Ganoderma adspersum (Ganodermataceae): Investigation of Its Secondary Metabolites and the Antioxidant, Antimicrobial, and Cytotoxic Potential of Its Extracts
Abstract
:1. Introduction
2. Results
2.1. Mycochemical Profile and Total Antioxidant Activity of G. adspersum Extracts
Inhibitory Effect against Lipid Peroxidation and ROS Scavenging Activities
2.2. Antimicrobial Activity of G. adspersum Extracts
2.3. Cytotoxic Activities of G. adspersum Extracts
2.4. Characterization of Isolated Compounds
2.5. In Silico Analysis of the Secondary Metabolites Isolated from G. adspersum
3. Discussion
4. Materials and Methods
4.1. General Experimental Procedures
4.2. Extraction and Isolation
4.2.1. Extraction
4.2.2. Compound Isolation
4.3. Antimicrobial Activity
Minimum Inhibitory Concentrations (MICs)
4.4. Measurement of Cytotoxic Activity by MTT Assay
4.5. Determination of the Secondary Metabolite Contents
4.5.1. Determination of Total Phenolic Contents
4.5.2. Determination of Total Flavonoid Contents
4.5.3. Determination of Condensed Tannins
4.5.4. Determination of Condensed Gallotannins
4.6. Antioxidant Activity
4.6.1. Determination of Total Antioxidant Capacity
4.6.2. Determination of DPPH Free Radical Scavenging Activity
4.6.3. Determination of Hydroxyl Radical Scavenging Activity
4.6.4. ABTS Radical Scavenging Assay
4.6.5. Determination of the Inhibitory Activity toward Lipid Peroxidation
4.6.6. Measurement of Ferrous-Ion-Chelating Ability
4.7. In Silico Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wadt, N.S.Y.; Okamoto, M.K.H.; Hi, E.M.B.H.; Bach, E.E. Chemical, toxicological, anti-inflammatory and antimicrobial evaluation of Ganoderma lucidum extracts. Emir. J. Food Agric. 2015, 27, 577–584. [Google Scholar] [CrossRef]
- Ekiz, E.; Oz, E.; Abd El-Aty, A.M.; Proestos, C.; Brennan, C.; Zeng, M.; Tomasevic, I.; Elobeid, T.; Çadırcı, K.; Bayrak, M.; et al. Exploring the Potential Medicinal Benefits of Ganoderma lucidum: From Metabolic Disorders to Coronavirus Infections. Foods 2023, 12, 1512. [Google Scholar] [CrossRef] [PubMed]
- Karsten, P. Enumeratio Boletinearum et Polyporearum Fennicarum, systemate novo dispositarum. Rev. Mycol. 1881, 3, 16–19. [Google Scholar]
- Wang, L.; Li, J.Q.; Zhang, J.; Li, Z.M.; Liu, H.G.; Wang, Y.Z. Traditional uses, chemical components and pharmacological activities of the genus Ganoderma P. Karst.: A review. RSC Adv. 2020, 10, 42084–42097. [Google Scholar] [CrossRef] [PubMed]
- Oke, M.A.; Afolabi, F.J.; Oyeleke, O.O.; Kilani, T.A.; Adeosun, A.R.; Olanbiwoninu, A.A.; Adebayo, E.A. Ganoderma lucidum: Unutilized natural medicine and promising future solution to emerging diseases in Africa. Front. Pharmacol. 2022, 13, 952027. [Google Scholar] [CrossRef] [PubMed]
- Jargalmaa, S.; Eimes, J.A.; Park, M.S.; Park, J.Y.; Oh, S.Y.; Lim, Y.W. Taxonomic evaluation of selected Ganoderma species and database sequence validation. PeerJ 2017, 5, e3596. [Google Scholar] [CrossRef] [PubMed]
- Sułkowska-Ziaja, K.; Balik, M.; Szczepkowski, A.; Trepa, M.; Zengin, G.; Kała, K.; Muszyńska, B. A Review of Chemical Composition and Bioactivity Studies of the Most Promising Species of Ganoderma spp. Diversity 2023, 15, 882. [Google Scholar] [CrossRef]
- Luangharn, T.; Karunarathna, S.C.; Dutta, A.K.; Paloi, S.; Promputtha, I.; Hyde, K.D.; Xu, J.; Mortimer, P.E. Ganoderma (Ganodermataceae, Basidiomycota) Species from the Greater Mekong Subregion. J. Fungi 2021, 7, 819. [Google Scholar] [CrossRef]
- Richter, C.; Wittstein, K.; Kirk, P.M.; Stadler, M. An assessment of the taxonomy and chemotaxonomy of Ganoderma. Fungal Divers. 2015, 71, 1–15. [Google Scholar] [CrossRef]
- Cao, Y.; Xu, X.; Liu, S.; Huang, L.; Gu, J. Ganoderma: A Cancer Immunotherapy Review. Front. Pharmacol. 2018, 9, 1217. [Google Scholar] [CrossRef]
- Lawal, T.O.; Wicks, S.M.; Calderon, A.I.; Mahady, G.B. Bioactive Molecules, Pharmacology and Future Research Trends of Ganoderma lucidium as a Cancer Chemotherapeutic Agent. In New Look to Phytomedicine; Khan, M.S., Ahmad, I., Chattopadhyay, D., Eds.; Academic Press (Elsevier): Cambridge, MA, USA, 2019; pp. 159–178. [Google Scholar] [CrossRef]
- Ho, C.-L. Comparative Genomics Analysis of Ganoderma Orthologs Involved in Plant-Pathogenesis. Forests 2023, 14, 653. [Google Scholar] [CrossRef]
- Elkhateeb, W.A.; Daba, G.M. The Precious Ganoderma Mushroom and Plant Diseases. J. Microbiol. Biotechnol. 2022, 7. [Google Scholar] [CrossRef] [PubMed]
- Loyd, A.L.; Linder, E.R.; Anger, N.A.; Richter, B.S.; Blanchette, R.A.; Smith, J.A. Pathogenicity of Ganoderma Species on Landscape Trees in the Southeastern United States. Plant Dis. 2018, 102, 1944–1949. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.F. Ganoderma lucidum: A Macro Fungus with Phytochemicals and Their Pharmacological Properties. In Plant and Human Health; Ozturk, M., Hakeem, K., Eds.; Springer: New York, NY, USA, 2019; Volume 2, pp. 491–515. [Google Scholar] [CrossRef]
- Baby, S.; Johnson, A.J.; Govindan, B. Secondary metabolites from Ganoderma. Phytochemistry 2015, 114, 66–101. [Google Scholar] [CrossRef]
- Wachtel-Galor, S.; Yuen, J.; Buswell, J.A.; Benzie, I.F.F. Chapter 9. Ganoderma lucidum (Lingzhi or Reishi). In Herbal Medicine: Biomolecular and Clinical Aspects, 2nd ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis: Oxfordshire, UK, 2011. [Google Scholar]
- Kolniak-Ostek, J.; Oszmiański, J.; Szyjka, A.; Moreira, H.; Barg, E. Anticancer and Antioxidant Activities in Ganoderma lucidum Wild Mushrooms in Poland, as Well as Their Phenolic and Triterpenoid Compounds. Int. J. Mol. Sci. 2022, 23, 9359. [Google Scholar] [CrossRef]
- Ahmad, M.F.; Ahmad, F.A.; Khan, M.I.; Alsayegh, A.A.; Wahab, S.; Alam, M.I.; Ahmed, F. Ganoderma lucidum: A potential source to surmount viral infections through β-glucans immunomodulatory and triterpenoids antiviral properties. Int. J. Biol. Macromol. 2021, 187, 769–779. [Google Scholar] [CrossRef]
- Xu, J.; Xiao, C.M.; Xu, H.S.; Yang, S.X.; Chen, Z.M.; Wang, H.Z.; Zheng, B.S.; Mao, B.S.; Wu, X.Q. Anti-inflammatory effects of Ganoderma lucidum sterols via attenuation of the p38 MAPK and NF-κB pathways in LPS-induced RAW 264.7 macrophages. Food Chem. Toxicol. 2021, 150, 112073. [Google Scholar] [CrossRef]
- Huang, C.H.; Lin, W.K.; Chang, S.H.; Tsai, G.J. Ganoderma lucidum culture supplement ameliorates dyslipidemia and reduces visceral fat accumulation in type 2 diabetic rats. Mycology 2020, 12, 94–104. [Google Scholar] [CrossRef]
- Sun, X.Z.; Liao, Y.; Li, W.; Guo, L.M. Neuroprotective effects of ganoderma lucidum polysaccharides against oxidative stress-induced neuronal apoptosis. Neural Regen. Res. 2017, 12, 953–958. [Google Scholar] [CrossRef]
- Wang, J.; Cao, B.; Zhao, H.; Feng, J. Emerging Roles of Ganoderma Lucidum in Anti-Aging. Aging Dis. 2017, 8, 691–707. [Google Scholar] [CrossRef]
- Wu, H.; Tang, S.; Huang, Z.; Zhou, Q.; Zhang, P.; Chen, Z. Hepatoprotective Effects and Mechanisms of Action of Triterpenoids from Lingzhi or Reishi Medicinal Mushroom Ganoderma lucidum (Agaricomycetes) on α-Amanitin-Induced Liver Injury in Mice. Int. J. Med. Mushrooms 2016, 18, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Vazirian, M.; Faramarzi, M.A.; Ebrahimi, S.E.; Esfahani, H.R.; Samadi, N.; Hosseini, S.A.; Asghari, A.; Manayi, A.; Mousazadeh, A.; Asef, M.R.; et al. Antimicrobial effect of the Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (higher Basidiomycetes) and its main compounds. Int. J. Med. Mushrooms 2014, 16, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, H.; Shimizu, Y.; Iwata, N.; Kamiuchi, S.; Suzuki, F.; Iizuka, H.; Hibino, Y.; Okazaki, M. Antidepressant-like effects of a water-soluble extract from the culture medium of Ganoderma lucidum mycelia in rats. BMC Complement. Altern. Med. 2013, 13, 370. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Zhang, D.; Wu, J.; Chen, C.; Xu, Z.; Yang, H.; Zhou, P. Antidiabetic, antihyperlipidemic and antioxidant activities of a novel proteoglycan from Ganoderma lucidum fruiting bodies on db/db mice and the possible mechanism. PLoS ONE 2013, 8, e68332. [Google Scholar] [CrossRef] [PubMed]
- Blundell, R.; Camilleri, E.; Baral, B.; Karpiński, T.M.; Neza, E.; Atrooz, O.M. The Phytochemistry of Ganoderma Species and their Medicinal Potentials. Am. J. Chin. Med. 2023, 51, 859–882. [Google Scholar] [CrossRef] [PubMed]
- Gong, T.; Yan, R.; Kang, J.; Chen, R. Chemical Components of Ganoderma. Adv. Exp. Med. Biol. 2019, 1181, 59–106. [Google Scholar] [CrossRef]
- Ahmad, M.F. Ganoderma lucidum: Persuasive biologically active constituents and their health endorsement. Biomed. Pharmacother. 2018, 107, 507–519. [Google Scholar] [CrossRef]
- Schwarze, F.W.M.R.; Ferner, D. Ganoderma on trees-Differentiation of species and studies of invasiveness. Arboric. J. 2003, 27, 59–77. [Google Scholar] [CrossRef]
- Tortic, M. Distribution of polypores in Yugoslavia. ii. Ganoderma. Acta Bot. Croat. 1985, 44, 59–71. [Google Scholar]
- Tortic, M. Ganoderma adspersum (S. Schulz.) Donk (= Ganoderma europaeum Steyaert) and its distribution in Jugoslavia. Acta Bot. Croat. 1971, 30, 113–118. [Google Scholar]
- Tel-Cayan, G.; Öztürk, M.; Duru, M.E.; Rehman, M.U.; Adhikari, A.; Türkoglu, A.; Choudhary, M.I. Phytochemical investigation, antioxidant and anticholinesterase activities of Ganoderma adspersum. Ind. Crops Prod. 2015, 76, 749–754. [Google Scholar] [CrossRef]
- Mayaka, R.K.; Njue, A.W.; Langat, M.K.; Cheplogoi, P.K.; Omolo, J.O. Antimicrobial compounds from the Kenyan Ganoderma adspersum (Schulz.) Donk species. Int. J. Biol. Chem. Sci. 2019, 13, 3390–3397. [Google Scholar] [CrossRef]
- Tel-Çayan, G.; Muhammad, A.; Deveci, E.; Duru, M.E.; Öztürk, M. Isolation, structural characterization, and biological activities of galactomannans from Rhizopogon luteolus and Ganoderma adspersum mushrooms. Int. J. Biol. Macromol. 2020, 165 Pt B, 2395–2403. [Google Scholar] [CrossRef]
- Shomali, N.; Onar, O.; Alkan, T.; Demirtas, N.; Akata, I.; Yildirim, Ö. Investigation of Polyphenol Composition, Biological Activities and Detoxification Properties of Some Medicinal Mushrooms from Turkey. Turk. J. Pharm. Sci. 2019, 16, 155–160. [Google Scholar] [CrossRef]
- Akita, C.; Kawaguchi, T.; Kaneko, F.; Yamamoto, H. Solid-state 13C-NMR Study on Order f Disorder Phase Transition in Oleic Acid. J. Phys. Chem. B 2004, 108, 4862–4868. [Google Scholar] [CrossRef]
- Protiva, J.; Skorkovska, H.; Urban, J.; Vystrcil, A. Triterpenes and steroids from Ganoderma applanatum. Collect. Czechoslov. Chem. Commun. 1980, 45, 2710–2713. [Google Scholar] [CrossRef]
- Ripperger, H.; Budzikiewicz, H. Steroide aus Ganoderma applanatum. Phytochemistry 1975, 14, 2297. [Google Scholar] [CrossRef]
- Chairul, S.M.; Hayashi, Y. Lanostanoid triterpenes from Ganoderma applanatum. Phytochemistry 1994, 35, 1305–1308. [Google Scholar] [CrossRef]
- Chairul, T.; Hayashi, Y.; Nishizawa, M.; Tokuda, H.; Chairul, S.M.; Hayashi, Y. Applanoxidic acids A, B, C and D, biologically active tetracyclic triterpenes from Ganoderma applanatum. Phytochemistry 1991, 30, 4105–4109. [Google Scholar] [CrossRef]
- Available online: https://www.molinspiration.com/docu/miscreen/virtualscreening.html (accessed on 14 January 2023).
- Abate, M.; Pepe, G.; Randino, R.; Pisanti, S.; Basilicata, M.G.; Covelli, V.; Bifulco, M.; Cabri, W.; D’Ursi, A.M.; Campiglia, P.; et al. Ganoderma lucidum Ethanol Extracts Enhance Re-Epithelialization and Prevent Keratinocytes from Free-Radical Injury. Pharmaceuticals 2020, 13, 224. [Google Scholar] [CrossRef]
- Venturella, G.; Ferraro, V.; Cirlincione, F.; Gargano, M.L. Medicinal Mushrooms: Bioactive Compounds, Use, and Clinical Trials. Int. J. Mol. Sci. 2021, 22, 634. [Google Scholar] [CrossRef]
- Zeng, P.; Chen, Y.; Zhang, L.; Xing, M. Chapter Ten—Ganoderma lucidum polysaccharide used for treating physical frailty in China. Prog. Mol. Biol. Transl. Sci. 2019, 163, 179–219. [Google Scholar] [CrossRef]
- Galappaththi, M.C.A.; Patabendige, N.M.; Premarathne, B.M.; Hapuarachchi, K.K.; Tibpromma, S.; Dai, D.Q.; Suwannarach, N.; Rapior, S.; Karunarathna, S.C. A Review of Ganoderma Triterpenoids and Their Bioactivities. Biomolecules 2022, 13, 24. [Google Scholar] [CrossRef]
- Raks, V.; Öztürk, M.; Vasylchenko, O.; Raks, M. Ganoderma species extracts: Antioxidant activity and chromatography. Biotechnol. Acta 2018, 11, 69–77. [Google Scholar] [CrossRef]
- Sułkowska-Ziaja, K.; Zengin, G.; Gunia-Krzyżak, A.; Popiół, J.; Szewczyk, A.; Jaszek, M.; Rogalski, J.; Muszyńska, B. Bioactivity and Mycochemical Profile of Extracts from Mycelial Cultures of Ganoderma spp. Molecules 2022, 27, 275. [Google Scholar] [CrossRef]
- Hamwenye, K.K.; Ueitele, I.S.; Kadhila, N.P.; Embashu, W.; Nantanga, K.K. Towards medicinal tea from untapped Namibian Ganoderma: Phenolics and in vitro antioxidant activity of wild and cultivated mushrooms. S. Afr. J. Sci. 2022, 118. [Google Scholar] [CrossRef]
- Kıvrık, M.; Süfer, Ö.; Bozok, F. A Research on Quality Evaluation of Eight Wild Edible Macrofungi Collected from East Mediterranean Region of Turkey. Chem Biodivers. 2022, 19, e202100967. [Google Scholar] [CrossRef]
- Itharat, A.; Houghton, P.; Eno-Amooguaye, E.; Burke, P.; Sampson, J.; Raman, A. In vitro cytotoxic activity of Thai medicinal plant used traditionally to treat cancer. J. Ethopharmacol. 2004, 90, 33–38. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, S.; Yang, L.; Xie, Q.; Dai, H.; Yu, Z.; Zhao, Y. Lanostane Triterpenoids and Ergostane Steroids from Ganoderma luteomarginatum and Their Cytotoxicity. Molecules 2022, 27, 6989. [Google Scholar] [CrossRef]
- Suarez-Medellin, J.; Meza-Menchaca, T.; Carranza, J.A.; Trigos, A.; Vidal-Limon, A.M. In Silico Analysis of Lanostanoids Characterized in Ganoderma Mushrooms (Agaricomycetes) as Potential Ligands of the Vitamin D Receptor. Int. J. Med. Mushrooms 2016, 18, 1037–1047. [Google Scholar] [CrossRef]
- Vidal-Limon, A.M.; Luna-Martinez, O.D.; Rojas-Durán, F.; Meza-Menchaca, T.; Hernández-Aguilar, M.E.; Trigos, A.; Suárez-Medellín, J. Molecular Dynamics and Virtual Screening Analysis of Lanosterol Derivatives from Ganoderma Medicinal Mushrooms (Agaricomycetes) as Selective Ligands of Human Androgen Receptor. Int. J. Med. Mushrooms 2017, 19, 595–605. [Google Scholar] [CrossRef]
- Isaka, M.; Chinthanom, P.; Kongthong, S.; Srichomthong, K.; Choeyklin, R. Lanostane triterpenes from cultures of the Basidiomycete Ganoderma orbiforme BCC 22324. Phytochemistry 2013, 87, 133–139. [Google Scholar] [CrossRef]
- Seo, H.W.; Hung, T.M.; Na, M.; Jung, H.J.; Kim, J.C.; Choi, J.S.; Kim, J.H.; Lee, H.K.; Lee, I.; Bae, K.; et al. Steroids and triterpenes from the fruit bodies of Ganoderma lucidum and their anti-complement activity. Arch. Pharm. Res. 2009, 32, 1573–1579. [Google Scholar] [CrossRef]
- Yu, J.H.; Yu, S.J.; Liu, K.L.; Wang, C.; Liu, C.; Sun, J.Y.; Zhang, H. Cytotoxic ergostane-type steroids from Ganoderma lingzhi. Steroids 2021, 165, 108767. [Google Scholar] [CrossRef]
- Lee, I.; Ahn, B.; Choi, J.; Hattori, M.; Min, B.; Bae, K. Selective cholinesterase inhibition by lanostane triterpenes from fruiting bodies of Ganoderma lucidum. Bioorg. Med. Chem. Lett. 2011, 21, 6603–6607. [Google Scholar] [CrossRef]
- Zhabinskii, V.N.; Drasar, P.; Khripach, V.A. Structure and Biological Activity of Ergostane-Type Steroids from Fungi. Molecules 2022, 27, 2103. [Google Scholar] [CrossRef]
- Alexandri, E.; Ahmed, R.; Siddiqui, H.; Choudhary, M.I.; Tsiafoulis, C.G.; Gerothanasis, I.P. High Resolution NMR Spectroscopy as a Structural and Analytical Tool for Unsaturated Lipids in Solution. Molecules 2017, 22, 1663. [Google Scholar] [CrossRef]
- Tokul Ölmez, Ö.; Kaplaner, E.; Öztürk, M.; Ullah, Z.; Duru, M.E. Fatty acid profile of four Ganoderma species collected from various host trees with chemometric approach. Biochem. Syst. Ecol. 2018, 78, 91–97. [Google Scholar] [CrossRef]
- Lv, G.P.; Zhao, J.; Duan, J.A.; Tang, Y.P.; Li, S.P. Comparison of sterols and fatty acids in two species of Ganoderma. Chem. Cent. J. 2012, 6, 10. [Google Scholar] [CrossRef]
- Chen, S.; Yong, T.; Zhang, Y.; Su, J.; Jiao, C.; Xie, Y. Anti-tumor and Anti-angiogenic Ergosterols from Ganoderma lucidum. Front Chem. 2017, 5, 85. [Google Scholar] [CrossRef]
- El Dine, R.S.; El Halawany, A.M.; Nakamura, N.; Ma, C.M.; Hattori, M. New Lanostane Triterpene Lactones from the Vietnamese Mushroom Ganoderma colossum (FR.) C. F. BAKER. Chem. Pharm. Bull. 2008, 56, 642–646. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Ligonio, A.; López-Monteon, A.; Lagunes-Castro, M.S.; Suarez-Medellin, J.; Espinoza, C.; Mendoza, G.; Trigos, A. In Vitro Expression of Toll-Like Receptors and Proinflammatory Molecules Induced by Ergosta-7,22-Dien-3-One Isolated from a Wild Mexican Strain of Ganoderma oerstedii (Agaricomycetes). Int. J. Med. Mushrooms 2017, 19, 203–211. [Google Scholar] [CrossRef] [PubMed]
- González, A.G.; León, F.; Rivera, A.; Padrón, J.; González-Plata, J.; Zuluaga, J.; Quintana, J.; Estévez, F.; Bermejo, J. New lanostanoids from the fungus Ganoderma concinna. J. Nat. Prod. 2002, 65, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Zhang, H.; Sun, X.; Zhao, H.; Wu, L.; Zhu, D.; Yang, G.; Shao, Y.; Zhang, X.; Mao, X.; et al. A Comprehensive Review of the Structure Elucidation and Biological Activity of Triterpenoids from Ganoderma spp. Molecules 2014, 19, 17478–17535. [Google Scholar] [CrossRef] [PubMed]
- Mirković, M.; Filipović, S.; Kalijadis, A.; Mašković, P.; Mašković, J.; Vlahović, B.; Pavlović, V. Hydroxyapatite/TiO2 Nanomaterial with Defined Microstructural and Good Antimicrobial Properties. Antibiotics 2022, 11, 592. [Google Scholar] [CrossRef] [PubMed]
- Satyajit, D.; Sarker, L.N.; Kumarasamy, Y. Microtitre plate based antibacterialassay incorporating resazurin as indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007, 42, 321–324. [Google Scholar] [CrossRef]
- Mašković, P.; Maksimović, J.; Maksimović, V.; Blagojević, J.; Vujošević, M.; Manojlović, N.; Radojković, M.; Cvijović, M.; Solujić, S. Biological activities of phenolic compounds and ethanolic extract of Halacsya sendtneri (Boiss) Dőrfler. Open Life Sci. 2012, 7, 327–333. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Meth. 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Dighe, R.D.; Shiradkara, M.R.; Rohomb, S.S.; Dighe, P.D. Synthesis and SAR of methyl linked cyclohexyl thiophenyl triazoles for their Anti-Alzheimer activity. Der Chem. Sin. 2011, 2, 70–87. [Google Scholar]
- Baviskar, B.A.; Khadabadia, S.S.; Deore, S.L.; Shiradkar, M.R. Synthesis of clubbed Triazolyl Indeno [1,2-C] Isoquinolines as an Novel Anticancer Agent. Der Chem. Sin. 2012, 3, 24–30. [Google Scholar]
- Singleton, V.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–175. [Google Scholar] [CrossRef]
- Brighente, I.M.C.; Dias, M.; Verdi, L.G.; Pizzolatti, M.G. Antioxidant activity and total phenolic content of some Brazilian species. Pharm. Biol. 2007, 45, 156–161. [Google Scholar] [CrossRef]
- Verrmeris, W.; Nicholson, R. Phenolic Compound Biochemistry; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E1. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Takao, T.; Watanabe, N.; Yagi, I.; Sakata, K. A simple screening method for antioxidants and isolation of several antioxidants produced by marine bacteria from fish and shellfish. Biosci. Biotechnol. Biochem. 1994, 58, 1780–1783. [Google Scholar] [CrossRef]
- Kumarasamy, Y.; Byres, M.; Cox, P.J.; Jaspars, M.; Nahar, L.; Sarker, S.D. Screening seeds of some Scottish plants for free-radical scavenging activity. Phytother. Res. 2007, 21, 615–621. [Google Scholar] [CrossRef]
- Hinneburg, I.; Dorman, H.J.D.; Hiltunen, R. Antioxidant activities of extracts from selected culinary herbs and spices. Food Chem. 2006, 97, 122–129. [Google Scholar] [CrossRef]
- Delgado-Andrade, C.; Rufián-Henares, J.A.; Morales, F.J. Assessing the Antioxidant Activity of Melanoidins from Coffee Brews by Different Antioxidant Methods. J. Agric. Food Chem. 2005, 53, 7832–7836. [Google Scholar] [CrossRef]
- Hsu, C.K.; Chiang, B.H.; Chen, Y.S.; Yang, J.H.; Liu, C.L. Improving the antioxidant activity of buckwheat (Fagopyrum tataricm Gaertn) sprout with trace element water. Food Chem. 2008, 108, 633–641. [Google Scholar] [CrossRef]
- Carter, P. Spectrophotometric determination of serum iron at the submicrogram level with a new reagent—Ferrozine. Anal. Biochem. 1971, 40, 450–458. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Lim, T.T.; Tee, J.J. Antioxidant properties of Guava fruits: Comparison with some local fruits. Sunway Acad. J. 2006, 3, 9–20. [Google Scholar]
Sample | Total Phenolics (mg GA/g) | Flavonoids (mg RU/g) | Condensed Tannins (mg GA/g) | Gallotannins (mg GA/g) | Total Antioxidant Capacity (μg AA/g) |
---|---|---|---|---|---|
GM | 67.87 ± 0.27 | 43.41 ± 1.13 | 45.42 ± 0.67 | 31.12 ± 0.33 | 87.14 ± 0.99 |
GDM | 59.25 ± 0.55 | 37.86 ± 0.37 | 33.65 ± 0.94 | 26.45 ± 0.14 | 71.05 ± 1.25 |
GPE | 38.06 ± 0.06 | 20.79 ± 0.70 | 25.23 ± 0.53 | 19.06 ± 0.43 | 50.54 ± 1.03 |
Sample | DPPH Scavenging Activity | Inhibitory Effect against Lipid Peroxidation | Metal-Chelating Activity | Hydroxyl Radical Scavenging Activity | ABTS Radical Scavenging Assay |
---|---|---|---|---|---|
IC50 (μg/mL) | |||||
GM | 21.45 ± 0.87 | 28.64 ± 0.31 | 45.26 ± 0.14 | 37.59 ± 0.95 | 25.71 ± 0.69 |
GDM | 43.07 ± 0.99 | 41.34 ± 0.84 | 40.20 ± 0.36 | 69.18 ± 0.79 | 38.20 ± 1.04 |
GPE | 46.79 ± 0.73 | 47.09 ± 0.58 | 40.14 ± 0.57 | 85.99 ± 0.86 | 51.10 ± 1.02 |
Gallic acid | 3.79 ± 0.69 | 255.43 ± 11.68 | - | 59.14 ± 1.10 | 1.96 ± 0.41 |
Ascorbic acid | 6.05 ± 0.34 | >1000 | - | 160.55 ± 2.31 | 10.98 ± 0.95 |
BHT | 15.61 ± 1.26 | 1.00 ± 0.23 | - | 33.92 ± 0.79 | 7.23 ± 0.87 |
α-Tocopherol | - | 0.48 ± 0.05 | - | - | - |
Microbial Strains | GM | GDM | GPE | A | N |
---|---|---|---|---|---|
MIC (μg/mL) | |||||
Staphylococcus aureus ATCC 25923 | 39.1 ± 0.06 | 39.1 ± 0.06 | 312.5 ± 0.49 | 0.97 ± 0.24 | - |
Klebsiella pneumoniae ATCC 13883 | 78.125 ± 0.49 | 156.25 ± 0.97 | 312.5 ± 0.03 | 0.49 ± 0.06 | - |
Escherichia coli ATCC 25922 | 78.125 ± 0.24 | 78.125 ± 0.24 | 39.1 ± 0.06 | 0.97 ± 0.03 | - |
Proteus vulgaris ATCC 13315 | 312.5 ± 0.12 | 78.125 ± 0.12 | 312.5 ± 0.97 | 0.49 ± 0.015 | - |
Proteus mirabilis ATCC 14153 | 78.125 ± 0.97 | 156.25 ± 0.24 | 312.5 ± 0.49 | 0.49 ± 0.24 | - |
Bacillus subtilis ATCC 6633 | 78.125 ± 0.49 | 312.5 ± 0.49 | 312.5 ± 0.24 | 0.24 ± 0.06 | - |
Candida albicans ATCC 10231 | 156.25 ± 0.06 | 39.1 ± 0.06 | 312.5 ± 1.95 | - | 1.95 ± 0.24 |
Aspergillus niger ATCC 16404 | 312.5 ± 0.12 | 156.25 ± 0.03 | 78.125 ± 0.97 | - | 0.97 ± 0.12 |
Sample | Hep2c Cells | RD Cells | L2OB Cells |
---|---|---|---|
IC50 (μg/mL) | |||
GM | 19.22 ± 0.93 | 32.99 ± 4.73 | 8.94 ± 0.85 |
GDM | 28.69 ± 0.51 | 55.51 ± 1.99 | 21.25 ± 1.06 |
GPE | 42.83 ± 0.46 | 79.65 ± 0.39 | 36.25 ± 0.57 |
cis-platin | 0.94 ± 0.55 | 1.4 ± 0.97 | 0.72 ± 0.64 |
Compound | GPCR Receptor | Ion-Channel Modulator | Kinase Inhibitor | Nuclear Receptor Ligand | Protease Inhibitor |
---|---|---|---|---|---|
(2) Ergosta-7,22-dien-3-one | 0.05 | −0.03 | −0.56 | 0.59 | −0.08 |
(3) Ergosta-7,22-dien-3-ol | 0.20 | 0.12 | −0.27 | 0.66 | 0.05 |
(4) Ergosta-5,7,22-trien-3-ol | 0.14 | −0.14 | −0.40 | 0.82 | −0.15 |
(5) Applanoxidic acid G | 0.19 | −0.20 | −0.53 | 0.67 | 0.17 |
(6) Applanoxidic acid A | 0.11 | −0.21 | −0.67 | 0.80 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chafouz, R.; Karavergou, S.; Tsiftsoglou, O.S.; Maskovic, P.; Lazari, D. Ganoderma adspersum (Ganodermataceae): Investigation of Its Secondary Metabolites and the Antioxidant, Antimicrobial, and Cytotoxic Potential of Its Extracts. Int. J. Mol. Sci. 2024, 25, 516. https://doi.org/10.3390/ijms25010516
Chafouz R, Karavergou S, Tsiftsoglou OS, Maskovic P, Lazari D. Ganoderma adspersum (Ganodermataceae): Investigation of Its Secondary Metabolites and the Antioxidant, Antimicrobial, and Cytotoxic Potential of Its Extracts. International Journal of Molecular Sciences. 2024; 25(1):516. https://doi.org/10.3390/ijms25010516
Chicago/Turabian StyleChafouz, Raichan, Sofia Karavergou, Olga St. Tsiftsoglou, Pavle Maskovic, and Diamanto Lazari. 2024. "Ganoderma adspersum (Ganodermataceae): Investigation of Its Secondary Metabolites and the Antioxidant, Antimicrobial, and Cytotoxic Potential of Its Extracts" International Journal of Molecular Sciences 25, no. 1: 516. https://doi.org/10.3390/ijms25010516
APA StyleChafouz, R., Karavergou, S., Tsiftsoglou, O. S., Maskovic, P., & Lazari, D. (2024). Ganoderma adspersum (Ganodermataceae): Investigation of Its Secondary Metabolites and the Antioxidant, Antimicrobial, and Cytotoxic Potential of Its Extracts. International Journal of Molecular Sciences, 25(1), 516. https://doi.org/10.3390/ijms25010516