; Feal Painceiras, M.J.; García Díaz, I.; Íñiguez Alvarado, M.C.; Paz, J.M.; Jesús, S.; Cosgaya, M.; García Caldentey, J.; et al. Cognitive impairment and dementia in young onset Parkinson’s disease. J. Neurol. 2023, 270, 5793–5812. [Google Scholar] [CrossRef] [PubMed]
- Kenney, L.E.; Ratajska, A.M.; Lopez, F.V.; Marsiske, M.; Bowers, D. Early rapid eye movement sleep behavior disorder predicts incident cognitive impairment in Parkinson’s disease across ages. Park. Relat. Disord. 2023, 110, 105392. [Google Scholar] [CrossRef] [PubMed]
- Periñán, M.T.; Macías-García, D.; Jesús, S.; Martín-Rodríguez, J.F.; Muñoz-Delgado, L.; Jimenez-Jaraba, M.V.; Buiza-Rueda, D.; Bonilla-Toribio, M.; Adarmes-Gómez, A.D.; Gómez-Garre, P.; et al. Homocysteine levels, genetic background, and cognitive impairment in Parkinson’s disease. J. Neurol. 2023, 270, 477–485. [Google Scholar] [CrossRef]
- Park, J.; Choi, S.; Kim, R. Association between prediabetes and cognitive function in Parkinson’s disease. Brain Behav. 2023, 13, e2838. [Google Scholar] [CrossRef] [PubMed]
- Grant, H.; Anderton, R.; Gasson, N.; Lawrence, B.J. The gut microbiome and cognition in Parkinson’s disease: A systematic review. Nutr. Neurosci. 2023, 26, 932–941. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Cen, K.; Cui, Y.; Feng, X.; Hou, X. Uric acid levels and their association with vascular dementia and Parkinson’s disease dementia: A meta-analysis. Neurol. Sci. 2023, 44, 2017–2024. [Google Scholar] [CrossRef]
- Qu, Y.; Qin, Q.X.; Wang, D.L.; Li, J.T.; Zhao, J.W.; An, K.; Li, J.Y.; Mao, Z.J.; Min, Z.; Xiong, Y.J.; et al. Estimated glomerular filtration rate is a biomarker of cognitive impairment in Parkinson’s disease. Front. Aging Neurosci. 2023, 15, 1130833. [Google Scholar] [CrossRef]
- Bocti, C.; Pépin, F.; Tétreault, M.; Cossette, P.; Langlois, F.; Imbeault, H.; Duval, N.; Lacombe, G.; Fulop, T. Orthostatic hypotension associated with executive dysfunction in mild cognitive impairment. J. Neurol. Sci. 2017, 382, 79–83. [Google Scholar] [CrossRef]
- Loureiro, D.; Bilbao, R.; Bordet, S.; Grasso, L.; Otero-Losada, M.; Capani, F.; Ponzo, O.J.; Perez-Lloret, S. A systematic review and meta-analysis on the association between orthostatic hypotension and mild cognitive impairment and dementia in Parkinson’s disease. Neurol. Sci. 2023, 44, 1211–1222. [Google Scholar] [CrossRef]
- Ruiz Barrio, I.; Miki, Y.; Jaunmuktane, Z.T.; Warner, T.; De Pablo-Fernandez, E. Association between orthostatic hypotension and dementia in patients with Parkinson disease and multiple system atrophy. Neurology 2023, 100, e998–e1008. [Google Scholar] [CrossRef]
- Monaghan, A.S.; Gordon, E.; Graham, L.; Hughes, E.; Peterson, D.S.; Morris, R. Cognition and freezing of gait in Parkinson’s disease: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2023, 147, 105068. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Xie, H.; Qin, G.; Wu, D.; Shan, M.; Hu, T.; Yin, Z.; An, Q.; Ma, R.; Wang, S.; et al. Association between cognitive impairment and freezing of gait in patients with Parkinson’s disease. J. Clin. Med. 2023, 12, 2799. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Li, J.; Chen, Y.; Qin, Q.; Wang, D.; Zhao, J.; Yang, Q.; Mao, Z.; Xiong, Y.; Min, Z.; et al. Freezing of gait is a risk factor for cognitive decline in Parkinson’s disease. J. Neurol. 2023, 270, 466–476. [Google Scholar] [CrossRef] [PubMed]
- Malkiewicz, J.J.; Kasprzyk, A.G.; Waksmundzki, D.; Wegrzynek, J.; Chmiela, T.; Siuda, J. Risk factors for dementia in Parkinson’s disease—The overuse of anticholinergic drugs. Neurol. Neurochir. Pol. 2023, 57, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Dong, Z.; Zhong, J.; Pan, P.; Xu, G.; Zhang, Z.; Zhang, X.; Shi, H. Effect of cerebral small vessel disease on cognitive impairment in Parkinson’s disease. Acta Neurol. Belg. 2023, 123, 487–495. [Google Scholar] [CrossRef]
- Schrag, A.; Bohlken, J.; Dammertz, L.; Teipel, S.; Hermann, W.; Akmatov, M.K.; Bätzing, J.; Holstiege, J. Widening the spectrum of risk factors, comorbidities, and prodromal features of Parkinson disease. JAMA Neurol. 2023, 80, 161–171. [Google Scholar] [CrossRef]
- Darweesh, S.K.L.; Wolters, F.J.; Postuma, R.B.; Stricker, B.H.; Hofman, A.; Koudstaal, P.J.; Ikram, M.K.; Ikram, M.A. Association between poor cognitive functioning and risk of incident parkinsonism: The Rotterdam Study. JAMA Neurol. 2017, 74, 1431–1438. [Google Scholar] [CrossRef]
- Gasser, T.; Hardy, J.; Mizuno, Y. Milestones in PD genetics. Mov. Disord. 2011, 26, 1042–1048. [Google Scholar] [CrossRef]
- Martin, I.; Dawson, V.L.; Dawson, T.M. Recent advances in the genetics of Parkinson’s disease. Annu. Rev. Genom. Hum. Genet. 2011, 12, 301–325. [Google Scholar] [CrossRef]
- Piredda, R.; Desmarais, P.; Masellis, M.; Gasca-Salas, C. Cognitive and psychiatric symptoms in genetically determined Parkinson’s disease: A systematic review. Eur. J. Neurol. 2020, 27, 229–234. [Google Scholar] [CrossRef]
- Wise, A.H.; Alcalay, R.N. Genetics of cognitive dysfunction in Parkinson’s disease. Prog. Brain Res. 2022, 269, 195–226. [Google Scholar] [PubMed]
- Xu, J.; Li, J.; Sun, Y.J.; Quan, W.; Liu, L.; Zhang, Q.H.; Qin, Y.D.; Pei, X.C.; Su, H.; Chen, J.J. Identification of key genes and signaling pathways associated with dementia with Lewy bodies and Parkinson’s disease dementia using bioinformatics. Front. Neurol. 2023, 14, 1029370. [Google Scholar] [CrossRef] [PubMed]
- Fagan, E.S.; Pihlstrøm, L. Genetic risk factors for cognitive decline in Parkinson’s disease: A review of the literature. Eur. J. Neurol. 2017, 24, 561-e20. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Zhou, G.; Wang, Y.; Zhang, R.; Guo, Z.; Zhou, H.; Zheng, H.; Sun, Y.; Ma, C.; Lu, M.; et al. Association of GBA genotype with motor and cognitive decline in Chinese Parkinson’s disease patients. Front. Aging Neurosci. 2023, 15, 1091919. [Google Scholar] [CrossRef] [PubMed]
- De Michele, G.; Palmieri, G.R.; Pane, C.; Valente, E.M.; Palmieri, I.; Dello Iacovo, C.D.P.; Cuomo, N.; Giglio, A.; De Lucia, N.; Fico, T.; et al. Motor and non-motor features in Parkinson’s Disease patients carrying GBA gene mutations. Acta Neurol. Belg. 2023, 123, 221–226. [Google Scholar] [CrossRef]
- Jiang, Z.; Huang, Y.; Zhang, P.; Han, C.; Lu, Y.; Mo, Z.; Zhang, Z.; Li, X.; Zhao, S.; Cai, F.; et al. Characterization of a pathogenic variant in GBA for Parkinson’s disease with mild cognitive impairment patients. Mol. Brain 2020, 13, 102. [Google Scholar] [CrossRef]
- Xiao, B.; Deng, X.; Ng, E.Y.; Lo, Y.L.; Xu, Z.; Tay, K.Y.; Au, W.L.; Ng, A.; Tan, L.C.S.; Tan, E.K. Parkinson’s disease genome-wide association study-linked PARK16 variant is associated with a lower risk of cognitive impairment: A 4-year observational study. Eur. J. Neurol. 2023, 30, 2874–2878. [Google Scholar] [CrossRef]
- Ortega, R.A.; Wang, C.; Raymond, D.; Bryant, N.; Scherzer, C.R.; Thaler, A.; Alcalay, R.N.; West, A.B.; Mirelman, A.; Kuras, Y.; et al. Association of dual LRRK2 G2019S and GBA variations with Parkinson disease progression. JAMA Netw. Open 2021, 4, e215845. [Google Scholar] [CrossRef]
- Tan, M.M.X.; Lawton, M.A.; Jabbari, E.; Reynolds, R.H.; Iwaki, H.; Blauwendraat, C.; Kanavou, S.; Pollard, M.I.; Hubbard, L.; Malek, N.; et al. Genome-wide association studies of cognitive and motor progression in Parkinson’s disease. Mov. Disord. 2021, 36, 424–433. [Google Scholar] [CrossRef]
- Liu, J.Y.; Ma, L.Z.; Wang, J.; Cui, X.J.; Sheng, Z.H.; Fu, Y.; Li, M.; Ou, Y.N.; Yu, J.T.; Tan, L.; et al. Age-related association between APOE epsilon4 and cognitive progression in de novo Parkinson’s disease. J. Alzheimer’s Dis. 2023, 91, 1121–1132. [Google Scholar] [CrossRef]
- Jo, S.; Kim, S.O.; Park, K.W.; Lee, S.H.; Hwang, Y.S.; Chung, S.J. The role of APOE in cognitive trajectories and motor decline in Parkinson’s disease. Sci. Rep. 2021, 11, 7819. [Google Scholar] [CrossRef] [PubMed]
- Real, R.; Martinez-Carrasco, A.; Reynolds, R.H.; Lawton, M.A.; Tan, M.M.X.; Shoai, M.; Corvol, J.C.; Ryten, M.; Bresner, C.; Hubbard, L.; et al. Association between the LRP1B and APOE loci and the development of Parkinson’s disease dementia. Brain 2023, 146, 1873–1887. [Google Scholar] [CrossRef] [PubMed]
- Szwedo, A.A.; Dalen, I.; Pedersen, K.F.; Camacho, M.; Bäckström, D.; Forsgren, L.; Tzoulis, C.; Winder-Rhodes, S.; Hudson, G.; Liu, G.; et al. GBA and APOE impact cognitive decline in Parkinson’s disease: A 10-year population-based study. Mov. Disord. 2022, 37, 1016–1027. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Dai, S.; Jin, C.; Si, X.; Gu, L.; Song, Z.; Gao, T.; Chen, Y.; Yan, Y.; Yin, X.; et al. Aquaporin-4 polymorphisms are associated with cognitive performance in Parkinson’s disease. Front. Aging Neurosci. 2022, 13, 740491. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.Y.; Ma, C.C.; Chen, F.F.; Zhou, X.Y.; Li, X.; Tang, C.X.; Zhang, L.; Gao, D.S. Possible role of glial cell line-derived neurotrophic factor for predicting cognitive impairment in Parkinson’s disease: A case-control study. Neural Regen. Res. 2021, 16, 885–892. [Google Scholar] [PubMed]
- Aarsland, D.; Andersen, K.; Larsen, J.P.; Perry, R.; Wentzel-Larsen, T.; Lolk, A.; Kragh-Sorensen, P. The rate of cognitive decline in Parkinson disease. Arch. Neurol. 2004, 61, 1906–1911. [Google Scholar] [CrossRef] [PubMed]
- Williams-Gray, C.H.; Evans, J.R.; Goris, A.; Foltynie, T.; Ban, M.; Robbins, T.W.; Brayne, C.; Kolachana, B.S.; Weinberger, D.R.; Sawcer, S.J.; et al. The distinct cognitive syndromes of Parkinson’s disease: 5 year follow-up of the CamPaIGN cohort. Brain 2009, 132, 2958–2969. [Google Scholar] [CrossRef]
- Kobak Tur, E.; Ari, B.C. Mild cognitive impairment in patients with Parkinson’s disease and the analysis of associated factors. Neurol. Res. 2023, 45, 1161–1168. [Google Scholar] [CrossRef]
- Johnson, D.K.; Langford, Z.; Garnier-Villarreal, M.; Morris, J.C.; Galvin, J.E. Onset of mild cognitive impairment in Parkinson disease. Alzheimer Dis. Assoc. Disord. 2016, 30, 127–133. [Google Scholar] [CrossRef]
- Cholerton, B.; Johnson, C.O.; Fish, B.; Quinn, J.F.; Chung, K.A.; Peterson-Hiller, A.L.; Rosenthal, L.S.; Dawson, T.M.; Albert, M.S.; Hu, S.C.; et al. Sex differences in progression to mild cognitive impairment and dementia in Parkinson’s disease. Park. Relat. Disord. 2018, 50, 29–36. [Google Scholar] [CrossRef]
- Bock, M.A.; Vittinghoff, E.; Bahorik, A.L.; Leng, Y.; Fink, H.; Yaffe, K. Cognitive and functional trajectories in older adults with prediagnostic Parkinson disease. Neurology 2023, 100, e1386–e1394. [Google Scholar] [CrossRef] [PubMed]
- Green, J.; McDonald, W.M.; Vitek, J.L.; Evatt, M.; Freeman, A.; Haber, M.; Bakay, R.A.; Triche, S.; Sirockman, B.; DeLong, M.R. Cognitive impairments in advanced PD without dementia. Neurology 2002, 59, 1320–1324. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C.; Roberts, R.O.; Knopman, D.S.; Boeve, B.F.; Geda, Y.E.; Ivnik, R.J.; Smith, G.E.; Jack, C.R., Jr. Mild cognitive impairment: Ten years later. Arch. Neurol. 2009, 66, 1447–1455. [Google Scholar] [CrossRef] [PubMed]
- Siciliano, M.; De Micco, R.; Russo, A.G.; Esposito, F.; Sant’Elia, V.; Ricciardi, L.; Morgante, F.; Russo, A.; Goldman, J.G.; Chiorri, C.; et al. Memory phenotypes in early, de novo Parkinson’s disease patients with mild cognitive impairment. Mov. Disord. 2023, 38, 1461–1472. [Google Scholar] [CrossRef] [PubMed]
- Muslimovic, D.; Post, B.; Speelman, J.D.; Schmand, B. Cognitive profile of patients with newly diagnosed Parkinson disease. Neurology 2005, 65, 1239–1245. [Google Scholar] [CrossRef] [PubMed]
- Watson, G.S.; Leverenz, J.B. Profile of cognitive impairment in Parkinson’s disease. Brain Pathol. 2010, 20, 640–645. [Google Scholar] [CrossRef] [PubMed]
- Muslimovic, D.; Schmand, B.; Speelman, J.D.; de Haan, R.J. Course of cognitive decline in Parkinson’s disease: A meta-analysis. J. Int. Neuropsychol. Soc. 2007, 13, 920–932. [Google Scholar] [CrossRef]
- Pedersen, K.F.; Larsen, J.P.; Tysnes, O.B.; Alves, G. Prognosis of mild cognitive impairment in early Parkinson disease: The Norwegian ParkWest study. JAMA Neurol. 2013, 70, 580–586. [Google Scholar] [CrossRef]
- Pigott, K.; Rick, J.; Xie, S.X.; Hurtig, H.; Chen-Plotkin, A.; Duda, J.E.; Morley, J.F.; Chahine, L.M.; Dahodwala, N.; Akhtar, R.S.; et al. Longitudinal study of normal cognition in Parkinson disease. Neurology 2015, 85, 1276–1282. [Google Scholar] [CrossRef]
- McKinlay, A.; Grace, R.C.; Dalrymple-Alford, J.C.; Roger, D. Characteristics of executive function impairment in Parkinson’s disease patients without dementia. J. Int. Neuropsychol. Soc. 2010, 16, 268–277. [Google Scholar] [CrossRef]
- Hannaway, N.; Zarkali, A.; Leyland, L.A.; Bremner, F.; Nicholas, J.M.; Wagner, S.K.; Roig, M.; Keane, P.A.; Toosy, A.; Chataway, J.; et al. Visual dysfunction is a better predictor than retinal thickness for dementia in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2023, 94, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Park, C.J.; Eom, J.; Park, K.S.; Park, Y.W.; Chung, S.J.; Kim, Y.J.; Ahn, S.S.; Kim, J.; Lee, P.H.; Sohn, Y.H.; et al. An interpretable multiparametric radiomics model of basal ganglia to predict dementia conversion in Parkinson’s disease. NPJ Park. Dis. 2023, 9, 127. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.D.; Uribe, C.; Bunch, J.; Thomas, K.R. Beyond PD-MCI: Objectively defined subtle cognitive decline predicts future cognitive and functional changes. J. Neurol. 2021, 268, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.S.; Kwon, H.; Chung, S.J.; Sohn, Y.H.; Lee, J.M.; Lee, P.H. Neural correlates of self-awareness of cognitive deficits in non-demented patients with Parkinson’s disease. Eur. J. Neurol. 2021, 28, 4022–4030. [Google Scholar] [CrossRef] [PubMed]
- Gasca-Salas, C.; Duff-Canning, S.; McArthur, E.; Armstrong, M.J.; Fox, S.; Meaney, C.A.; Tang-Wai, D.F.; Gill, D.; Eslinger, P.J.; Zadikoff, C.; et al. Predictors of cognitive change in Parkinson disease: A 2-year follow-up study. Alzheimer Dis. Assoc. Disord. 2023, 37, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Cho, K.H.; Song, S.K.; Kim, H.J.; Lee, H.S.; Sohn, Y.H.; Lee, P.H. Exploratory analysis of neuropsychological and neuroanatomical correlates of progressive mild cognitive impairment in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2014, 85, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.J.; Kim, S.H.; Park, C.W.; Lee, H.S.; Kim, Y.J.; Lee, P.H.; Jeong, Y.; Sohn, Y.H. Is the cingulate island sign a marker for early dementia conversion in Parkinson’s disease? Eur. J. Neurol. 2023, 30, 3732–3740. [Google Scholar] [CrossRef]
- Wallace, E.R.; Segerstrom, S.C.; van Horne, C.G.; Schmitt, F.A.; Koehl, L.M. Meta-analysis of cognition in Parkinson’s disease mild cognitive impairment and dementia progression. Neuropsychol. Rev. 2022, 32, 149–160. [Google Scholar] [CrossRef]
- Goldman, J.G.; Holden, S.; Ouyang, B.; Bernard, B.; Goetz, C.G.; Stebbins, G.T. Diagnosing PD-MCI by MDS Task Force criteria: How many and which neuropsychological tests? Mov. Disord. 2015, 30, 402–406. [Google Scholar] [CrossRef]
- Dubois, B.; Burn, D.; Goetz, C.; Aarsland, D.; Brown, R.G.; Broe, G.A.; Dickson, D.; Duyckaerts, C.; Cummings, J.; Gauthier, S.; et al. Diagnostic procedures for Parkinson’s disease dementia: Recommendations from the movement disorder society task force. Mov. Disord. 2007, 22, 2314–2324. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-IV; American Psychiatric Association: Washington, DC, USA, 1994. [Google Scholar]
- Martinez-Martin, P.; Falup-Pecurariu, C.; Rodriguez-Blazquez, C.; Serrano-Duenas, M.; Carod Artal, F.J.; Rojo Abuin, J.M.; Aarsland, D. Dementia associated with Parkinson’s disease: Applying the Movement Disorder Society Task Force criteria. Park. Relat. Disord. 2011, 17, 621–624. [Google Scholar] [CrossRef] [PubMed]
- Barton, B.; Grabli, D.; Bernard, B.; Czernecki, V.; Goldman, J.G.; Stebbins, G.; Dubois, B.; Goetz, C.G. Clinical validation of Movement Disorder Society-recommended diagnostic criteria for Parkinson’s disease with dementia. Mov. Disord. 2012, 27, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Di Battista, M.E.; Giustini, P.; Bernardi, S.; Stirpe, P.; Vanacore, N.; Meco, G. A simplified algorithm may lead to overestimate dementia in PD. A clinical and epidemiological study using criteria for PD-D proposed by the Movement Disorders Task Force. J. Neural Transm. 2011, 118, 1609–1612. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, G.N.; Souza, C.P.; Foss, M.P.; Tumas, V. An analysis of the cognitive items of the movement disorders society checklist for the diagnosis of dementia in patients with Parkinson’s disease. Park. Relat. Disord. 2015, 21, 1260–1263. [Google Scholar] [CrossRef] [PubMed]
- Isella, V.; Mapelli, C.; Siri, C.; De Gaspari, D.; Pezzoli, G.; Antonini, A.; Poletti, M.; Bonuccelli, U.; Vista, M.; Appollonio, I.M. Validation and attempts of revision of the MDS-recommended tests for the screening of Parkinson’s disease dementia. Park. Relat. Disord. 2014, 20, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Rocha, N.P.; Carreira, E.X.; Prado, A.C.A.; Tavares, F.; Tavares, M.; Cardoso, F.; Jaeger, A.; Souza, L.C.; Teixeira, A.L. Cognitive evaluation in Parkinson’s disease: Applying the Movement Disorder Society recommendations in a population with a low level of formal education. Arq. Neuro-Psiquiatr. 2023, 81, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Martin, W.R.; Wieler, M.; Gee, M.; Camicioli, R. Temporal lobe changes in early, untreated Parkinson’s disease. Mov. Disord. 2009, 24, 1949–1954. [Google Scholar] [CrossRef]
- Pereira, J.B.; Svenningsson, P.; Weintraub, D.; Brønnick, K.; Lebedev, A.; Westman, E.; Aarsland, D. Initial cognitive decline is associated with cortical thinning in early Parkinson disease. Neurology 2014, 82, 2017–2025. [Google Scholar] [CrossRef]
- Apostolova, L.; Alves, G.; Hwang, K.S.; Babakchanian, S.; Bronnick, K.S.; Larsen, J.P.; Thompson, P.M.; Chou, Y.Y.; Tysnes, O.B.; Vefring, H.K.; et al. Hippocampal and ventricular changes in Parkinson’s disease mild cognitive impairment. Neurobiol. Aging 2012, 33, 2113–2124. [Google Scholar] [CrossRef]
- Gao, H.L.; Qu, Y.; Chen, S.C.; Yang, Q.M.; Li, J.Y.; Tao, A.Y.; Mao, Z.J.; Xue, Z. Third ventricular width by transcranial sonography is associated with cognitive impairment in Parkinson’s disease. CNS Neurosci. Ther. 2023. [Google Scholar] [CrossRef]
- Gao, Y.; Nie, K.; Huang, B.; Mei, M.; Guo, M.; Xie, S.; Huang, Z.; Wang, L.; Zhao, J.; Zhang, Y. Changes of brain structure in Parkinson’s disease patients with mild cognitive impairment analyzed via VBM technology. Neurosci. Lett. 2017, 658, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.X.; Kang, D.Z.; Chen, F.Y.; Liu, Y.; Wu, G.; Li, X.; Yu, L.H.; Lin, Y.X.; Lin, Z.Y. Gray matter atrophy associated with mild cognitive impairment in Parkinson’s disease. Neurosci. Lett. 2016, 617, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Kunst, J.; Marecek, R.; Klobusiakova, P.; Balazova, Z.; Anderkova, L.; Nemcova-Elfmarkova, N.; Rektorova, I. Patterns of grey matter atrophy at different stages of Parkinson’s and Alzheimer’s diseases and relation to cognition. Brain Topogr. 2019, 32, 142–160. [Google Scholar] [CrossRef] [PubMed]
- Segura, B.; Baggio, H.C.; Marti, M.J.; Valldeoriola, F.; Compta, Y.; Garcia-Diaz, A.I.; Vendrell, P.; Bargallo, N.; Tolosa, E.; Junque, C. Cortical thinning associated with mild cognitive impairment in Parkinson’s disease. Mov. Disord. 2014, 29, 1495–1503. [Google Scholar] [CrossRef] [PubMed]
- Devignes, Q.; Lopes, R.; Dujardin, K. Neuroimaging outcomes associated with mild cognitive impairment subtypes in Parkinson’s disease: A systematic review. Park. Relat. Disord. 2022, 95, 122–137. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.; Hakun, J.; Lewis, M.M.; De Jesus, S.; Du, G.; Eslinger, P.J.; Kong, L.; Huang, X. Frontostriatal and limbic contributions to cognitive decline in Parkinson’s disease. J. Neuroimaging 2023, 33, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Pletcher, C.; Dabbs, K.; Barzgari, A.; Pozorski, V.; Haebig, M.; Wey, S.; Krislov, S.; Theisen, F.; Okonkwo, O.; Cary, P.; et al. Cerebral cortical thickness and cognitive decline in Parkinson’s disease. Cereb. Cortex Commun. 2023, 4, tgac044. [Google Scholar] [CrossRef]
- Donzuso, G.; Monastero, R.; Cicero, C.E.; Luca, A.; Mostile, G.; Giuliano, L.; Baschi, R.; Caccamo, M.; Gagliardo, C.; Palmucci, S.; et al. Neuroanatomical changes in early Parkinson’s disease with mild cognitive impairment: A VBM study; the Parkinson’s Disease Cognitive Impairment Study (PaCoS). Neurol. Sci. 2021, 42, 3723–3731. [Google Scholar] [CrossRef]
- Mihaescu, A.S.; Masellis, M.; Graff-Guerrero, A.; Kim, J.; Criaud, M.; Cho, S.S.; Ghadery, C.; Valli, M.; Strafella, A.P. Brain degeneration in Parkinson’s disease patients with cognitive decline: A coordinate-based meta-analysis. Brain Imaging Behav. 2019, 13, 1021–1034. [Google Scholar] [CrossRef]
- Weintraub, D.; Doshi, J.; Koka, D.; Davatzikos, C.; Siderowf, A.D.; Duda, J.E.; Wolk, D.A.; Moberg, P.J.; Xie, S.X.; Clark, C.M. Neurodegeneration across stages of cognitive decline in Parkinson disease. Arch. Neurol. 2011, 68, 1562–1568. [Google Scholar] [CrossRef]
- Melzer, T.R.; Watts, R.; MacAskill, M.R.; Pitcher, T.L.; Livingston, L.; Keenan, R.J.; Dalrymple-Alford, J.C.; Anderson, T.J. Grey matter atrophy in cognitively impaired Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2012, 83, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Filippi, M.; Canu, E.; Donzuso, G.; Stojkovic, T.; Basaia, S.; Stankovic, I.; Tomic, A.; Markovic, V.; Petrovic, I.; Stefanova, E.; et al. Tracking cortical changes throughout cognitive decline in Parkinson’s disease. Mov. Disord. 2020, 35, 1987–1998. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Chen, C.; Song, W.; Yi, Z.; Zhao, P.; Zhong, J.; Dai, Z.; Shi, H.; Pan, P. Regional gray matter reductions associated with mild cognitive impairment in Parkinson’s disease: A meta-analysis of voxel-based morphometry studies. Behav. Brain Res. 2019, 371, 111973. [Google Scholar] [CrossRef] [PubMed]
- Becker, S.; Granert, O.; Timmers, M.; Pilotto, A.; Van Nueten, L.; Roeben, B.; Salvadore, G.; Galpern, W.R.; Streffer, J.; Scheffler, K.; et al. Association of hippocampal subfields, CSF biomarkers, and cognition in patients with Parkinson disease without dementia. Neurology 2021, 96, e904–e915. [Google Scholar] [CrossRef] [PubMed]
- Foo, H.; Mak, E.; Chander, R.J.; Ng, A.; Au, W.L.; Sitoh, Y.Y.; Tan, L.C.; Kandiah, N. Associations of hippocampal subfields in the progression of cognitive decline related to Parkinson’s disease. Neuroimage Clin. 2016, 14, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Liu, Y.; Wang, L.; Zeng, X.; Xu, Y.; Wang, Z. Role of hippocampal subfields in neurodegenerative disease progression analyzed with a multi-scale attention-based network. Neuroimage Clin. 2023, 38, 103370. [Google Scholar] [CrossRef] [PubMed]
- Crowley, S.J.; Amin, M.; Tanner, J.J.; Ding, M.; Mareci, T.A.; Price, C.C. Free water fraction predicts cognitive decline for individuals with idiopathic Parkinson’s disease. Park. Relat. Disord. 2022, 104, 72–77. [Google Scholar] [CrossRef]
- Foo, H.; Mak, E.; Yong, T.T.; Wen, M.C.; Chander, R.J.; Au, W.L.; Sitoh, Y.Y.; Tan, L.C.; Kandiah, N. Progression of subcortical atrophy in mild Parkinson’s disease and its impact on cognition. Eur. J. Neurol. 2017, 24, 341–348. [Google Scholar] [CrossRef]
- Choi, S.A.; Evidente, V.G.; Caviness, J.N.; Shill, H.A.; Sabbagh, M.N.; Connor, D.J.; Hentz, J.G.; Adler, C.H.; Beach, T.G. Are there differences in cerebral white matter lesion burdens between Parkinson’s disease patients with or without dementia? (Correspondence). Acta Neuropathol. 2010, 119, 147–149. [Google Scholar] [CrossRef]
- Zhao, W.; Cheng, B.; Zhu, T.; Cui, Y.; Shen, Y.; Fu, X.; Li, M.; Feng, Y.; Zhang, S. Effects of white matter hyperintensity on cognitive function in PD patients: A meta-analysis. Front. Neurol. 2023, 14, 1203311. [Google Scholar] [CrossRef]
- Carvalho de Abreu, D.C.; Pieruccini-Faria, F.; Sarquis-Adamson, Y.; Black, A.; Fraser, J.; Van Ooteghem, K.; Cornish, B.; Grimes, D.; Jog, M.; Masellis, M.; et al. White matter hyperintensity burden predicts cognitive but not motor decline in Parkinson’s disease: Results from the Ontario Neurodegenerative Diseases Research Initiative. Eur. J. Neurol. 2023, 30, 920–933. [Google Scholar] [CrossRef] [PubMed]
- Dunet, V.; Fartaria, M.J.; Deverdun, J.; Le Bars, E.; Maury, F.; Castelnovo, G.; Kober, T.; Cuadra, M.B.; Geny, C.; Marechal, B.; et al. Episodic memory decline in Parkinson’ s disease: Relation with white matter hyperintense lesions and influence of quantification method. Brain Imaging Behav. 2019, 13, 810–818. [Google Scholar] [CrossRef] [PubMed]
- Agosta, F.; Canu, E.; Stefanova, E.; Sarro, L.; Tomic, A.; Špica, V.; Comi, G.; Kostic, V.S.; Filippi, M. Mild cognitive impairment in Parkinson’s disease is associated with a distributed pattern of brain white matter damage. Hum. Brain Mapp. 2014, 35, 1921–1929. [Google Scholar] [CrossRef] [PubMed]
- Hattori, T.; Orimo, S.; Aoki, S.; Ito, K.; Abe, O.; Amano, A.; Sato, R.; Sakai, K.; Mizusawa, H. Cognitive status correlates with white matter alteration in Parkinson’s disease. Hum. Brain Mapp. 2012, 33, 727–739. [Google Scholar] [CrossRef] [PubMed]
- Melzer, T.R.; Watts, R.; MacAskill, M.R.; Pitcher, T.L.; Livingston, L.; Keenan, R.J.; Dalrymple-Alford, J.C.; Anderson, T.J. White matter microstructure deteriorates across cognitive stages in Parkinson disease. Neurology 2013, 80, 1841–1849. [Google Scholar] [CrossRef] [PubMed]
- Pu, W.; Shen, X.; Huang, M.; Li, Z.; Zeng, X.; Wang, R.; Shen, G.; Yu, H. Assessment of white matter lesions in Parkinson’s disease: Voxel-based analysis and tract-based spatial statistics analysis of Parkinson’s disease with mild cognitive impairment. Curr. Neurovasc. Res. 2020, 17, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yuan, Y.; Sang, T.; Yu, L.; Yu, Y.; Liu, X.; Zhou, W.; Zeng, Q.; Wang, J.; Peng, G.; et al. Local white matter abnormalities in Parkinson’s disease with mild cognitive impairment: Assessed with neurite orientation dispersion and density imaging. J. Neurosci. Res. 2023, 101, 1154–1169. [Google Scholar] [CrossRef]
- Stewart, S.A.; Pimer, L.; Fisk, J.D.; Rusak, B.; Leslie, R.A.; Eskes, G.; Schoffer, K.; McKelvey, J.R.; Rolheiser, T.; Khan, M.N.; et al. Olfactory function and diffusion tensor imaging as markers of mild cognitive impairment in early stages of Parkinson’s disease. Clin. EEG Neurosci. 2023, 54, 91–97. [Google Scholar] [CrossRef]
- Kübler, D.; Kobylecki, C.; McDonald, K.R.; Anton-Rodriguez, J.M.; Herholz, K.; Carter, S.F.; Hinz, R.; Thompson, J.C.; Al-Fatly, B.; Gerhard, A. Structural and metabolic correlates of neuropsychological profiles in multiple system atrophy and Parkinson’s disease. Park. Relat. Disord. 2023, 107, 105277. [Google Scholar] [CrossRef]
- Yu, Z.; Pang, H.; Yu, H.; Wu, Z.; Ding, Z.; Fan, G. Segmental disturbance of white matter microstructure in predicting mild cognitive impairment in idiopathic Parkinson’s disease: An individualized study based on automated fiber quantification tractography. Park. Relat. Disord. 2023, 115, 105802. [Google Scholar] [CrossRef]
- Bohnen, N.I.; Koeppe, R.A.; Minoshima, S.; Giordani, B.; Albin, R.L.; Frey, K.A.; Kuhl, D.E. Cerebral glucose metabolic features of Parkinson disease and incident dementia: Longitudinal study. J. Nucl. Med. 2011, 52, 848–855. [Google Scholar] [CrossRef] [PubMed]
- Homenko, J.G.; Susin, D.S.; Kataeva, G.V.; Irishina, J.A.; Zavolokov, I.G. Characteristics of cerebral glucose metabolism in patients with cognitive impairment in Parkinson’s disease. Zhurnal Nevrol. Psikhiatrii Im. SS Korsakova 2017, 117, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Schrag, A.; Siddiqui, U.F.; Anastasiou, Z.; Weintraub, D.; Schott, J.M. Clinical variables and biomarkers in prediction of cognitive impairment in patients with newly diagnosed Parkinson’s disease: A cohort study. Lancet Neurol. 2017, 16, 66–75. [Google Scholar] [CrossRef] [PubMed]
- González-Redondo, R.; García-García, D.; Clavero, P.; Gasca-Salas, C.; García-Eulate, R.; Zubieta, J.L.; Arbizu, J.; Obeso, J.A.; Rodríguez-Oroz, M.C. Grey matter hypometabolism and atrophy in Parkinson’s disease with cognitive impairment: A two-step process. Brain 2014, 137, 2356–2367. [Google Scholar] [CrossRef] [PubMed]
- Zhihui, S.; Yinghua, L.; Hongguang, Z.; Yuyin, D.; Xiaoxiao, D.; Lulu, G.; Yi, L.; Kangli, F.; Ying, Z. Correlation analysis between (18)F-fluorodeoxyglucose positron emission tomography and cognitive function in first diagnosed Parkinson’s disease patients. Front. Neurol. 2023, 14, 1195576. [Google Scholar] [CrossRef]
- Aracil-Bolaños, I.; Sampedro, F.; Marín-Lahoz, J.; Horta-Barba, A.; Martínez-Horta, S.; Botí, M.; Pérez-Pérez, J.; Bejr-Kasem, H.; Pascual-Sedano, B.; Campolongo, A.; et al. A divergent breakdown of neurocognitive networks in Parkinson’s Disease mild cognitive impairment. Hum. Brain Mapp. 2019, 40, 3233–3242. [Google Scholar] [CrossRef]
- Lang, S.; Yoon, E.J.; Kibreab, M.; Kathol, I.; Cheetham, J.; Hammer, T.; Sarna, J.; Ismail, Z.; Monchi, O. Mild behavioral impairment in Parkinson’s disease is associated with altered corticostriatal connectivity. Neuroimage Clin. 2020, 26, 102252. [Google Scholar] [CrossRef]
- Hou, Y.; Yang, J.; Luo, C.; Song, W.; Ou, R.; Liu, W.; Gong, Q.; Shang, H. Dysfunction of the default mode network in drug-naive Parkinson’s disease with mild cognitive impairments: A resting-state fMRI study. Front. Aging Neurosci. 2016, 8, 247. [Google Scholar] [CrossRef]
- Liu, J.; Zou, X.; Gu, J.; Yu, Q.; Dong, Z.; Zuo, H.; Chen, X.; Du, X.; Zou, D.; Han, Y.; et al. Altered connectivity in the cognitive control-related prefrontal cortex in Parkinson’s disease with rapid eye movement sleep behavior disorder. Brain Imaging Behav. 2023, 17, 702–714. [Google Scholar] [CrossRef]
- De Micco, R.; Piramide, N.; Di Nardo, F.; Siciliano, M.; Cirillo, M.; Russo, A.; Silvestro, M.; Tedeschi, G.; Esposito, F.; Tessitore, A. Resting-state network connectivity changes in drug-naive Parkinson’s disease patients with probable REM sleep behavior disorder. J. Neural Transm. 2023, 130, 43–51. [Google Scholar] [CrossRef]
- Amboni, M.; Tessitore, A.; Esposito, F.; Santangelo, G.; Picillo, M.; Vitale, C.; Giordano, A.; Erro, R.; de Micco, R.; Corbo, D.; et al. Resting-state functional connectivity associated with mild cognitive impairment in Parkinson’s disease. J. Neurol. 2015, 262, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Suo, X.; Lei, D.; Li, N.; Li, J.; Peng, J.; Li, W.; Yang, J.; Qin, K.; Kemp, G.J.; Peng, R.; et al. Topologically convergent and divergent morphological gray matter networks in early-stage Parkinson’s disease with and without mild cognitive impairment. Hum. Brain Mapp. 2021, 42, 5101–5112. [Google Scholar] [CrossRef] [PubMed]
- Suo, X.; Lei, D.; Li, N.; Li, W.; Kemp, G.J.; Sweeney, J.A.; Peng, R.; Gong, Q. Disrupted morphological grey matter networks in early-stage Parkinson’s disease. Brain Struct. Funct. 2021, 226, 1389–1403. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Mei, M.; Gao, Y.; Huang, B.; Qiu, Y.; Zhang, Y.; Wang, L.; Zhao, J.; Huang, Z.; Nie, K. Changes of brain structural network connection in Parkinson’s disease patients with mild cognitive dysfunction: A study based on diffusion tensor imaging. J. Neurol. 2020, 267, 933–943. [Google Scholar] [CrossRef] [PubMed]
- Owens-Walton, C.; Jakabek, D.; Power, B.D.; Walterfang, M.; Hall, S.; van Westen, D.; Looi, J.C.L.; Shaw, M.; Hansson, O. Structural and functional neuroimaging changes associated with cognitive impairment and dementia in Parkinson’s disease. Psychiatry Res. Neuroimaging 2021, 312, 111273. [Google Scholar] [CrossRef] [PubMed]
- Maier, F.; Greuel, A.; Hoock, M.; Kaur, R.; Tahmasian, M.; Schwartz, F.; Csoti, I.; Jessen, F.; Drzezga, A.; van Eimeren, T.; et al. Impaired self-awareness of cognitive deficits in Parkinson’s disease relates to cingulate cortex dysfunction. Psychol. Med. 2023, 53, 1244–1253. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.J.; Kim, Y.J.; Jung, J.H.; Lee, H.S.; Ye, B.S.; Sohn, Y.H.; Jeong, Y.; Lee, P.H. Association between white matter connectivity and early dementia in patients with Parkinson disease. Neurology 2022, 98, e1846–e1856. [Google Scholar] [CrossRef]
- Chen, H.; Wan, H.; Zhang, M.; Wardlaw, J.M.; Feng, T.; Wang, Y. Perivascular space in Parkinson’s disease: Association with CSF amyloid/tau and cognitive decline. Park. Relat. Disord. 2022, 95, 70–76. [Google Scholar] [CrossRef]
- Kim, I.; Shin, N.Y.; Yunjin, B.; Hyu Lee, P.; Lee, S.K.; Mee Lim, S. Early-onset mild cognitive impairment in Parkinson’s disease: Altered corticopetal cholinergic network. Sci. Rep. 2017, 7, 2381. [Google Scholar] [CrossRef]
- Shang, S.; Zhu, S.; Wu, J.; Xu, Y.; Chen, L.; Dou, W.; Yin, X.; Chen, Y.C.; Shen, D.; Ye, J. Topological disruption of high-order functional networks in cognitively preserved Parkinson’s disease. CNS Neurosci. Ther. 2023, 29, 566–576. [Google Scholar] [CrossRef]
- Harrington, D.L.; Shen, Q.; Castillo, G.N.; Filoteo, J.V.; Litvan, I.; Takahashi, C.; French, C. Aberrant intrinsic activity and connectivity in cognitively normal Parkinson’s disease. Front. Aging Neurosci. 2017, 9, 197. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Jin, W.; Li, N.; Gao, J.; Wang, J.; Chang, Y.; Yin, K.; Chen, Y.; Zhang, S.; Wang, T. Brain activity alterations in patients with Parkinson’s disease with cognitive impairment based on resting-state functional MRI. Neurosci. Lett. 2021, 747, 135672. [Google Scholar] [CrossRef] [PubMed]
- Petrou, M.; Bohnen, N.I.; Muller, M.L.; Koeppe, R.A.; Albin, R.L.; Frey, K.A. Abeta-amyloid deposition in patients with Parkinson disease at risk for development of dementia. Neurology 2012, 79, 1161–1167. [Google Scholar] [CrossRef] [PubMed]
- Palermo, G.; Tommasini, L.; Aghakhanyan, G.; Frosini, D.; Giuntini, M.; Tognoni, G.; Bonuccelli, U.; Volterrani, D.; Ceravolo, R. Clinical correlates of cerebral amyloid deposition in Parkinson’s disease dementia: Evidence from a PET study. J. Alzheimer’s Dis. 2019, 70, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Melzer, T.R.; Stark, M.R.; Keenan, R.J.; Myall, D.J.; MacAskill, M.R.; Pitcher, T.L.; Livingston, L.; Grenfell, S.; Horne, K.L.; Young, B.N.; et al. Beta amyloid deposition is not associated with cognitive impairment in Parkinson’s disease. Front. Neurol. 2019, 10, 391. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.C.; Chen, P.H.; Tsai, C.C.; Chiang, H.F.; Hsieh, C.C.; Chen, T.L.; Liao, W.H.; Chen, Y.L.; Wang, J.J. Diffusion and structural MRI as potential biomarkers in people with Parkinson’s disease and cognitive impairment. Eur. Radiol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, D.G.; Phillips, J.S.; Roll, E.; Peterson, C.; Lobrovich, R.; Rascovsky, K.; Ungrady, M.; Wolk, D.A.; Das, S.; Weintraub, D.; et al. Multimodal in vivo and postmortem assessments of tau in Lewy body disorders. Neurobiol. Aging 2020, 96, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Gomperts, S.N.; Locascio, J.J.; Makaretz, S.J.; Schultz, A.; Caso, C.; Vasdev, N.; Sperling, R.; Growdon, J.H.; Dickerson, B.C.; Johnson, K. Tau positron emission tomographic imaging in the Lewy body diseases. JAMA Neurol. 2016, 73, 1334–1341. [Google Scholar] [CrossRef]
- Kantarci, K.; Lowe, V.J.; Boeve, B.F.; Senjem, M.L.; Tosakulwong, N.; Lesnick, T.G.; Spychalla, A.J.; Gunter, J.L.; Fields, J.A.; Graff-Radford, J.; et al. AV-1451 tau and beta-amyloid positron emission tomography imaging in dementia with Lewy bodies. Ann. Neurol. 2017, 81, 58–67. [Google Scholar] [CrossRef]
- Marquie, M.; Verwer, E.E.; Meltzer, A.C.; Kim, S.J.W.; Aguero, C.; Gonzalez, J.; Makaretz, S.J.; Siao Tick Chong, M.; Ramanan, P.; Amaral, A.C.; et al. Lessons learned about [F-18]-AV-1451 off-target binding from an autopsy-confirmed Parkinson’s case. Acta Neuropathol. Commun 2017, 5, 75. [Google Scholar] [CrossRef]
- Wylie, K.P.; Kluger, B.M.; Medina, L.D.; Holden, S.K.; Kronberg, E.; Tregellas, J.R.; Buard, I. Hippocampal, basal ganglia and olfactory connectivity contribute to cognitive impairments in Parkinson’s disease. Eur. J. Neurosci. 2023, 57, 511–526. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Xu, M.; Yu, H.; He, J.; Li, Y.; Song, D.; Fan, G.G. Detection of mild cognitive impairment in Parkinson’s disease using gradient boosting decision tree models based on multilevel DTI indices. J. Transl. Med. 2023, 21, 310. [Google Scholar] [CrossRef]
- Owens-Walton, C.; Adamson, C.; Walterfang, M.; Hall, S.; van Westen, D.; Hansson, O.; Shaw, M.; Looi, J.C.L. Midsagittal corpus callosal thickness and cognitive impairment in Parkinson’s disease. Eur. J. Neurosci. 2022, 55, 1859–1872. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Yang, B.; Zhou, C.; Gao, C.; Hu, Y.; Yin, W.F.; Yin, K.; Jiang, G.; Ren, H.; Pang, A.; et al. Cortical atrophy is associated with cognitive impairment in Parkinson’s disease: A combined analysis of cortical thickness and functional connectivity. Brain Imaging Behav. 2022, 16, 2586–2600. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Wang, Z.; Yang, T.; Li, Y.; Gao, S.; Wu, G.; Jiang, T.; Liang, P. Entorhinal cortex atrophy in early, drug-naive Parkinson’s disease with mild cognitive impairment. Aging Dis 2019, 10, 1221–1232. [Google Scholar] [CrossRef] [PubMed]
- Hanganu, A.; Bedetti, C.; Degroot, C.; Mejia-Constain, B.; Lafontaine, A.L.; Soland, V.; Chouinard, S.; Bruneau, M.A.; Mellah, S.; Belleville, S.; et al. Mild cognitive impairment is linked with faster rate of cortical thinning in patients with Parkinson’s disease longitudinally. Brain 2014, 137, 1120–1129. [Google Scholar] [CrossRef]
- Yazdan Panah, M.; Mokary, Y.; Shah, S.; Thapa, S.; Chand, S.; Shaygannejad, V.; Mirmosayyeb, O. Comparing the hippocampal volumetric atrophy between demented and nondemented individuals with Parkinson’s disease: A systematic review and meta-analysis. Health Sci. Rep. 2023, 6, e1514. [Google Scholar] [CrossRef]
- Camicioli, R.; Sabino, J.; Gee, M.; Bouchard, T.; Fisher, N.; Hanstock, C.; Emery, D.; Martin, W.R. Ventricular dilatation and brain atrophy in patients with Parkinson’s disease with incipient dementia. Mov. Disord. 2011, 26, 1443–1450. [Google Scholar] [CrossRef]
- Weintraub, D.; Dietz, N.; Duda, J.E.; Wolk, D.A.; Doshi, J.; Xie, S.X.; Davatzikos, C.; Clark, C.M.; Siderowf, A. Alzheimer’s disease pattern of brain atrophy predicts cognitive decline in Parkinson’s disease. Brain 2012, 135, 170–180. [Google Scholar] [CrossRef]
- Sivaranjini, S.; Sujatha, C.M. Morphological analysis of subcortical structures for assessment of cognitive dysfunction in Parkinson’s disease using multi-atlas based segmentation. Cogn. Neurodyn. 2021, 15, 835–845. [Google Scholar] [CrossRef]
- Sampedro, F.; Puig-Davi, A.; Martinez-Horta, S.; Pagonabarraga, J.; Horta-Barba, A.; Aracil-Bolaños, I.; Kulisevsky, J. Cortical macro and microstructural correlates of cognitive and neuropsychiatric symptoms in Parkinson’s disease. Clin. Neurol. Neurosurg. 2023, 224, 107531. [Google Scholar] [CrossRef] [PubMed]
- Duncan, G.W.; Firbank, M.J.; Yarnall, A.J.; Khoo, T.K.; Brooks, D.J.; Barker, R.A.; Burn, D.J.; O’Brien, J.T. Gray and white matter imaging: A biomarker for cognitive impairment in early Parkinson’s disease? Mov. Disord. 2016, 31, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Rektor, I.; Svátková, A.; Vojtíšek, L.; Zikmundová, I.; Vanícek, J.; Király, A.; Szabó, N. White matter alterations in Parkinson’s disease with normal cognition precede grey matter atrophy. PLoS ONE 2018, 13, e0187939. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Deng, B.; Xie, F.; Yang, X.; Xie, Z.; Chen, Y.; Yang, Z.; Huang, X.; Zhu, S.; Wang, Q. The influence of white matter hyperintensity on cognitive impairment in Parkinson’s disease. Ann. Clin. Transl. Neurol. 2021, 8, 1917–1934. [Google Scholar] [CrossRef] [PubMed]
- Dadar, M.; Zeighami, Y.; Yau, Y.; Fereshtehnejad, S.M.; Maranzano, J.; Postuma, R.B.; Dagher, A.; Collins, D.L. White matter hyperintensities are linked to future cognitive decline in de novo Parkinson’s disease patients. Neuroimage Clin. 2018, 20, 892–900. [Google Scholar] [CrossRef] [PubMed]
- Scamarcia, P.G.; Agosta, F.; Spinelli, E.G.; Basaia, S.; Stojkovic, T.; Stankovic, I.; Sarasso, E.; Canu, E.; Markovic, V.; Petrovic, I.; et al. Longitudinal white matter damage evolution in Parkinson’s disease. Mov. Disord. 2022, 37, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Butt, A.; Kamtchum-Tatuene, J.; Khan, K.; Shuaib, A.; Jickling, G.C.; Miyasaki, J.M.; Smith, E.E.; Camicioli, R. White matter hyperintensities in patients with Parkinson’s disease: A systematic review and meta-analysis. J. Neurol. Sci. 2021, 426, 117481. [Google Scholar] [CrossRef] [PubMed]
- Hanning, U.; Teuber, A.; Lang, E.; Trenkwalder, C.; Mollenhauer, B.; Minnerup, H. White matter hyperintensities are not associated with cognitive decline in early Parkinson’s disease—The DeNoPa cohort. Park. Relat. Disord. 2019, 69, 61–67. [Google Scholar] [CrossRef]
- Yarnall, A.J.; Breen, D.P.; Duncan, G.W.; Khoo, T.K.; Coleman, S.Y.; Firbank, M.J.; Nombela, C.; Winder-Rhodes, S.; Evans, J.R.; Rowe, J.B.; et al. Characterizing mild cognitive impairment in incident Parkinson disease: The ICICLE-PD study. Neurology 2014, 82, 308–316. [Google Scholar] [CrossRef]
- Dalaker, T.O.; Larsen, J.P.; Dwyer, M.G.; Aarsland, D.; Beyer, M.K.; Alves, G.; Bronnick, K.; Tysnes, O.B.; Zivadinov, R. White matter hyperintensities do not impact cognitive function in patients with newly diagnosed Parkinson’s disease. Neuroimage 2009, 47, 2083–2089. [Google Scholar] [CrossRef]
- Schröter, N.; Bormann, T.; Rijntjes, M.; Blazhenets, G.; Berti, R.; Sajonz, B.E.A.; Urbach, H.; Weiller, C.; Meyer, P.T.; Rau, A.; et al. Cognitive deficits in Parkinson’s disease are associated with neuronal dysfunction and not white matter lesions. Mov. Disord. Clin. Pract. 2023, 10, 1066–1073. [Google Scholar] [CrossRef] [PubMed]
- Sarasso, E.; Agosta, F.; Piramide, N.; Filippi, M. Progression of grey and white matter brain damage in Parkinson’s disease: A critical review of structural MRI literature. J. Neurol. 2021, 268, 3144–3179. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Burock, M.A. Diffusion tensor imaging in Parkinson’s disease and parkinsonian syndrome: A systematic review. Front. Neurol. 2020, 11, 531993. [Google Scholar] [CrossRef] [PubMed]
- Deng, B.; Zhang, Y.; Wang, L.; Peng, K.; Han, L.; Nie, K.; Yang, H.; Zhang, L.; Wang, J. Diffusion tensor imaging reveals white matter changes associated with cognitive status in patients with Parkinson’s disease. Am. J. Alzheimer’s Dis. Other Dement. 2013, 28, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Sang, T.; He, J.; Wang, J.; Zhang, C.; Zhou, W.; Zeng, Q.; Yuan, Y.; Yu, L.; Feng, Y. Alterations in white matter fiber in Parkinson disease across different cognitive stages. Neurosci. Lett. 2022, 769, 136424. [Google Scholar] [CrossRef] [PubMed]
- Ay, U.; Yildirim, Z.; Erdogdu, E.; Kiçik, A.; Ozturk-Isik, E.; Demiralp, T.; Gurvit, H. Shrinkage of olfactory amygdala connotes cognitive impairment in patients with Parkinson’s disease. Cogn. Neurodyn. 2023, 17, 1309–1320. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.J.; Park, Y.H.; Yoo, H.S.; Lee, Y.H.; Ye, B.S.; Sohn, Y.H.; Lee, J.M.; Lee, P.H. Mild cognitive impairment reverters have a favorable cognitive prognosis and cortical integrity in Parkinson’s disease. Neurobiol. Aging 2019, 78, 168–177. [Google Scholar] [CrossRef]
- Zhou, C.; Guan, X.J.; Guo, T.; Zeng, Q.L.; Gao, T.; Huang, P.Y.; Xuan, M.; Gu, Q.Q.; Xu, X.J.; Zhang, M.M. Progressive brain atrophy in Parkinson’s disease patients who convert to mild cognitive impairment. CNS Neurosci. Ther. 2020, 26, 117–125. [Google Scholar] [CrossRef]
- Gasca-Salas, C.; García-Lorenzo, D.; Garcia-Garcia, D.; Clavero, P.; Obeso, J.A.; Lehericy, S.; Rodríguez-Oroz, M.C. Parkinson’s disease with mild cognitive impairment: Severe cortical thinning antedates dementia. Brain Imaging Behav. 2019, 13, 180–188. [Google Scholar] [CrossRef]
- Sunwoo, M.K.; Jeon, S.; Ham, J.H.; Hong, J.Y.; Lee, J.E.; Lee, J.M.; Sohn, Y.H.; Lee, P.H. The burden of white matter hyperintensities is a predictor of progressive mild cognitive impairment in patients with Parkinson’s disease. Eur. J. Neurol. 2014, 21, 922-e50. [Google Scholar] [CrossRef]
- Xia, J.; Miu, J.; Ding, H.; Wang, X.; Chen, H.; Wang, J.; Wu, J.; Zhao, J.; Huang, H.; Tian, W. Changes of brain gray matter structure in Parkinson’s disease patients with dementia. Neural Regen. Res. 2013, 8, 1276–1285. [Google Scholar] [PubMed]
- Xu, Y.; Yang, J.; Hu, X.; Shang, H. Voxel-based meta-analysis of gray matter volume reductions associated with cognitive impairment in Parkinson’s disease. J. Neurol. 2016, 263, 1178–1187. [Google Scholar] [CrossRef] [PubMed]
- Borroni, B.; Premi, E.; Formenti, A.; Turrone, R.; Alberici, A.; Cottini, E.; Rizzetti, C.; Gasparotti, R.; Padovani, A. Structural and functional imaging study in dementia with Lewy bodies and Parkinson’s disease dementia. Park. Relat. Disord. 2015, 21, 1049–1055. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.B.; Hall, S.; Jalakas, M.; Grothe, M.J.; Strandberg, O.; Stomrud, E.; Westman, E.; van Westen, D.; Hansson, O. Longitudinal degeneration of the basal forebrain predicts subsequent dementia in Parkinson’s disease. Neurobiol. Dis. 2020, 139, 104831. [Google Scholar] [CrossRef] [PubMed]
- Ray, N.J.; Bradburn, S.; Murgatroyd, C.; Toseeb, U.; Mir, P.; Kountouriotis, G.K.; Teipel, S.J.; Grothe, M.J. In vivo cholinergic basal forebrain atrophy predicts cognitive decline in de novo Parkinson’s disease. Brain 2018, 141, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Arrigo, A.; Calamuneri, A.; Milardi, D.; Mormina, E.; Gaeta, M.; Corallo, F.; Lo Buono, V.; Chillemi, G.; Marino, S.; Cacciola, A.; et al. Claustral structural connectivity and cognitive impairment in drug naïve Parkinson’s disease. Brain Imaging Behav. 2019, 13, 933–944. [Google Scholar] [CrossRef]
- Nikolenko, V.N.; Rizaeva, N.A.; Beeraka, N.M.; Oganesyan, M.V.; Kudryashova, V.A.; Dubovets, A.A.; Borminskaya, I.D.; Bulygin, K.V.; Sinelnikov, M.Y.; Aliev, G. The mystery of claustral neural circuits and recent updates on its role in neurodegenerative pathology. Behav. Brain Funct. 2021, 17, 8. [Google Scholar] [CrossRef]
- Pan, P.L.; Shi, H.C.; Zhong, J.G.; Xiao, P.R.; Shen, Y.; Wu, L.J.; Song, Y.Y.; He, G.X.; Li, H.L. Gray matter atrophy in Parkinson’s disease with dementia: Evidence from meta-analysis of voxel-based morphometry studies. Neurol. Sci. 2013, 34, 613–619. [Google Scholar] [CrossRef]
- Hünerli-Gündüz, D.; Özbek Isbitiren, Y.; Uzunlar, H.; Çavusoglu, B.; Çolakoglu, B.D.; Ada, E.; Güntekin, B.; Yener, G.G. Reduced power and phase-locking values were accompanied by thalamus, putamen, and hippocampus atrophy in Parkinson’s disease with mild cognitive impairment: An event-related oscillation study. Neurobiol. Aging 2023, 121, 88–106. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, D.; Cho, K.H.; Lee, J.J.; Ham, J.H.; Ye, B.S.; Lee, S.K.; Lee, J.M.; Sohn, Y.H.; Lee, P.H. Cognitive and neuroanatomical correlates in early versus late onset Parkinson’s disease dementia. J. Alzheimer’s Dis. 2017, 55, 485–495. [Google Scholar] [CrossRef]
- Carlesimo, G.A.; Piras, F.; Assogna, F.; Pontieri, F.E.; Caltagirone, C.; Spalletta, G. Hippocampal abnormalities and memory deficits in Parkinson disease: A multimodal imaging study. Neurology 2012, 78, 1939–1945. [Google Scholar] [CrossRef] [PubMed]
- Gargouri, F.; Gallea, C.; Mongin, M.; Pyatigorskaya, N.; Valabregue, R.; Ewenczyk, C.; Sarazin, M.; Yahia-Cherif, L.; Vidailhet, M.; Lehéricy, S. Multimodal magnetic resonance imaging investigation of basal forebrain damage and cognitive deficits in Parkinson’s disease. Mov. Disord. 2019, 34, 516–525. [Google Scholar] [CrossRef] [PubMed]
- Zarei, M.; Ibarretxe-Bilbao, N.; Compta, Y.; Hough, M.; Junque, C.; Bargallo, N.; Tolosa, E.; Martí, M.J. Cortical thinning is associated with disease stages and dementia in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2013, 84, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Guttuso, T., Jr.; Sirica, D.; Tosun, D.; Zivadinov, R.; Pasternak, O.; Weintraub, D.; Baglio, F.; Bergsland, N. Thalamic dorsomedial nucleus free water correlates with cognitive decline in Parkinson’s disease. Mov. Disord. 2022, 37, 490–501. [Google Scholar] [CrossRef] [PubMed]
- Inguanzo, A.; Sala-Llonch, R.; Segura, B.; Erostarbe, H.; Abos, A.; Campabadal, A.; Uribe, C.; Baggio, H.C.; Compta, Y.; Marti, M.J.; et al. Hierarchical cluster analysis of multimodal imaging data identifies brain atrophy and cognitive patterns in Parkinson’s disease. Park. Relat. Disord. 2021, 82, 16–23. [Google Scholar] [CrossRef]
- Bayot, M.; Dujardin, K.; Gérard, M.; Braquet, A.; Tard, C.; Betrouni, N.; Defebvre, L.; Delval, A. The contribution of executive control dysfunction to freezing of gait in Parkinson’s disease. Clin. Neurophysiol. 2023, 152, 75–89. [Google Scholar] [CrossRef]
- Alenikova, O.A.; Dymkovskaya, M.N. Features of visual, cognitive and neuroimaging changes in Parkinson’s disease patients with freezing of gait. Zhurnal Nevrol. Psikhiatrii Im. SS Korsakova 2023, 123, 59–66. [Google Scholar] [CrossRef]
- Bao, Y.; Ya, Y.; Liu, J.; Zhang, C.; Wang, E.; Fan, G. Regional homogeneity and functional connectivity of freezing of gait conversion in Parkinson’s disease. Front. Aging Neurosci. 2023, 15, 1179752. [Google Scholar] [CrossRef]
- Beyer, M.K.; Aarsland, D.; Greve, O.J.; Larsen, J.P. Visual rating of white matter hyperintensities in Parkinson’s disease. Mov. Disord. 2006, 21, 223–229. [Google Scholar] [CrossRef]
- Bledsoe, I.O.; Stebbins, G.T.; Merkitch, D.; Goldman, J.G. White matter abnormalities in the corpus callosum with cognitive impairment in Parkinson disease. Neurology 2018, 91, e2244–e2255. [Google Scholar] [CrossRef]
- Kamagata, K.; Motoi, Y.; Tomiyama, H.; Abe, O.; Ito, K.; Shimoji, K.; Suzuki, M.; Hori, M.; Nakanishi, A.; Sano, T.; et al. Relationship between cognitive impairment and white-matter alteration in Parkinson’s disease with dementia: Tract-based spatial statistics and tract-specific analysis. Eur. Radiol. 2013, 23, 1946–1955. [Google Scholar] [CrossRef] [PubMed]
- Matsui, H.; Nishinaka, K.; Oda, M.; Niikawa, H.; Kubori, T.; Udaka, F. Dementia in Parkinson’s disease: Diffusion tensor imaging. Acta Neurol. Scand. 2007, 116, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Chondrogiorgi, M.; Astrakas, L.G.; Zikou, A.K.; Weis, L.; Xydis, V.G.; Antonini, A.; Argyropoulou, M.I.; Konitsiotis, S. Multifocal alterations of white matter accompany the transition from normal cognition to dementia in Parkinson’s disease patients. Brain Imaging Behav. 2019, 13, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Fan, G.G.; Liu, H.; Wang, S. Changes in anatomical and functional connectivity of Parkinson’s disease patients according to cognitive status. Eur. J. Radiol. 2015, 84, 1318–1324. [Google Scholar] [CrossRef]
- Colon-Perez, L.M.; Tanner, J.J.; Couret, M.; Goicochea, S.; Mareci, T.H.; Price, C.C. Cognition and connectomes in nondementia idiopathic Parkinson’s disease. Netw Neurosci 2018, 2, 106–124. [Google Scholar] [CrossRef]
- Chu, C.; Zhang, Z.; Wang, J.; Wang, L.; Shen, X.; Bai, L.; Li, Z.; Dong, M.; Liu, C.; Yi, G.; et al. Evolution of brain network dynamics in early Parkinson’s disease with mild cognitive impairment. Cogn. Neurodyn. 2023, 17, 681–694. [Google Scholar] [CrossRef]
- Georgiades, M.J.; Shine, J.M.; Gilat, M.; McMaster, J.; Owler, B.; Mahant, N.; Lewis, S.J.G. Subthalamic nucleus activity during cognitive load and gait dysfunction in Parkinson’s disease. Mov. Disord. 2023, 38, 1549–1554. [Google Scholar] [CrossRef]
- Bressler, S.L.; Menon, V. Large-scale brain networks in cognition: Emerging methods and principles. Trends Cogn. Sci. 2010, 14, 277–290. [Google Scholar] [CrossRef]
- Menon, V.; Uddin, L.Q. Saliency, switching, attention and control: A network model of insula function. Brain Struct. Funct. 2010, 214, 655–667. [Google Scholar] [CrossRef]
- Putcha, D.; Ross, R.S.; Cronin-Golomb, A.; Janes, A.C.; Stern, C.E. Salience and default mode network coupling predicts cognition in aging and Parkinson’s disease. J. Int. Neuropsychol. Soc. 2016, 22, 205–215. [Google Scholar] [CrossRef]
- Chand, G.B.; Wu, J.; Hajjar, I.; Qiu, D. Interactions of the salience network and its subsystems with the default-mode and the central-executive networks in normal aging and mild cognitive impairment. Brain Connect. 2017, 7, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Yeager, B.E.; Twedt, H.P.; Bruss, J.; Schultz, J.; Narayanan, N.S. Salience network and cognitive impairment in Parkinson’s disease. medRxiv 2023. [Google Scholar] [CrossRef]
- Obeso, J.A.; Rodríguez-Oroz, M.C.; Rodríguez, M.; Lanciego, J.L.; Artieda, J.; Gonzalo, N.; Olanow, C.W. Pathophysiology of the basal ganglia in Parkinson’s disease. Trends Neurosci. 2000, 23, S8–S19. [Google Scholar] [CrossRef] [PubMed]
- Shafiei, G.; Zeighami, Y.; Clark, C.A.; Coull, J.T.; Nagano-Saito, A.; Leyton, M.; Dagher, A.; Mišic, B. Dopamine signaling modulates the stability and integration of intrinsic brain networks. Cereb. Cortex 2019, 29, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Shima, A.; Inano, R.; Tabu, H.; Okada, T.; Nakamoto, Y.; Takahashi, R.; Sawamoto, N. Altered functional connectivity associated with striatal dopamine depletion in Parkinson’s disease. Cereb. Cortex Commun. 2023, 4, tgad004. [Google Scholar] [CrossRef] [PubMed]
- Badea, L.; Onu, M.; Wu, T.; Roceanu, A.; Bajenaru, O. Exploring the reproducibility of functional connectivity alterations in Parkinson’s disease. PLoS ONE 2017, 12, e0188196. [Google Scholar] [CrossRef]
- Ay, U.; Gürvit, I.H. Alterations in large-scale intrinsic connectivity networks in the Parkinson’s disease-associated cognitive impairment continuum: A systematic review. Arch. Neuropsychiatry 2022, 59, S57–S66. [Google Scholar] [CrossRef]
- Rucco, R.; Lardone, A.; Liparoti, M.; Lopez, E.T.; De Micco, R.; Tessitore, A.; Granata, C.; Mandolesi, L.; Sorrentino, G.; Sorrentino, P. Brain networks and cognitive impairment in Parkinson’s disease. Brain Connect. 2022, 12, 465–475. [Google Scholar] [CrossRef]
- Lopes, R.; Delmaire, C.; Defebvre, L.; Moonen, A.J.; Duits, A.A.; Hofman, P.; Leentjens, A.F.; Dujardin, K. Cognitive phenotypes in Parkinson’s disease differ in terms of brain-network organization and connectivity. Hum. Brain Mapp. 2017, 38, 1604–1621. [Google Scholar] [CrossRef]
- Fathy, Y.Y.; Hepp, D.H.; de Jong, F.J.; Geurts, J.J.G.; Foncke, E.M.J.; Berendse, H.W.; van de Berg, W.D.J.; Schoonheim, M.M. Anterior insular network disconnection and cognitive impairment in Parkinson’s disease. Neuroimage Clin. 2020, 28, 102364. [Google Scholar] [CrossRef]
- Jonkman, L.E.; Fathy, Y.Y.; Berendse, H.W.; Schoonheim, M.M.; van de Berg, W.D.J. Structural network topology and microstructural alterations of the anterior insula associate with cognitive and affective impairment in Parkinson’s disease. Sci. Rep. 2021, 11, 16021. [Google Scholar] [CrossRef] [PubMed]
- Zarifkar, P.; Kim, J.; La, C.; Zhang, K.; YorkWilliams, S.; Levine, T.F.; Tian, L.; Borghammer, P.; Poston, K.L. Cognitive impairment in Parkinson’s disease is associated with Default Mode Network subsystem connectivity and cerebrospinal fluid Aß. Park. Relat. Disord. 2021, 83, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Seibert, T.M.; Murphy, E.A.; Kaestner, E.J.; Brewer, J.B. Interregional correlations in Parkinson disease and Parkinson-related dementia with resting functional MR imaging. Radiology 2012, 263, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Rektorova, I.; Krajcovicova, L.; Marecek, R.; Mikl, M. Default mode network and extrastriate visual resting state network in patients with Parkinson’s disease dementia. Neurodegener. Dis. 2012, 10, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Fiorenzato, E.; Strafella, A.P.; Kim, J.; Schifano, R.; Weis, L.; Antonini, A.; Biundo, R. Dynamic functional connectivity changes associated with dementia in Parkinson’s disease. Brain 2019, 142, 2860–2872. [Google Scholar] [CrossRef] [PubMed]
- Boon, L.I.; Hepp, D.H.; Douw, L.; van Geenen, N.; Broeders, T.A.A.; Geurts, J.J.G.; Berendse, H.W.; Schoonheim, M.M. Functional connectivity between resting-state networks reflects decline in executive function in Parkinson’s disease: A longitudinal fMRI study. Neuroimage Clin. 2020, 28, 102468. [Google Scholar] [CrossRef]
- Anderkova, L.; Barton, M.; Rektorova, I. Striato-cortical connections in Parkinson’s and Alzheimer’s diseases: Relation to cognition. Mov. Disord. 2017, 32, 917–922. [Google Scholar] [CrossRef]
- Krimmel, S.R.; White, M.G.; Panicker, M.H.; Barrett, F.S.; Mathur, B.N.; Seminowicz, D.A. Resting state functional connectivity and cognitive task-related activation of the human claustrum. Neuroimage 2019, 196, 59–67. [Google Scholar] [CrossRef]
- Kalaitzakis, M.E.; Pearce, R.K.; Gentleman, S.M. Clinical correlates of pathology in the claustrum in Parkinson’s disease and dementia with Lewy bodies. Neurosci. Lett. 2009, 461, 12–15. [Google Scholar] [CrossRef]
- Jankowski, M.M.; O’Mara, S.M. Dynamics of place, boundary and object encoding in rat anterior claustrum. Front. Behav. Neurosci. 2015, 9, 250. [Google Scholar] [CrossRef]
- Ayyildiz, S.; Velioglu, H.A.; Ayyildiz, B.; Sutcubasi, B.; Hanoglu, L.; Bayraktaroglu, Z.; Yildirim, S.; Atasever, A.; Yulug, B. Differentiation of claustrum resting-state functional connectivity in healthy aging, Alzheimer’s disease, and Parkinson’s disease. Hum. Brain Mapp. 2023, 44, 1741–1750. [Google Scholar] [CrossRef]
- Huang, C.; Mattis, P.; Perrine, K.; Brown, N.; Dhawan, V.; Eidelberg, D. Metabolic abnormalities associated with mild cognitive impairment in Parkinson disease. Neurology 2008, 70, 1470–1477. [Google Scholar] [CrossRef] [PubMed]
- Putcha, D.; Ross, R.S.; Cronin-Golomb, A.; Janes, A.C.; Stern, C.E. Altered intrinsic functional coupling between core neurocognitive networks in Parkinson’s disease. Neuroimage Clin. 2015, 7, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Almdahl, I.S.; Martinussen, L.J.; Ousdal, O.T.; Kraus, M.; Sowa, P.; Agartz, I.; Korsnes, M.S. Task-based functional connectivity reveals aberrance with the salience network during emotional interference in late-life depression. Aging Ment. Health 2023, 27, 2043–2051. [Google Scholar] [CrossRef] [PubMed]
- Cermakova, P.; Chlapecka, A.; Csajbók, Z.; Andrýsková, L.; Brázdil, M.; Marecková, K. Parental education, cognition and functional connectivity of the salience network. Sci. Rep. 2023, 13, 2761. [Google Scholar] [CrossRef]
- Marek, S.; Dosenbach, N.U.F. The frontoparietal network: Function, electrophysiology, and importance of individual precision mapping. Dialogues Clin. Neurosci. 2018, 20, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.; Chaton, L.; Benquet, P.; Delval, A.; Leroy, C.; Plomhause, L.; Moonen, A.J.; Duits, A.A.; Leentjens, A.F.; van Kranen-Mastenbroek, V.; et al. Functional connectivity disruptions correlate with cognitive phenotypes in Parkinson’s disease. Neuroimage Clin. 2017, 14, 591–601. [Google Scholar] [CrossRef]
- Yener, G.G.; Fide, E.; Özbek, Y.; Emek-Savas, D.D.; Aktürk, T.; Çakmur, R.; Güntekin, B. The difference of mild cognitive impairment in Parkinson’s disease from amnestic mild cognitive impairment: Deeper power decrement and no phase-locking in visual event-related responses. Int. J. Psychophysiol. 2019, 139, 48–58. [Google Scholar] [CrossRef]
- Yi, G.; Wang, Y.; Wang, L.; Chu, C.; Wang, J.; Shen, X.; Han, X.; Li, Z.; Bai, L.; Zhang, R.; et al. Capturing the abnormal brain network activity in early Parkinsons disease with mild cognitive impairment based on dynamic functional connectivity. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31, 1238–1247. [Google Scholar] [CrossRef]
- Trenado, C.; Trauberg, P.; Elben, S.; Dimenshteyn, K.; Folkerts, A.K.; Witt, K.; Weiss, D.; Liepelt-Scarfone, I.; Kalbe, E.; Wojtecki, L. Resting state EEG as biomarker of cognitive training and physical activity’s joint effect in Parkinson’s patients with mild cognitive impairment. Neurol. Res. Pract 2023, 5, 46. [Google Scholar] [CrossRef]
- Bar-On, M.; Baharav, S.; Katzir, Z.; Mirelman, A.; Sosnik, R.; Maidan, I. Task-related reorganization of cognitive network in Parkinson’s disease using electrophysiology. Mov. Disord. 2023, 38, 2031–2040. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Dang, G.; Su, X.; Zhu, L.; Shi, X.; Che, S.; Lan, X.; Luo, X.; Guo, Y. Identifying mild cognitive impairment in Parkinson’s disease with electroencephalogram functional connectivity. Front. Aging Neurosci. 2021, 13, 701499. [Google Scholar] [CrossRef]
- Paulo, D.L.; Qian, H.; Subramanian, D.; Johnson, G.W.; Zhao, Z.; Hett, K.; Kang, H.; Chris Kao, C.; Roy, N.; Summers, J.E.; et al. Corticostriatal beta oscillation changes associated with cognitive function in Parkinson’s disease. Brain 2023, 146, 3662–3675. [Google Scholar] [CrossRef] [PubMed]
- Bayraktaroglu, Z.; Aktürk, T.; Yener, G.; de Graaf, T.A.; Hanoglu, L.; Yildirim, E.; Hünerli Gündüz, D.; Kiyi, I.; Sack, A.T.; Babiloni, C.; et al. Abnormal cross frequency coupling of brain electroencephalographic oscillations related to visual oddball task in Parkinson’s disease with mild cognitive impairment. Clin. EEG Neurosci. 2023, 54, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Hnazaee, M.F.; Litvak, V. Investigating cortico-striatal beta oscillations in Parkinson’s disease cognitive decline. Brain 2023, 146, 3571–3573. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, N.S.; Cavanagh, J.F.; Frank, M.J.; Laubach, M. Common medial frontal mechanisms of adaptive control in humans and rodents. Nat. Neurosci. 2013, 16, 1888–1895. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Richardson, S.P.; Narayanan, N.; Cavanagh, J.F. Mid-frontal theta activity is diminished during cognitive control in Parkinson’s disease. Neuropsychologia 2018, 117, 113–122. [Google Scholar] [CrossRef]
- Uc, E.; Anjum, F.; Dasgupta, S.; Narayanan, N. Resting-state EEG predicts cognitive impairment in Parkinson’s disease (Abstr-P6-11.015). Neurology 2023, 100 (Suppl. 2),, 4018. [Google Scholar] [CrossRef]
- Wiesman, A.I.; Donhauser, P.W.; Degroot, C.; Diab, S.; Kousaie, S.; Fon, E.A.; Klein, D.; Baillet, S. Aberrant neurophysiological signaling associated with speech impairments in Parkinson’s disease. NPJ Park. Dis. 2023, 9, 61. [Google Scholar] [CrossRef]
- Singh, A.; Cole, R.C.; Espinoza, A.I.; Wessel, J.R.; Cavanagh, J.F.; Narayanan, N.S. Evoked mid-frontal activity predicts cognitive dysfunction in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2023, 94, 945–953. [Google Scholar] [CrossRef]
- Anjum, M.F.; Espinoza, A.; Cole, R.; Singh, A.; May, P.; Uc, E.; Dasgupta, S.; Narayanan, N. Resting-state EEG measures cognitive impairment in Parkinson’s disease. Res. Sq. 2023. preprint. [Google Scholar] [CrossRef]
- Chang, H.; Liu, B.; Zong, Y.; Lu, C.; Wang, X. EEG-based Parkinson’s disease recognition via attention-based sparse graph convolutional neural network. IEEE J. Biomed. Health Inform. 2023, 27, 5216–5224. [Google Scholar] [CrossRef] [PubMed]
- Zawislak-Fornagiel, K.; Ledwon, D.; Bugdol, M.; Romaniszyn-Kania, P.; Malecki, A.; Gorzkowska, A.; Mitas, A.W. Specific patterns of coherence and phase lag index in particular regions as biomarkers of cognitive impairment in Parkinson’s disease. Park. Relat. Disord. 2023, 111, 105436. [Google Scholar] [CrossRef] [PubMed]
- Hünerli, D.; Emek-Savas, D.D.; Çavusoglu, B.; Dönmez Çolakoglu, B.; Ada, E.; Yener, G.G. Mild cognitive impairment in Parkinson’s disease is associated with decreased P300 amplitude and reduced putamen volume. Clin. Neurophysiol. 2019, 130, 1208–1217. [Google Scholar] [CrossRef] [PubMed]
- Folmer, R.L.; Vachhani, J.J.; Riggins, A. Electrophysiological evidence of auditory and cognitive processing deficits in Parkinson disease. Biomed. Res. Int. 2021, 2021, 6610908. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Gu, L.; Zhang, S.; Wu, Y.; Wei, X.; Wang, C.; Xu, Y.; Guo, Y. N200 and P300 component changes in Parkinson’s disease: A meta-analysis. Neurol. Sci. 2022, 43, 6719–6730. [Google Scholar] [CrossRef]
- Simon, O.B.; Rojas, D.C.; Ghosh, D.; Yang, X.; Rogers, S.E.; Martin, C.S.; Holden, S.K.; Kluger, B.M.; Buard, I. Profiling Parkinson’s disease cognitive phenotypes via resting-state magnetoencephalography. J. Neurophysiol. 2022, 127, 279–289. [Google Scholar] [CrossRef]
- Ye, Z. Mapping neuromodulatory systems in Parkinson’s disease: Lessons learned beyond dopamine. Curr. Med. 2022, 1, 15. [Google Scholar] [CrossRef]
- Siepel, F.J.; Bronnick, K.S.; Booij, J.; Ravina, B.M.; Lebedev, A.V.; Pereira, J.B.; Gruner, R.; Aarsland, D. Cognitive executive impairment and dopaminergic deficits in de novo Parkinson’s disease. Mov. Disord. 2014, 29, 1802–1808. [Google Scholar] [CrossRef]
- Christopher, L.; Duff-Canning, S.; Koshimori, Y.; Segura, B.; Boileau, I.; Chen, R.; Lang, A.E.; Houle, S.; Rusjan, P.; Strafella, A.P. Salience network and parahippocampal dopamine dysfunction in memory-impaired Parkinson disease. Ann. Neurol. 2015, 77, 269–280. [Google Scholar] [CrossRef]
- Jeong, S.H.; Lee, H.S.; Jung, J.H.; Baik, K.; Sohn, Y.H.; Chung, S.J.; Lee, P.H. Associations between white matter hyperintensities, striatal dopamine loss, and cognition in drug-naive Parkinson’s disease. Park. Relat. Disord. 2022, 97, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Pellecchia, M.T.; Picillo, M.; Santangelo, G.; Longo, K.; Moccia, M.; Erro, R.; Amboni, M.; Vitale, C.; Vicidomini, C.; Salvatore, M.; et al. Cognitive performances and DAT imaging in early Parkinson’s disease with mild cognitive impairment: A preliminary study. Acta Neurol. Scand. 2015, 131, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Ekman, U.; Eriksson, J.; Forsgren, L.; Mo, S.J.; Riklund, K.; Nyberg, L. Functional brain activity and presynaptic dopamine uptake in patients with Parkinson’s disease and mild cognitive impairment: A cross-sectional study. Lancet Neurol. 2012, 11, 679–687. [Google Scholar] [CrossRef]
- Chung, S.J.; Lee, H.S.; Yoo, H.S.; Lee, Y.H.; Lee, P.H.; Sohn, Y.H. Patterns of striatal dopamine depletion in early Parkinson disease: Prognostic relevance. Neurology 2020, 95, e280–e290. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.J.; Yoo, H.S.; Oh, J.S.; Kim, J.S.; Ye, B.S.; Sohn, Y.H.; Lee, P.H. Effect of striatal dopamine depletion on cognition in de novo Parkinson’s disease. Park. Relat. Disord. 2018, 51, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Uddin, L.Q. Salience Network of the Human Brain; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Sasikumar, S.; Strafella, A.P. Imaging mild cognitive impairment and dementia in Parkinson’s disease. Front. Neurol. 2020, 11, 47. [Google Scholar] [CrossRef]
- Martínez-Horta, S.; Kulisevsky, J. Is all cognitive impairment in Parkinson’s disease “mild cognitive impairment”? J. Neural Transm. 2011, 118, 1185–1190. [Google Scholar] [CrossRef]
- Weintraub, D.; Picillo, M.; Cho, H.R.; Caspell-Garcia, C.; Blauwendraat, C.; Brown, E.G.; Chahine, L.M.; Coffey, C.S.; Dobkin, R.D.; Foroud, T.; et al. Impact of the dopamine system on long-term cognitive impairment in Parkinson disease: An exploratory study. Mov. Disord. Clin. Pract. 2023, 10, 943–955. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, X.; Xu, H.; Zhou, L.; Jiao, R.; Liu, W.; Zhu, F.; Kang, X.; Liu, B.; Teng, S.; et al. Temporal components of cholinergic terminal to dopaminergic terminal transmission in dorsal striatum slices of mice. J. Physiol. 2014, 592, 3559–3576. [Google Scholar] [CrossRef]
- Threlfell, S.; Lalic, T.; Platt, N.J.; Jennings, K.A.; Deisseroth, K.; Cragg, S.J. Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron 2012, 75, 58–64. [Google Scholar] [CrossRef]
- Grothe, M.J.; Labrador-Espinosa, M.A.; Jesús, S.; Macías-García, D.; Adarmes-Gómez, A.; Carrillo, F.; Camacho, E.I.; Franco-Rosado, P.; Lora, F.R.; Martín-Rodríguez, J.F.; et al. In vivo cholinergic basal forebrain degeneration and cognition in Parkinson’s disease: Imaging results from the COPPADIS study. Park. Relat. Disord. 2021, 88, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, J.; Kanel, P.; Dyrba, M.; Storch, A.; Bohnen, N.I.; Teipel, S.; Grothe, M.J. Structural and molecular cholinergic imaging markers of cognitive decline in Parkinson’s disease. Brain 2023, 146, 4964–4973. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.K.L.; Lim, E.J.; Ahmed, I.; Chang, R.C.; Pearce, R.K.B.; Gentleman, S.M. Review: Revisiting the human cholinergic nucleus of the diagonal band of Broca. Neuropathol. Appl. Neurobiol. 2018, 44, 647–662. [Google Scholar] [CrossRef] [PubMed]
- Schulz, J.; Pagano, G.; Fernández Bonfante, J.A.; Wilson, H.; Politis, M. Nucleus basalis of Meynert degeneration precedes and predicts cognitive impairment in Parkinson’s disease. Brain 2018, 141, 1501–1516. [Google Scholar] [CrossRef] [PubMed]
- Rong, S.; Li, Y.; Li, B.; Nie, K.; Zhang, P.; Cai, T.; Mei, M.; Wang, L.; Zhang, Y. Meynert nucleus-related cortical thinning in Parkinson’s disease with mild cognitive impairment. Quant. Imaging Med. Surg. 2021, 11, 1554–1566. [Google Scholar] [CrossRef] [PubMed]
- Rogozinski, S.; Klietz, M.; Respondek, G.; Oertel, W.H.; Grothe, M.J.; Pereira, J.B.; Höglinger, G.U. Reduction in volume of nucleus basalis of Meynert is specific to Parkinson’s disease and progressive supranuclear palsy but not to multiple system atrophy. Front. Aging Neurosci. 2022, 14, 851788. [Google Scholar] [CrossRef] [PubMed]
- Wilson, H.; de Natale, E.R.; Politis, M. Nucleus basalis of Meynert degeneration predicts cognitive impairment in Parkinson’s disease. Handb. Clin. Neurol. 2021, 179, 189–205. [Google Scholar]
- Ray, N.J.; Lawson, R.A.; Martin, S.L.; Sigurdsson, H.P.; Wilson, J.; Galna, B.; Lord, S.; Alcock, L.; Duncan, G.W.; Khoo, T.K.; et al. Free-water imaging of the cholinergic basal forebrain and pedunculopontine nucleus in Parkinson’s disease. Brain 2023, 146, 1053–1064. [Google Scholar] [CrossRef]
- Zhang, P.; Rong, S.; He, C.; Li, Y.; Li, X.; Chen, Z.; Nie, K.; Wang, L.; Zhang, Y. Cortical connectivity of cholinergic basal forebrain in Parkinson’s disease with mild cognitive impairment. Quant. Imaging Med. Surg. 2023, 13, 2167–2182. [Google Scholar] [CrossRef]
- Crockett, R.A.; Wilkins, K.B.; Aditham, S.; Brontë-Stewart, H.M. No laughing white matter: Reduced integrity of the cortical cholinergic pathways in Parkinson’s disease-related cognitive impairment. Neurobiol. Dis. 2023, 185, 106243. [Google Scholar] [CrossRef]
- Bohnen, N.I.; Albin, R.L.; Muller, M.L.; Petrou, M.; Kotagal, V.; Koeppe, R.A.; Scott, P.J.; Frey, K.A. Frequency of cholinergic and caudate nucleus dopaminergic deficits across the predemented cognitive spectrum of Parkinson disease and evidence of interaction effects. JAMA Neurol. 2015, 72, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Park, H.E.; Park, I.S.; Oh, Y.S.; Yang, D.W.; Lee, K.S.; Choi, H.S.; Ahn, K.J.; Kim, J.S. Subcortical whiter matter hyperintensities within the cholinergic pathways of patients with dementia and parkinsonism. J. Neurol. Sci. 2015, 353, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Hirano, S.; Shinotoh, H.; Eidelberg, D. Functional brain imaging of cognitive dysfunction in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2012, 83, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Hall, H.; Reyes, S.; Landeck, N.; Bye, C.; Leanza, G.; Double, K.; Thompson, L.; Halliday, G.; Kirik, D. Hippocampal Lewy pathology and cholinergic dysfunction are associated with dementia in Parkinson’s disease. Brain 2014, 137, 2493–2508. [Google Scholar] [CrossRef] [PubMed]
- Prasuhn, J.; Prasuhn, M.; Fellbrich, A.; Strautz, R.; Lemmer, F.; Dreischmeier, S.; Kasten, M.; Münte, T.F.; Hanssen, H.; Heldmann, M.; et al. Association of locus coeruleus and substantia nigra pathology with cognitive and motor functions in patients with Parkinson disease. Neurology 2021, 97, e1007–e1016. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Wang, J.; Zhou, Y.; Ye, F.; Zhang, Y.; Cheng, X.; Huang, Z.; Liu, K.; Fei, G.; et al. Mild cognitive impairment in de novo Parkinson’s disease: A neuromelanin MRI study in locus coeruleus. Mov. Disord. 2019, 34, 884–892. [Google Scholar] [CrossRef] [PubMed]
- Robbins, T.W.; Roberts, A.C. Differential regulation of fronto-executive function by the monoamines and acetylcholine. Cereb. Cortex 2007, 17 (Suppl. 1), i151–i160. [Google Scholar] [CrossRef]
- Lancini, E.; Haag, L.; Bartl, F.; Rühling, M.; Ashton, N.J.; Zetterberg, H.; Düzel, E.; Hämmerer, D.; Betts, M.J. Cerebrospinal fluid and positron-emission tomography biomarkers for noradrenergic dysfunction in neurodegenerative diseases: A systematic review and meta-analysis. Brain Commun. 2023, 5, fcad085. [Google Scholar] [CrossRef]
- Sitte, H.H.; Pifl, C.; Rajput, A.H.; Hörtnagl, H.; Tong, J.; Lloyd, G.K.; Kish, S.J.; Hornykiewicz, O. Dopamine and noradrenaline, but not serotonin, in the human claustrum are greatly reduced in patients with Parkinson’s disease: Possible functional implications. Eur. J. Neurosci. 2017, 45, 192–197. [Google Scholar] [CrossRef]
- Del Tredici, K.; Braak, H. Dysfunction of the locus coeruleus-norepinephrine system and related circuitry in Parkinson’s disease-related dementia. J. Neurol. Neurosurg. Psychiatry 2013, 84, 774–783. [Google Scholar] [CrossRef]
- Halliday, G.M.; Leverenz, J.B.; Schneider, J.S.; Adler, C.H. The neurobiological basis of cognitive impairment in Parkinson’s disease. Mov. Disord. 2014, 29, 634–650. [Google Scholar] [CrossRef] [PubMed]
- Vermeiren, Y.; De Deyn, P.P. Targeting the norepinephrinergic system in Parkinson’s disease and related disorders: The locus coeruleus story. Neurochem Int. 2017, 102, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Szot, P.; Franklin, A.; Sikkema, C.; Wilkinson, C.W.; Raskind, M.A. Sequential loss of LC noradrenergic and dopaminergic neurons results in a correlation of dopaminergic neuronal number to striatal dopamine concentration. Front. Pharmacol. 2012, 3, 184. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Garcia, D.; Clavero, P.; Gasca Salas, C.; Lamet, I.; Arbizu, J.; Gonzalez-Redondo, R.; Obeso, J.A.; Rodriguez-Oroz, M.C. Posterior parietooccipital hypometabolism may differentiate mild cognitive impairment from dementia in Parkinson’s disease. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 1767–1777. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Ge, J.; Liu, F.; Wu, P.; Guo, S.; Liu, Z.; Wang, Y.; Ding, Z.; Wu, J.; Zuo, C.; et al. Cerebral metabolic differences associated with cognitive impairment in Parkinson’s disease. PLoS ONE 2016, 11, e0152716. [Google Scholar] [CrossRef] [PubMed]
- Khomenko, I.G.; Pronina, M.V.; Kataeva, G.V.; Kropotov, J.D.; Irishina, Y.A.; Susin, D.S. Combined 18F-fluorodeoxyglucose positron emission tomography and event-related potentials study of the cognitive impairment mechanisms in Parkinson’s disease. J. Clin. Neurosci. 2020, 72, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Imarisio, A.; Pilotto, A.; Premi, E.; Caminiti, S.P.; Presotto, L.; Sala, A.; Zatti, C.; Lupini, A.; Turrone, R.; Paghera, B.; et al. Atypical brain FDG-PET patterns increase the risk of long-term cognitive and motor progression in Parkinson’s disease. Park. Relat. Disord. 2023, 115, 105848. [Google Scholar] [CrossRef]
- Gasca-Salas, C.; Trompeta, C.; López-Aguirre, M.; Rodríguez Rojas, R.; Clarimon, J.; Dols-Icardo, O.; El Bounasri, S.; Guida, P.; Mata-Marín, D.; Hernández-Fernández, F.; et al. Brain hypometabolism in non-demented microtubule-associated protein tau H1 carriers with Parkinson’s disease. J. Neuroimaging 2023, 33, 953–959. [Google Scholar] [CrossRef]
- Mayberg, H.S.; Starkstein, S.E.; Sadzot, B.; Preziosi, T.; Andrezejewski, P.L.; Dannals, R.F.; Wagner, H.N., Jr.; Robinson, R.G. Selective hypometabolism in the inferior frontal lobe in depressed patients with Parkinson’s disease. Ann. Neurol. 1990, 28, 57–64. [Google Scholar] [CrossRef]
- Scholefield, M.; Church, S.J.; Taylor, G.; Knight, D.; Unwin, R.D.; Cooper, G.J.S. Multi-regional alterations in glucose and purine metabolic pathways in the Parkinson’s disease dementia brain. NPJ Park. Dis. 2023, 9, 66. [Google Scholar] [CrossRef]
- Huang, M.; Yu, H.; Cai, X.; Zhang, Y.; Pu, W.; Gao, B. A comparative study of posterior cingulate metabolism in patients with mild cognitive impairment due to Parkinson’s disease or Alzheimer’s disease. Sci. Rep. 2023, 13, 14241. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.; Frey, K.A.; Muller, M.L.; Petrou, M.; Kotagal, V.; Koeppe, R.A.; Scott, P.J.; Albin, R.L.; Bohnen, N.I. Striatal and cortical beta-amyloidopathy and cognition in Parkinson’s disease. Mov. Disord. 2016, 31, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Baik, K.; Kim, H.R.; Park, M.; Lee, Y.; Na, H.K.; Sohn, Y.H.; Seong, J.K.; Lee, P.H. Effect of amyloid on cognitive performance in Parkinson’s disease and dementia with lewy bodies. Mov. Disord. 2023, 38, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Petrou, M.; Dwamena, B.A.; Foerster, B.R.; MacEachern, M.P.; Bohnen, N.I.; Muller, M.L.; Albin, R.L.; Frey, K.A. Amyloid deposition in Parkinson’s disease and cognitive impairment: A systematic review. Mov. Disord. 2015, 30, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.H.; Katako, A.; Aljuaid, M.; Goertzen, A.L.; Borys, A.; Hobson, D.E.; Kim, S.M.; Lee, C.S. Distinct brain metabolic patterns separately associated with cognition, motor function, and aging in Parkinson’s disease dementia. Neurobiol. Aging 2017, 60, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Winer, J.R.; Maass, A.; Pressman, P.; Stiver, J.; Schonhaut, D.R.; Baker, S.L.; Kramer, J.; Rabinovici, G.D.; Jagust, W.J. Associations between tau, beta-amyloid, and cognition in Parkinson disease. JAMA Neurol. 2018, 75, 227–235. [Google Scholar] [CrossRef]
- Ghadery, C.; Koshimori, Y.; Christopher, L.; Kim, J.; Rusjan, P.; Lang, A.E.; Houle, S.; Strafella, A.P. The interaction between neuroinflammation and beta-amyloid in cognitive decline in Parkinson’s disease. Mol. Neurobiol. 2020, 57, 492–501. [Google Scholar] [CrossRef]
- Oh, Y.S.; Yoo, S.W.; Lyoo, C.H.; Yoo, J.Y.; Yoon, H.; Ha, S.; Lee, K.S.; Kim, J.S. The association of beta-amyloid with cognition and striatal dopamine in early, non-demented Parkinson’s disease. J. Park. Dis. 2021, 11, 605–613. [Google Scholar]
- Na, S.; Jeong, H.; Park, J.S.; Chung, Y.A.; Song, I.U. The impact of amyloid-beta positivity with 18F-florbetaben PET on neuropsychological aspects in Parkinson’s disease dementia. Metabolites 2020, 10, 380. [Google Scholar] [CrossRef]
- Mashima, K.; Ito, D.; Kameyama, M.; Osada, T.; Tabuchi, H.; Nihei, Y.; Yoshizaki, T.; Noguchi, E.; Tanikawa, M.; Iizuka, T.; et al. Extremely low prevalence of amyloid positron emission tomography positivity in Parkinson’s disease without dementia. Eur. Neurol. 2017, 77, 231–237. [Google Scholar] [CrossRef]
- Villemagne, V.L.; Ong, K.; Mulligan, R.S.; Holl, G.; Pejoska, S.; Jones, G.; O’Keefe, G.; Ackerman, U.; Tochon-Danguy, H.; Chan, J.G.; et al. Amyloid imaging with (18)F-florbetaben in Alzheimer disease and other dementias. J. Nucl. Med. 2011, 52, 1210–1217. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, R.S.; Xie, S.X.; Brennan, L.; Pontecorvo, M.J.; Hurtig, H.I.; Trojanowski, J.Q.; Weintraub, D.; Siderowf, A.D. Amyloid-beta positron emission tomography imaging of Alzheimer’s pathology in Parkinson’s disease dementia. Mov. Disord. Clin. Pract. 2016, 3, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Frey, K.A.; Petrou, M. Imaging amyloidopathy in Parkinson disease and parkinsonian dementia syndromes. Clin. Transl. Imaging 2015, 3, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Tufekcioglu, Z.; Lange, J.; Pedersen, K.F.; Tysnes, O.-B.; Alves, G.; Emre, M. Cognitive profile in PD dementia patients with low versus normal CSF amyloid beta. Dement. Geriatr. Cogn. Disord. Extra 2023, 13, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Bohnen, N.I.; Muller, M.; Frey, K.A. Molecular imaging and updated diagnostic criteria in Lewy body dementias. Curr. Neurol. Neurosci. Rep. 2017, 17, 73. [Google Scholar] [CrossRef]
- Tang, Y.; Li, L.; Hu, T.; Jiao, F.; Han, L.; Li, S.; Xu, Z.; Fan, Y.; Sun, Y.; Liu, F.; et al. In vivo (18) F-florzolotau tau positron emission tomography imaging in Parkinson’s disease dementia. Mov. Disord. 2023, 38, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Adler, C.H.; Beach, T.G. Variability of diffuse plaques and amyloid angiopathy in Parkinson’s disease with mild cognitive impairment. Acta Neuropathol. 2010, 120, 831–832. [Google Scholar] [CrossRef]
- Jellinger, K.A. Mild cognitive impairment in Parkinson disease: Heterogenous mechanisms. J. Neural Transm. 2013, 120, 157–167. [Google Scholar] [CrossRef]
- Knox, M.G.; Adler, C.H.; Shill, H.A.; Driver-Dunckley, E.; Mehta, S.A.; Belden, C.; Zamrini, E.; Serrano, G.; Sabbagh, M.N.; Caviness, J.N.; et al. Neuropathological findings in Parkinson’s disease with mild cognitive impairment. Mov. Disord. 2020, 35, 845–850. [Google Scholar] [CrossRef]
- Markesbery, W.R. Neuropathologic alterations in mild cognitive impairment: A review. J. Alzheimer’s Dis. 2010, 19, 221–228. [Google Scholar] [CrossRef]
- Takao, M. Neuropathology of mild cognitive impairment. Rinsho Shinkeigaku 2012, 52, 851–854. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; He, Z. Concomitant protein pathogenesis in Parkinson’s disease and perspective mechanisms. Front. Aging Neurosci. 2023, 15, 1189809. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, D.G.; Irwin, D.J. Neuropathological substrates of cognition in Parkinson’s disease. Prog. Brain Res. 2022, 269, 177–193. [Google Scholar] [PubMed]
- Irwin, D.J.; Lee, V.M.; Trojanowski, J.Q. Parkinson’s disease dementia: Convergence of alpha-synuclein, tau and amyloid-beta pathologies. Nat. Rev. Neurosci. 2013, 14, 626–636. [Google Scholar] [CrossRef] [PubMed]
- Jellinger, K.A. Neurobiology of cognitive impairment in Parkinson’s disease. Expert Rev. Neurother. 2012, 12, 1451–1466. [Google Scholar] [CrossRef] [PubMed]
- Kalaitzakis, M.E.; Pearce, R.K. The morbid anatomy of dementia in Parkinson’s disease. Acta Neuropathol. 2009, 118, 587–598. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.K.L.; Chau, T.W.; Lim, E.J.; Ahmed, I.; Chang, R.C.; Kalaitzakis, M.E.; Graeber, M.B.; Gentleman, S.M.; Pearce, R.K.B. Hippocampal CA2 Lewy pathology is associated with cholinergic degeneration in Parkinson’s disease with cognitive decline. Acta Neuropathol. Commun. 2019, 7, 61. [Google Scholar] [CrossRef]
- Martin, W.R.W.; Younce, J.R.; Campbell, M.C.; Racette, B.A.; Norris, S.A.; Ushe, M.; Criswell, S.; Davis, A.A.; Alfradique-Dunham, I.; Maiti, B.; et al. Neocortical Lewy body pathology parallels Parkinson’s dementia, but not always. Ann. Neurol. 2023, 93, 184–195. [Google Scholar] [CrossRef]
- Smith, C.; Malek, N.; Grosset, K.; Cullen, B.; Gentleman, S.; Grosset, D.G. Neuropathology of dementia in patients with Parkinson’s disease: A systematic review of autopsy studies. J. Neurol. Neurosurg. Psychiatry 2019, 90, 1234–1243. [Google Scholar] [CrossRef]
- Daida, K.; Tanaka, R.; Yamashiro, K.; Ogawa, T.; Oyama, G.; Nishioka, K.; Shimo, Y.; Umemura, A.; Hattori, N. The presence of cerebral microbleeds is associated with cognitive impairment in Parkinson’s disease. J. Neurol. Sci. 2018, 393, 39–44. [Google Scholar] [CrossRef]
- Qin, Q.; Wan, H.; Wang, D.; Li, J.; Yang, Q.; Zhao, J.; Xue, Z. Effect of cerebral microbleeds on cognitive function and quality of life in Parkinson disease. Med. Sci. Monit. 2022, 28, e935026. [Google Scholar] [CrossRef] [PubMed]
- Compta, Y.; Parkkinen, L.; O’Sullivan, S.S.; Vandrovcova, J.; Holton, J.L.; Collins, C.; Lashley, T.; Kallis, C.; Williams, D.R.; de Silva, R.; et al. Lewy- and Alzheimer-type pathologies in Parkinson’s disease dementia: Which is more important? Brain 2011, 134, 1493–1505. [Google Scholar] [CrossRef] [PubMed]
- Mattila, P.M.; Rinne, J.O.; Helenius, H.; Roytta, M. Neuritic degeneration in the hippocampus and amygdala in Parkinson’s disease in relation to Alzheimer pathology. Acta Neuropathol. 1999, 98, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Adamowicz, D.H.; Roy, S.; Salmon, D.P.; Galasko, D.R.; Hansen, L.A.; Masliah, E.; Gage, F.H. Hippocampal alpha-synuclein in dementia with Lewy bodies contributes to memory impairment and is consistent with spread of pathology. J. Neurosci. 2017, 37, 1675–1684. [Google Scholar] [CrossRef] [PubMed]
- Dues, D.J.; Nguyen, A.P.T.; Becker, K.; Ma, J.; Moore, D.J. Hippocampal subfield vulnerability to a-synuclein pathology precedes neurodegeneration and cognitive dysfunction. NPJ Park. Dis. 2023, 29, 125. [Google Scholar] [CrossRef]
- Erhardt, E.; Horner, A.; Shaff, N.; Wertz, C.; Nitschke, S.; Vakhtin, A.; Mayer, A.; Adair, J.; Knoefel, J.; Rosenberg, G.; et al. Longitudinal hippocampal subfields, CSF biomarkers, and cognition in patients with Parkinson disease. Clin Park. Relat. Disord. 2023, 9, 100199. [Google Scholar] [CrossRef]
- Apaydin, H.; Ahlskog, J.E.; Parisi, J.E.; Boeve, B.F.; Dickson, D.W. Parkinson disease neuropathology: Later-developing dementia and loss of the levodopa response. Arch. Neurol. 2002, 59, 102–112. [Google Scholar] [CrossRef]
- Halliday, G.M.; Song, Y.J.; Harding, A.J. Striatal beta-amyloid in dementia with Lewy bodies but not Parkinson’s disease. J. Neural Transm. 2011, 118, 713–719. [Google Scholar] [CrossRef]
- Irwin, D.J.; White, M.T.; Toledo, J.B.; Xie, S.X.; Robinson, J.L.; Van Deerlin, V.; Lee, V.M.; Leverenz, J.B.; Montine, T.J.; Duda, J.E.; et al. Neuropathologic substrates of Parkinson disease dementia. Ann. Neurol. 2012, 72, 587–598. [Google Scholar] [CrossRef]
- Schneider, J.A.; Arvanitakis, Z.; Yu, L.; Boyle, P.A.; Leurgans, S.E.; Bennett, D.A. Cognitive impairment, decline and fluctuations in older community-dwelling subjects with Lewy bodies. Brain 2012, 135, 3005–3014. [Google Scholar] [CrossRef]
- Ryman, S.G.; Yutsis, M.; Tian, L.; Henderson, V.W.; Montine, T.J.; Salmon, D.P.; Galasko, D.; Poston, K.L. Cognition at each stage of Lewy body disease with co-occurring Alzheimer’s disease pathology. J. Alzheimer’s Dis. 2021, 80, 1243–1256. [Google Scholar] [CrossRef] [PubMed]
- Colosimo, C.; Hughes, A.J.; Kilford, L.; Lees, A.J. Lewy body cortical involvement may not always predict dementia in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2003, 74, 852–856. [Google Scholar] [CrossRef] [PubMed]
- Kempster, P.A.; O’Sullivan, S.S.; Holton, J.L.; Revesz, T.; Lees, A.J. Relationships between age and late progression of Parkinson’s disease: A clinico-pathological study. Brain 2010, 133, 1755–1762. [Google Scholar] [CrossRef] [PubMed]
- Wills, J.; Jones, J.; Haggerty, T.; Duka, V.; Joyce, J.N.; Sidhu, A. Elevated tauopathy and alpha-synuclein pathology in postmortem Parkinson’s disease brains with and without dementia. Exp. Neurol. 2010, 225, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Horvath, J.; Herrmann, F.R.; Burkhard, P.R.; Bouras, C.; Kövari, E. Neuropathology of dementia in a large cohort of patients with Parkinson’s disease. Park. Relat. Disord. 2013, 19, 864–868, discussion 864. [Google Scholar] [CrossRef]
- Irwin, D.J.; Grossman, M.; Weintraub, D.; Hurtig, H.I.; Duda, J.E.; Xie, S.X.; Lee, E.B.; Van Deerlin, V.M.; Lopez, O.L.; Kofler, J.K.; et al. Neuropathological and genetic correlates of survival and dementia onset in synucleinopathies: A retrospective analysis. Lancet Neurol. 2017, 16, 55–65. [Google Scholar] [CrossRef]
- Jellinger, K.A.; Seppi, K.; Wenning, G.K.; Poewe, W. Impact of coexistent Alzheimer pathology on the natural history of Parkinson’s disease. J. Neural Transm. 2002, 109, 329–339. [Google Scholar] [CrossRef]
- Biundo, R.; Weis, L.; Antonini, A. Cognitive decline in Parkinson’s disease: The complex picture. NPJ Park. Dis. 2016, 2, 16018. [Google Scholar] [CrossRef]
- Braak, H.; Rüb, U.; Jansen Steur, E.N.; Del Tredici, K.; de Vos, R.A. Cognitive status correlates with neuropathologic stage in Parkinson disease. Neurology 2005, 64, 1404–1410. [Google Scholar] [CrossRef]
- Vermersch, P.; Delacourte, A.; Javoy-Agid, F.; Hauw, J.J.; Agid, Y. Dementia in Parkinson’s disease: Biochemical evidence for cortical involvement using the immunodetection of abnormal Tau proteins. Ann. Neurol. 1993, 33, 445–450. [Google Scholar] [CrossRef]
- Coughlin, D.; Xie, S.X.; Liang, M.; Williams, A.; Peterson, C.; Weintraub, D.; McMillan, C.T.; Wolk, D.A.; Akhtar, R.S.; Hurtig, H.I.; et al. Cognitive and pathological influences of tau pathology in Lewy body disorders. Ann. Neurol. 2019, 85, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Walker, Z.; Moreno, E.; Thomas, A.; Inglis, F.; Tabet, N.; Rainer, M.; Pizzolato, G.; Padovani, A. Clinical usefulness of dopamine transporter SPECT imaging with 123I-FP-CIT in patients with possible dementia with Lewy bodies: Randomised study. Br. J. Psychiatry 2015, 206, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Donaghy, P.C.; Carrarini, C.; Ferreira, D.; Habich, A.; Aarsland, D.; Babiloni, C.; Bayram, E.; Kane, J.P.; Lewis, S.J.; Pilotto, A.; et al. Research diagnostic criteria for mild cognitive impairment with Lewy bodies: A systematic review and meta-analysis. Alzheimer’s Dement. 2023, 19, 3186–3202. [Google Scholar] [CrossRef] [PubMed]
- Compta, Y.; Parkkinen, L.; Kempster, P.; Selikhova, M.; Lashley, T.; Holton, J.L.; Lees, A.J.; Revesz, T. The significance of alpha-synuclein, amyloid-beta and tau pathologies in Parkinson’s disease progression and related dementia. Neurodegener. Dis. 2014, 13, 154–156. [Google Scholar] [CrossRef] [PubMed]
- Kotzbauer, P.T.; Cairns, N.J.; Campbell, M.C.; Willis, A.W.; Racette, B.A.; Tabbal, S.D.; Perlmutter, J.S. Pathologic accumulation of alpha-synuclein and Abeta in Parkinson disease patients with dementia. Arch. Neurol. 2012, 69, 1326–1331. [Google Scholar] [CrossRef]
- Ruffmann, C.; Calboli, F.C.; Bravi, I.; Gveric, D.; Curry, L.K.; de Smith, A.; Pavlou, S.; Buxton, J.L.; Blakemore, A.I.; Takousis, P.; et al. Cortical Lewy bodies and Abeta burden are associated with prevalence and timing of dementia in Lewy body diseases. Neuropathol. Appl. Neurobiol. 2016, 42, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Sabbagh, M.N.; Adler, C.H.; Lahti, T.J.; Connor, D.J.; Vedders, L.; Peterson, L.K.; Caviness, J.N.; Shill, H.A.; Sue, L.I.; Ziabreva, I.; et al. Parkinson disease with dementia: Comparing patients with and without Alzheimer pathology. Alzheimer Dis. Assoc. Disord. 2009, 23, 295–297. [Google Scholar] [CrossRef]
- Parkkinen, L.; Kauppinen, T.; Pirttilä, T.; Autere, J.M.; Alafuzoff, I. Alpha-synuclein pathology does not predict extrapyramidal symptoms or dementia. Ann. Neurol. 2005, 57, 82–91. [Google Scholar] [CrossRef]
- Hindle, J.V.; Martyr, A.; Clare, L. Cognitive reserve in Parkinson’s disease: A systematic review and meta-analysis. Park. Relat. Disord. 2014, 20, 1–7. [Google Scholar] [CrossRef]
- de Boni, L.; Watson, A.H.; Zaccagnini, L.; Wallis, A.; Zhelcheska, K.; Kim, N.; Sanderson, J.; Jiang, H.; Martin, E.; Cantlon, A.; et al. Brain region-specific susceptibility of Lewy body pathology in synucleinopathies is governed by alpha-synuclein conformations. Acta Neuropathol. 2022, 143, 453–469. [Google Scholar] [CrossRef]
- Kim, R.; Park, S.; Yoo, D.; Jun, J.S.; Jeon, B. Association of physical activity and APOE genotype with longitudinal cognitive change in early Parkinson disease. Neurology 2021, 96, e2429–e2437. [Google Scholar] [CrossRef] [PubMed]
- Montemurro, S.; Mondini, S.; Signorini, M.; Marchetto, A.; Bambini, V.; Arcara, G. Pragmatic language disorder in Parkinson’s disease and the potential effect of cognitive reserve. Front. Psychol. 2019, 10, 1220. [Google Scholar] [CrossRef] [PubMed]
- Cascone, A.D.; Langella, S.; Sklerov, M.; Dayan, E. Frontoparietal network resilience is associated with protection against cognitive decline in Parkinson’s disease. Commun. Biol. 2021, 4, 1021. [Google Scholar] [CrossRef] [PubMed]
- Di Tella, S.; De Marco, M.; Baglio, F.; Silveri, M.C.; Venneri, A. Resting-state functional connectivity is modulated by cognitive reserve in early Parkinson’s disease. Front. Psychol. 2023, 14, 1207988. [Google Scholar] [CrossRef] [PubMed]
- Tyler, C.M.; Henry, R.S.; Perrin, P.B.; Watson, J.; Villaseñor, T.; Lageman, S.K.; Smith, E.R.; Curiel, G.R.; Avila, J.; Jimenez Maldonado, M.E.; et al. Structural equation modeling of Parkinson’s caregiver social support, resilience, and mental health: A strength-based perspective. Neurol. Res. Int. 2020, 2020, 7906547. [Google Scholar] [CrossRef] [PubMed]
- Robottom, B.J.; Gruber-Baldini, A.L.; Anderson, K.E.; Reich, S.G.; Fishman, P.S.; Weiner, W.J.; Shulman, L.M. What determines resilience in patients with Parkinson’s disease? Park. Relat. Disord. 2012, 18, 174–177. [Google Scholar] [CrossRef] [PubMed]
- Luthra, N.S.; Christou, D.D.; Clow, A.; Corcos, D.M. Targeting neuroendocrine abnormalities in Parkinson’s disease with exercise. Front. Neurosci. 2023, 17, 1228444. [Google Scholar] [CrossRef]
- Isingrini, E.; Perret, L.; Rainer, Q.; Amilhon, B.; Guma, E.; Tanti, A.; Martin, G.; Robinson, J.; Moquin, L.; Marti, F.; et al. Resilience to chronic stress is mediated by noradrenergic regulation of dopamine neurons. Nat. Neurosci. 2016, 19, 560–563. [Google Scholar] [CrossRef]
- Liu, H.; Dehestani, M.; Blauwendraat, C.; Makarious, M.B.; Leonard, H.; Kim, J.J.; Schulte, C.; Noyce, A.; Jacobs, B.M.; Foote, I.; et al. Polygenic resilience modulates the penetrance of Parkinson disease genetic risk factors. Ann. Neurol. 2022, 92, 270–278. [Google Scholar] [CrossRef]
- Batzu, L.; Urso, D.; Grothe, M.J.; Veréb, D.; Chaudhuri, K.R.; Pereira, J.B. Increased basal forebrain volumes could prevent cognitive decline in LRRK2 Parkinson’s disease. Neurobiol. Dis. 2023, 183, 106182. [Google Scholar] [CrossRef]
- Yang, D.; Xie, H.; Wu, S.; Ying, C.; Chen, Y.; Ge, Y.; Yao, R.; Li, K.; Jiang, Z.; Chen, G. Neurofilament light chain as a mediator between LRRK2 mutation and dementia in Parkinson’s disease. NPJ Park. Dis. 2023, 9, 132. [Google Scholar] [CrossRef] [PubMed]
- Matikainen-Ankney, B.A.; Kezunovic, N.; Menard, C.; Flanigan, M.E.; Zhong, Y.; Russo, S.J.; Benson, D.L.; Huntley, G.W. Parkinson’s disease-linked LRRK2-G2019S mutation alters synaptic plasticity and promotes resilience to chronic social stress in young adulthood. J. Neurosci. 2018, 38, 9700–9711. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Moreno, N.; Lane, J.D. ATG8 proteins are co-factors for human dopaminergic neuronal transcriptional control: Implications for neuronal resilience in Parkinson disease. Autophagy 2023, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Toledo, J.B.; Abdelnour, C.; Weil, R.S.; Ferreira, D.; Rodriguez-Porcel, F.; Pilotto, A.; Wyman-Chick, K.A.; Grothe, M.J.; Kane, J.P.M.; Taylor, A.; et al. Dementia with Lewy bodies: Impact of co-pathologies and implications for clinical trial design. Alzheimer’s Dement. 2023, 19, 318–332. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.; Wang, G.; Liu, Q.; Wang, Y. Effect of cerebral small vessel disease on cognitive impairment in Parkinson’s disease: A systematic review and meta-analysis. Ann. Transl. Med. 2022, 10, 288. [Google Scholar] [CrossRef]
- Schwartz, R.S.; Halliday, G.M.; Soh, D.; Cordato, D.J.; Kril, J.J. Impact of small vessel disease on severity of motor and cognitive impairment in Parkinson’s disease. J. Clin. Neurosci. 2018, 58, 70–74. [Google Scholar] [CrossRef]
- Wan, H.; Chen, H.; Zhang, M.; Feng, T.; Wang, Y. Cerebral microbleeds is associated with dementia in Parkinson’s disease. Acta Neurol. Belg. 2023, 123, 407–413. [Google Scholar] [CrossRef]
- Chen, K.; Jin, Z.; Fang, J.; Qi, L.; Liu, C.; Wang, R.; Su, Y.; Yan, H.; Liu, A.; Xi, J.; et al. Lacunes may worsen cognition but not motor function in Parkinson’s disease. Brain Behav. 2023, 13, e2880. [Google Scholar] [CrossRef]
- Donahue, E.K.; Foreman, R.P.; Duran, J.J.; Jakowec, M.W.; O’Neill, J.; Petkus, A.J.; Holschneider, D.P.; Choupan, J.; Van Horn, J.D.; Venkadesh, S.; et al. Increased perivascular space volume in white matter and basal ganglia is associated with cognition in Parkinson’s Disease. Brain Imaging Behav. 2023. [Google Scholar] [CrossRef]
- Tsai, H.H.; Tsai, L.K.; Lo, Y.L.; Lin, C.H. Amyloid related cerebral microbleed and plasma Abeta40 are associated with cognitive decline in Parkinson’s disease. Sci. Rep. 2021, 11, 7115. [Google Scholar] [CrossRef]
- Homma, T.; Mochizuki, Y.; Takahashi, K.; Komori, T. Medial temporal regional argyrophilic grain as a possible important factor affecting dementia in Parkinson’s disease. Neuropathology 2015, 35, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Buchman, A.S.; Yu, L.; Wilson, R.S.; Leurgans, S.E.; Nag, S.; Shulman, J.M.; Barnes, L.L.; Schneider, J.A.; Bennett, D.A. Progressive parkinsonism in older adults is related to the burden of mixed brain pathologies. Neurology 2019, 92, e1821–e1830. [Google Scholar] [CrossRef] [PubMed]
- Charissé, D.; Erus, G.; Pomponio, R.; Gorges, M.; Schmidt, N.; Schneider, C.; Liepelt-Scarfone, I.; Riedel, O.; Reetz, K.; Schulz, J.B.; et al. Brain age and Alzheimer’s-like atrophy are domain-specific predictors of cognitive impairment in Parkinson’s disease. Neurobiol. Aging 2022, 109, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Berg, D.; Postuma, R.B.; Bloem, B.; Chan, P.; Dubois, B.; Gasser, T.; Goetz, C.G.; Halliday, G.M.; Hardy, J.; Lang, A.E.; et al. Time to redefine PD? Introductory statement of the MDS Task Force on the definition of Parkinson’s disease. Mov. Disord. 2014, 29, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 2015, 30, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- Paolini Paoletti, F.; Gaetani, L.; Bellomo, G.; Chipi, E.; Salvadori, N.; Montanucci, C.; Mancini, A.; Filidei, M.; Nigro, P.; Simoni, S.; et al. CSF neurochemical profile and cognitive changes in Parkinson’s disease with mild cognitive impairment. NPJ Park. Dis. 2023, 9, 68. [Google Scholar] [CrossRef] [PubMed]
- Frigerio, I.; Laansma, M.A.; Lin, C.P.; Hermans, E.J.M.; Bouwman, M.M.A.; Bol, J.G.J.M.; Galis-de Graaf, Y.; Hepp, D.H.; Rozemuller, A.J.M.; Barkhof, F.; et al. Neurofilament light chain is increased in the parahippocampal cortex and associates with pathological hallmarks in Parkinson’s disease dementia. Transl. Neurodegener. 2023, 12, 3. [Google Scholar] [CrossRef]
- Liu, T.; Zuo, H.; Ma, D.; Song, D.; Zhao, Y.; Cheng, O. Cerebrospinal fluid GFAP is a predictive biomarker for conversion to dementia and Alzheimer’s disease-associated biomarkers alterations among de novo Parkinson’s disease patients: A prospective cohort study. J. Neuroinflamm. 2023, 20, 167. [Google Scholar] [CrossRef]
- Mao, S.; Teng, X.; Li, Z.; Zu, J.; Zhang, T.; Xu, C.; Cui, G. Association of serum neurofilament light chain and glial fibrillary acidic protein levels with cognitive decline in Parkinson’s disease. Brain Res. 2023, 1805, 148271. [Google Scholar] [CrossRef]
- Mizutani, Y.; Ohdake, R.; Tatebe, H.; Higashi, A.; Shima, S.; Ueda, A.; Ito, M.; Tokuda, T.; Watanabe, H. Associations of Alzheimer’s-related plasma biomarkers with cognitive decline in Parkinson’s disease. J. Neurol. 2023, 270, 5461–5474. [Google Scholar] [CrossRef]
- Skogseth, R.E.; Bronnick, K.; Pereira, J.B.; Mollenhauer, B.; Weintraub, D.; Fladby, T.; Aarsland, D. Associations between cerebrospinal fluid biomarkers and cognition in early untreated Parkinson’s disease. J. Park. Dis. 2015, 5, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Tu, H.; Zhang, Z.W.; Qiu, L.; Lin, Y.; Jiang, M.; Chia, S.Y.; Wei, Y.; Ng, A.S.L.; Reynolds, R.; Tan, E.K.; et al. Increased expression of pathological markers in Parkinson’s disease dementia post-mortem brains compared to dementia with Lewy bodies. BMC Neurosci. 2022, 23, 3. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Nagano-Saito, A.; Kato, T.; Arahata, Y.; Nakamura, A.; Kawasumi, Y.; Hatano, K.; Abe, Y.; Yamada, T.; Kachi, T.; et al. Striatal and extrastriatal dysfunction in Parkinson’s disease with dementia: A 6-[18F]fluoro-L-dopa PET study. Brain 2002, 125, 1358–1365. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jellinger, K.A. Pathobiology of Cognitive Impairment in Parkinson Disease: Challenges and Outlooks. Int. J. Mol. Sci. 2024, 25, 498. https://doi.org/10.3390/ijms25010498
Jellinger KA. Pathobiology of Cognitive Impairment in Parkinson Disease: Challenges and Outlooks. International Journal of Molecular Sciences. 2024; 25(1):498. https://doi.org/10.3390/ijms25010498
Chicago/Turabian StyleJellinger, Kurt A. 2024. "Pathobiology of Cognitive Impairment in Parkinson Disease: Challenges and Outlooks" International Journal of Molecular Sciences 25, no. 1: 498. https://doi.org/10.3390/ijms25010498
APA StyleJellinger, K. A. (2024). Pathobiology of Cognitive Impairment in Parkinson Disease: Challenges and Outlooks. International Journal of Molecular Sciences, 25(1), 498. https://doi.org/10.3390/ijms25010498