Anticytokine Autoantibodies in Infectious Diseases: A Practical Overview
Abstract
:1. Introduction
2. Bacterial Infections
2.1. Tuberculosis
2.2. Non-Tuberculous Mycobacterial Infections
2.3. Nocardia
2.4. Miscellaneous
3. Viral Infections
3.1. Herpes Viruses
3.2. Human Immunodeficiency Virus (HIV)
3.3. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)
3.4. Other Respiratory Infections
4. Fungal Infections
4.1. Candida
4.2. Cryptococcus
4.3. Histoplasma
4.4. Talaromyces
5. Parasitic Infections
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meager, A.; Vincent, A.; Newsom-Davis, J.; Willcox, N. Spontaneous neutralising antibodies to interferon-α and interleukin-12 in thymoma-associated autoimmune disease. Lancet 1997, 350, 1596–1597. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.; Holland, S.M. Anti-cytokine autoantibodies: Mechanistic insights and disease associations. Nat. Rev. Immunol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Merkel, P.A.; Lebo, T.; Knight, V. Functional Analysis of Anti-cytokine Autoantibodies Using Flow Cytometry. Front. Immunol. 2019, 10, 1517. [Google Scholar] [CrossRef] [PubMed]
- von Stemann, J.H.; Rigas, A.S.; Thørner, L.W.; Rasmussen, D.G.K.; Pedersen, O.B.; Rostgaard, K.; Erikstrup, C.; Ullum, H.; Hansen, M.B. Prevalence and correlation of cytokine-specific autoantibodies with epidemiological factors and C-reactive protein in 8,972 healthy individuals: Results from the Danish Blood Donor Study. PLoS ONE 2017, 12, e0179981. [Google Scholar] [CrossRef] [PubMed]
- Uchida, K.; Nakata, K.; Suzuki, T.; Luisetti, M.; Watanabe, M.; Koch, D.E.; Stevens, C.A.; Beck, D.C.; Denson, L.A.; Carey, B.C.; et al. Granulocyte/macrophage-colony-stimulating factor autoantibodies and myeloid cell immune functions in healthy subjects. Blood 2009, 113, 2547–2556. [Google Scholar] [CrossRef] [PubMed]
- Salvator, H.; Cheng, A.; Rosen, L.B.; Williamson, P.R.; Bennett, J.E.; Kashyap, A.; Ding, L.; Kwon-Chung, K.J.; Namkoong, H.; Zerbe, C.S.; et al. Neutralizing GM-CSF autoantibodies in pulmonary alveolar proteinosis, cryptococcal meningitis and severe nocardiosis. Respir. Res. 2022, 23, 280. [Google Scholar] [CrossRef] [PubMed]
- von Stemann, J.H.; Pedersen, O.B.; Hjalgrim, H.; Erikstrup, C.; Ullum, H.; Thørner, L.W.; Larsen, M.A.; Burgdorf, K.S.; Sørensen, E.; Hansen, M.B.; et al. Cytokine Autoantibodies Are Associated with Infection Risk and Self-Perceived Health: Results from the Danish Blood Donor Study. J. Clin. Immunol. 2020, 40, 367–377. [Google Scholar] [CrossRef]
- Madariaga, L.; Amurrio, C.; Martín, G.; García-Cebrian, F.; Bicandi, J.; Lardelli, P.; Suarez, M.D.; Cisterna, R. Detection of anti-interferon-gamma autoantibodies in subjects infected by Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis. 1998, 2, 62–68. [Google Scholar]
- Hong, G.H.; Ortega-Villa, A.M.; Hunsberger, S.; Chetchotisakd, P.; Anunnatsiri, S.; Mootsikapun, P.; Rosen, L.B.; Zerbe, C.S.; Holland, S.M. Natural History and Evolution of Anti-Interferon-γ Autoantibody-Associated Immunodeficiency Syndrome in Thailand and the United States. Clin. Infect. Dis. 2020, 71, 53–62. [Google Scholar] [CrossRef]
- Qiu, Y.; Pan, M.; Yang, Z.; Zeng, W.; Zhang, H.; Li, Z.; Zhang, J. Talaromyces marneffei and Mycobacterium tuberculosis co-infection in a patient with high titer anti-interferon-γ autoantibodies: A case report. BMC Infect. Dis. 2022, 22, 98. [Google Scholar] [CrossRef]
- Xie, Y.L.; Rosen, L.B.; Sereti, I.; Barber, D.L.; Chen, R.Y.; Hsu, D.C.; Qasba, S.S.; Zerbe, C.S.; Holland, S.M.; Browne, S.K. Severe Paradoxical Reaction during Treatment of Disseminated Tuberculosis in a Patient with Neutralizing Anti-IFNγ Autoantibodies. Clin. Infect. Dis. 2016, 62, 770–773. [Google Scholar] [CrossRef] [PubMed]
- Kampitak, T.; Suwanpimolkul, G.; Browne, S.; Suankratay, C. Anti-interferon-γ autoantibody and opportunistic infections: Case series and review of the literature. Infection 2011, 39, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Browne, S.K.; Burbelo, P.D.; Chetchotisakd, P.; Suputtamongkol, Y.; Kiertiburanakul, S.; Shaw, P.A.; Kirk, J.L.; Jutivorakool, K.; Zaman, R.; Ding, L.; et al. Adult-onset immunodeficiency in Thailand and Taiwan. N. Engl. J. Med. 2012, 367, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Aoki, A.; Sakagami, T.; Yoshizawa, K.; Shima, K.; Toyama, M.; Tanabe, Y.; Moro, H.; Aoki, N.; Watanabe, S.; Koya, T.; et al. Clinical Significance of Interferon-γ Neutralizing Autoantibodies against Disseminated Nontuberculous Mycobacterial Disease. Clin. Infect. Dis. 2018, 66, 1239–1245. [Google Scholar] [CrossRef] [PubMed]
- Seymour, J.F.; Presneill, J.J. Pulmonary alveolar proteinosis. What is the role of GM-CSF in disease pathogenesis and treatment? Treat. Respir. Med. 2004, 3, 229–234. [Google Scholar] [CrossRef]
- Rosen, L.B.; Freeman, A.F.; Yang, L.M.; Jutivorakool, K.; Olivier, K.N.; Angkasekwinai, N.; Suputtamongkol, Y.; Bennett, J.E.; Pyrgos, V.; Williamson, P.R.; et al. Anti-GM-CSF autoantibodies in patients with cryptococcal meningitis. J. Immunol. 2013, 190, 3959–3966. [Google Scholar] [CrossRef] [PubMed]
- Arango-Franco, C.A.; Migaud, M.; Ramírez-Sánchez, I.C.; Arango-Bustamante, K.; Moncada-Vélez, M.; Rojas, J.; Gervais, A.; Patiño-Giraldo, S.; Perez-Zapata, L.J.; Álvarez Álvarez, J.A.; et al. Anti-GM-CSF Neutralizing Autoantibodies in Colombian Patients with Disseminated Cryptococcosis. J. Clin. Immunol. 2023, 43, 921–932. [Google Scholar] [CrossRef]
- Döffinger, R.; Helbert, M.R.; Barcenas-Morales, G.; Yang, K.; Dupuis, S.; Ceron-Gutierrez, L.; Espitia-Pinzon, C.; Barnes, N.; Bothamley, G.; Casanova, J.L.; et al. Autoantibodies to interferon-γ in a patient with selective susceptibility to mycobacterial infection and organ-specific autoimmunity. Clin. Infect. Dis. 2004, 38, e10–e14. [Google Scholar] [CrossRef]
- Chetchotisakd, P.; Anunnatsiri, S.; Nanagara, R.; Nithichanon, A.; Lertmemongkolchai, G. Intravenous Cyclophosphamide Therapy for Anti-IFN-γ Autoantibody-Associated. J. Immunol. Res. 2018, 2018, 6473629. [Google Scholar] [CrossRef]
- Qiu, Y.; Fang, G.; Ye, F.; Zeng, W.; Tang, M.; Wei, X.; Yang, J.; Li, Z.; Zhang, J. Pathogen spectrum and immunotherapy in patients with anti-IFN-γ autoantibodies: A multicenter retrospective study and systematic review. Front. Immunol. 2022, 13, 1051673. [Google Scholar] [CrossRef]
- Liew, W.K.; Thoon, K.C.; Chong, C.Y.; Tan, N.W.H.; Cheng, D.T.; Chan, B.S.W.; Ng, M.S.Y.; Das, L.; Arkachaisri, T.; Huang, C.H.; et al. Juvenile-Onset Immunodeficiency Secondary to Anti-Interferon-Gamma Autoantibodies. J. Clin. Immunol. 2019, 39, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Chi, C.Y.; Shih, H.P.; Ding, J.Y.; Lo, C.C.; Wang, S.Y.; Kuo, C.Y.; Yeh, C.F.; Tu, K.H.; Liu, S.H.; et al. Identification of a major epitope by anti-interferon-γ autoantibodies in patients with mycobacterial disease. Nat. Med. 2016, 22, 994–1001. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Fan, J.; Huang, C.; Fan, H.; Chen, J.; Huang, X.; Zeng, X. Characteristics and Outcomes of Anti-interferon Gamma Antibody-Associated Adult Onset Immunodeficiency. J. Clin. Immunol. 2023, 43, 1660–1670. [Google Scholar] [CrossRef] [PubMed]
- Chi, C.Y.; Lin, C.H.; Ho, M.W.; Ding, J.Y.; Huang, W.C.; Shih, H.P.; Yeh, C.F.; Fung, C.P.; Sun, H.Y.; Huang, C.T.; et al. Clinical manifestations, course, and outcome of patients with neutralizing anti-interferon-γ autoantibodies and disseminated nontuberculous mycobacterial infections. Medicine 2016, 95, e3927. [Google Scholar] [CrossRef]
- Wongkulab, P.; Wipasa, J.; Chaiwarith, R.; Supparatpinyo, K. Autoantibody to interferon-gamma associated with adult-onset immunodeficiency in non-HIV individuals in Northern Thailand. PLoS ONE 2013, 8, e76371. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.Y.; Ding, L.; Brown, M.R.; Lantz, L.; Gay, T.; Cohen, S.; Martyak, L.A.; Kubak, B.; Holland, S.M. Anti-IFN-γ autoantibodies in disseminated nontuberculous mycobacterial infections. J. Immunol. 2005, 175, 4769–4776. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Waterer, G.; Thomson, R.; Yang, I.A.; Nashi, N.; Tan, D.B.; Price, P. Levels of anti-cytokine antibodies may be elevated in patients with pulmonary disease associated with non-tuberculous mycobacteria. Cytokine 2014, 66, 160–163. [Google Scholar] [CrossRef] [PubMed]
- Bakhos, R.; Gattuso, P.; Arcot, C.; Reddy, V.B. Pulmonary alveolar proteinosis: An unusual association with Mycobacterium avium-intracellulare infection and lymphocytic interstitial pneumonia. South. Med. J. 1996, 89, 801–802. [Google Scholar] [CrossRef]
- Punatar, A.D.; Kusne, S.; Blair, J.E.; Seville, M.T.; Vikram, H.R. Opportunistic infections in patients with pulmonary alveolar proteinosis. J. Infect. 2012, 65, 173–179. [Google Scholar] [CrossRef]
- Witty, L.A.; Tapson, V.F.; Piantadosi, C.A. Isolation of mycobacteria in patients with pulmonary alveolar proteinosis. Medicine 1994, 73, 103–109. [Google Scholar] [CrossRef]
- Suárez, I.; Lehmann, C.; Gruell, H.; Graeb, J.; Kochanek, M.; Fätkenheuer, G.; Plum, G.; van Wengen, A.; van de Vosse, E.; Hartmann, P.; et al. Repurposing QuantiFERON for Detection of Neutralizing Interferon-γ Autoantibodies in Patients with Nontuberculous Mycobacterial Infections. Clin. Infect. Dis. 2017, 65, 518–521. [Google Scholar] [CrossRef] [PubMed]
- Kampmann, B.; Hemingway, C.; Stephens, A.; Davidson, R.; Goodsall, A.; Anderson, S.; Nicol, M.; Schölvinck, E.; Relman, D.; Waddell, S.; et al. Acquired predisposition to mycobacterial disease due to autoantibodies to IFN-γ. J. Clin. Investig. 2005, 115, 2480–2488. [Google Scholar] [CrossRef] [PubMed]
- Harada, M.; Furuhashi, K.; Karayama, M.; Suzuki, Y.; Hozumi, H.; Enomoto, N.; Fujisawa, T.; Nakamura, Y.; Inui, N.; Suda, T. Subcutaneous injection of interferon gamma therapy could be useful for anti-IFN-γ autoantibody associated disseminated nontuberculous mycobacterial infection. J. Infect. Chemother. 2021, 27, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Koya, T.; Tsubata, C.; Kagamu, H.; Koyama, K.; Hayashi, M.; Kuwabara, K.; Itoh, T.; Tanabe, Y.; Takada, T.; Gejyo, F. Anti-interferon-γ autoantibody in a patient with disseminated Mycobacterium avium complex. J. Infect. Chemother. 2009, 15, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Keragala, B.S.D.P.; Gunasekera, C.N.; Yesudian, P.D.; Guruge, C.; Dissanayaka, B.S.; Liyanagama, D.P.; Jinadasa, G.I.M.; Constantine, S.R.; Herath, H.M.M.T. Disseminated Mycobacterium simiae infection in a patient with adult-onset immunodeficiency due to anti-interferon-gamma antibodies—A case report. BMC Infect. Dis. 2020, 20, 258. [Google Scholar] [CrossRef] [PubMed]
- Baerlecken, N.; Jacobs, R.; Stoll, M.; Schmidt, R.E.; Witte, T. Recurrent, multifocal Mycobacterium avium-intercellulare infection in a patient with interferon-γ autoantibody. Clin. Infect. Dis. 2009, 49, e76–e78. [Google Scholar] [CrossRef] [PubMed]
- Czaja, C.A.; Merkel, P.A.; Chan, E.D.; Lenz, L.L.; Wolf, M.L.; Alam, R.; Frankel, S.K.; Fischer, A.; Gogate, S.; Perez-Velez, C.M.; et al. Rituximab as successful adjunct treatment in a patient with disseminated nontuberculous mycobacterial infection due to acquired anti-interferon-γ autoantibody. Clin. Infect. Dis. 2014, 58, e115–e118. [Google Scholar] [CrossRef]
- Liu, T.T.; Weng, S.W.; Wang, M.C.; Huang, W.T. Nontuberculous mycobacterial infection with concurrent IgG4-related lymphadenopathy. APMIS 2016, 124, 216–220. [Google Scholar] [CrossRef]
- Pruetpongpun, N.; Khawcharoenporn, T.; Damronglerd, P.; Suthiwartnarueput, W.; Apisarnthanarak, A.; Rujanavej, S.; Suwantarat, N. Disseminated Talaromyces marneffei and Mycobacterium abscessus in a Patient with Anti-Interferon-γ Autoantibodies. Open Forum Infect. Dis. 2016, 3, ofw093. [Google Scholar] [CrossRef]
- Koizumi, Y.; Sakagami, T.; Nishiyama, N.; Hirai, J.; Hayashi, Y.; Asai, N.; Yamagishi, Y.; Kato, H.; Hagihara, M.; Sakanashi, D.; et al. Rituximab Restores IFN-γ-STAT1 Function and Ameliorates Disseminated Mycobacterium avium Infection in a Patient with Anti-Interferon-γ Autoantibody. J. Clin. Immunol. 2017, 37, 644–649. [Google Scholar] [CrossRef]
- Chaononghin, S.; Visuttichaikit, S.; Apisarnthanarak, A.; Khawcharoenporn, T. Disseminated Mycobacterium scrofulaceum infection in a patient with anti-interferon-γ autoantibodies: A case report and review of the literature. Int. J. Mycobacteriol 2020, 9, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Roerden, M.; Döffinger, R.; Barcenas-Morales, G.; Forchhammer, S.; Döbele, S.; Berg, C.P. Simultaneous disseminated infections with intracellular pathogens: An intriguing case report of adult-onset immunodeficiency with anti-interferon-gamma autoantibodies. BMC Infect. Dis. 2020, 20, 828. [Google Scholar] [CrossRef] [PubMed]
- King, E.M.; Weaver, V.K.; Kestler, M.H. Treatment Dilemmas in Disseminated Nontuberculous Mycobacterial Infections with Interferon-gamma Autoantibodies. Open Forum Infect. Dis. 2021, 8, ofab253. [Google Scholar] [CrossRef] [PubMed]
- Browne, S.K.; Zaman, R.; Sampaio, E.P.; Jutivorakool, K.; Rosen, L.B.; Ding, L.; Pancholi, M.J.; Yang, L.M.; Priel, D.L.; Uzel, G.; et al. Anti-CD20 (rituximab) therapy for anti-IFN-γ autoantibody-associated nontuberculous mycobacterial infection. Blood 2012, 119, 3933–3939. [Google Scholar] [CrossRef] [PubMed]
- Laisuan, W.; Pisitkun, P.; Ngamjanyaporn, P.; Suangtamai, T.; Rotjanapan, P. Prospective Pilot Study of Cyclophosphamide as an Adjunct Treatment in Patients with Adult-Onset Immunodeficiency Associated with Anti-interferon-γ Autoantibodies. Open Forum Infect. Dis. 2020, 7, ofaa035. [Google Scholar] [CrossRef] [PubMed]
- Ochoa, S.; Ding, L.; Kreuzburg, S.; Treat, J.; Holland, S.M.; Zerbe, C.S. Daratumumab (Anti-CD38) for Treatment of Disseminated Nontuberculous Mycobacteria in a Patient with Anti-Interferon-γ Autoantibodies. Clin. Infect. Dis. 2021, 72, 2206–2208. [Google Scholar] [CrossRef]
- Rocco, J.M.; Rosen, L.B.; Hong, G.H.; Treat, J.; Kreuzburg, S.; Holland, S.M.; Zerbe, C.S. Bortezomib treatment for refractory nontuberculous mycobacterial infection in the setting of interferon gamma autoantibodies. J. Transl. Autoimmun. 2021, 4, 100102. [Google Scholar] [CrossRef] [PubMed]
- Andersen, B.R.; Ecklund, R.E.; Kellow, W.F. Pulmonary alveolar proteinosis with systemic nocardiosis. A case report. JAMA 1960, 174, 28–31. [Google Scholar] [CrossRef]
- Mabo, A.; Borie, R.; Wemeau-Stervinou, L.; Uzunhan, Y.; Gomez, E.; Prevot, G.; Reynaud-Gaubert, M.; Traclet, J.; Bergot, E.; Cadranel, J.; et al. Infections in autoimmune pulmonary alveolar proteinosis: A large retrospective cohort. Thorax 2023, 79, 68–74. [Google Scholar] [CrossRef]
- Berthoux, C.; Mailhe, M.; Vély, F.; Gauthier, C.; Mège, J.L.; Lagier, J.C.; Melenotte, C. Granulocyte Macrophage Colony-Stimulating Factor-Specific Autoantibodies and Cerebral Nocardia with Pulmonary Alveolar Proteinosis. Open Forum Infect. Dis. 2021, 8, ofaa612. [Google Scholar] [CrossRef]
- Lee, E.; Miller, C.; Ataya, A.; Wang, T. Opportunistic Infection Associated with Elevated GM-CSF Autoantibodies: A Case Series and Review of the Literature. Open Forum Infect. Dis. 2022, 9, ofac146. [Google Scholar] [CrossRef] [PubMed]
- Rosen, L.B.; Rocha Pereira, N.; Figueiredo, C.; Fiske, L.C.; Ressner, R.A.; Hong, J.C.; Gregg, K.S.; Henry, T.L.; Pak, K.J.; Baumgarten, K.L.; et al. Nocardia-induced granulocyte macrophage colony-stimulating factor is neutralized by autoantibodies in disseminated/extrapulmonary nocardiosis. Clin. Infect. Dis. 2015, 60, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Lafont, E.; Conan, P.L.; Rodriguez-Nava, V.; Lebeaux, D. Invasive Nocardiosis: Disease Presentation, Diagnosis and Treatment—Old Questions, New Answers? Infect. Drug Resist. 2020, 13, 4601–4613. [Google Scholar] [CrossRef] [PubMed]
- Lafont, E.; Marciano, B.E.; Mahlaoui, N.; Neven, B.; Bustamante, J.; Rodriguez-Nava, V.; Rawat, A.; Unzaga, M.J.; Fischer, A.; Blanche, S.; et al. Nocardiosis Associated with Primary Immunodeficiencies (Nocar-DIP): An International Retrospective Study and Literature Review. J. Clin. Immunol. 2020, 40, 1144–1155. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Guo, T.; Zhang, H.; He, Z.; Zhang, J.; Zeng, W. Brain Nocardiosis and Pulmonary Talaromycosis Infection in a Patient with Anti-IFN-γ Autoantibodies: A Case Report. Infect. Drug Resist. 2023, 16, 5421–5425. [Google Scholar] [CrossRef] [PubMed]
- Derungs, T.; Leo, F.; Loddenkemper, C.; Schneider, T. Treatment of disseminated nocardiosis: A host-pathogen approach with adjuvant interferon gamma. Lancet Infect. Dis. 2021, 21, e334–e340. [Google Scholar] [CrossRef]
- Puel, A.; Picard, C.; Lorrot, M.; Pons, C.; Chrabieh, M.; Lorenzo, L.; Mamani-Matsuda, M.; Jouanguy, E.; Gendrel, D.; Casanova, J.L. Recurrent staphylococcal cellulitis and subcutaneous abscesses in a child with autoantibodies against IL-6. J. Immunol. 2008, 180, 647–654. [Google Scholar] [CrossRef]
- Nanki, T.; Onoue, I.; Nagasaka, K.; Takayasu, A.; Ebisawa, M.; Hosoya, T.; Shirai, T.; Sugihara, T.; Hirata, S.; Kubota, T.; et al. Suppression of elevations in serum C reactive protein levels by anti-IL-6 autoantibodies in two patients with severe bacterial infections. Ann. Rheum. Dis. 2013, 72, 1100–1102. [Google Scholar] [CrossRef]
- Bloomfield, M.; Parackova, Z.; Cabelova, T.; Pospisilova, I.; Kabicek, P.; Houstkova, H.; Sediva, A. Anti-IL6 Autoantibodies in an Infant with CRP-Less Septic Shock. Front. Immunol. 2019, 10, 2629. [Google Scholar] [CrossRef]
- Theut Riis, P.; von Stemann, J.H.; Kjærsgaard Andersen, R.; Hansen, M.B.; Jemec, G.B.E. Serum Anticytokine Autoantibody Levels Are Not Increased in Hidradenitis Suppurativa: A Case-Control Pilot Study. Dermatology 2017, 233, 126–128. [Google Scholar] [CrossRef]
- Hanitsch, L.G.; Löbel, M.; Müller-Redetzky, H.; Schürmann, M.; Suttorp, N.; Unterwalder, N.; Mönnich, U.; Meisel, C.; Wittke, K.; Volk, H.D.; et al. Late-Onset Disseminated Mycobacterium avium intracellulare Complex Infection (MAC), Cerebral Toxoplasmosis and Salmonella Sepsis in a German Caucasian Patient with Unusual Anti-Interferon-Gamma IgG1 Autoantibodies. J. Clin. Immunol. 2015, 35, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.S.; Chan, J.F.; Chen, M.; Tsang, O.T.; Mok, M.Y.; Lai, R.W.; Lee, R.; Que, T.L.; Tse, H.; Li, I.W.; et al. Disseminated penicilliosis, recurrent bacteremic nontyphoidal salmonellosis, and burkholderiosis associated with acquired immunodeficiency due to autoantibody against gamma interferon. Clin. Vaccine Immunol. 2010, 17, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.I.; Huang, J.L.; Wu, T.S.; Lee, M.H.; Chen, I.J.; Yu, K.H.; Liu, C.Y.; Yang, C.H.; Hsieh, M.Y.; Lin, Y.L.; et al. Patients with inhibitory and neutralizing auto-antibodies to interferon-γ resemble the sporadic adult-onset phenotype of Mendelian Susceptibility to Mycobacterial Disease (MSMD) lacking Bacille Calmette-Guerin (BCG)-induced diseases. Immunobiology 2013, 218, 762–771. [Google Scholar] [CrossRef] [PubMed]
- Wu, U.I.; Chuang, Y.C.; Sheng, W.H.; Sun, H.Y.; Jhong, Y.T.; Wang, J.Y.; Chang, S.C.; Wang, J.T.; Chen, Y.C. Use of QuantiFERON-TB Gold In-tube assay in screening for neutralizing anti-interferon-γ autoantibodies in patients with disseminated nontuberculous mycobacterial infection. Clin. Microbiol. Infect. 2018, 24, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Angkasekwinai, N.; Suputtamongkol, Y.; Phoompoung, P.; Pithukpakorn, M.; Wongswat, E.; Umrod, P.; Tongsai, S.; Foongladda, S. Clinical outcome and laboratory markers for predicting disease activity in patients with disseminated opportunistic infections associated with anti-interferon-γ autoantibodies. PLoS ONE 2019, 14, e0215581. [Google Scholar] [CrossRef] [PubMed]
- Chi, C.Y.; Chu, C.C.; Liu, J.P.; Lin, C.H.; Ho, M.W.; Lo, W.J.; Lin, P.C.; Chen, H.J.; Chou, C.H.; Feng, J.Y.; et al. Anti-IFN-γ autoantibodies in adults with disseminated nontuberculous mycobacterial infections are associated with HLA-DRB1*16:02 and HLA-DQB1*05:02 and the reactivation of latent varicella-zoster virus infection. Blood 2013, 121, 1357–1366. [Google Scholar] [CrossRef]
- Sim, B.T.; Browne, S.K.; Vigliani, M.; Zachary, D.; Rosen, L.; Holland, S.M.; Opal, S.M. Recurrent Burkholderia gladioli suppurative lymphadenitis associated with neutralizing anti-IL-12p70 autoantibodies. J. Clin. Immunol. 2013, 33, 1057–1061. [Google Scholar] [CrossRef]
- Höflich, C.; Sabat, R.; Rosseau, S.; Temmesfeld, B.; Slevogt, H.; Döcke, W.D.; Grütz, G.; Meisel, C.; Halle, E.; Göbel, U.B.; et al. Naturally occurring anti-IFN-γ autoantibody and severe infections with Mycobacterium cheloneae and Burkholderia cocovenenans. Blood 2004, 103, 673–675. [Google Scholar] [CrossRef]
- Burbelo, P.D.; Seam, N.; Groot, S.; Ching, K.H.; Han, B.L.; Meduri, G.U.; Iadarola, M.J.; Suffredini, A.F. Rapid induction of autoantibodies during ARDS and septic shock. J. Transl. Med. 2010, 8, 97. [Google Scholar] [CrossRef]
- Bakhiet, M.; Diab, A.; Mahamustafa; Jiezhu; Lindqvist, L.; Link, H. Potential role of autoantibodies in the regulation of cytokine responses during bacterial infections. Infect. Immun. 1997, 65, 3300–3303. [Google Scholar] [CrossRef]
- Bakhiet, M.; Mustafa, M.; Zhu, J.; Harris, R.; Lindquist, L.; Link, H.; Diab, A. Induction of cytokines and anti-cytokine autoantibodies in cerebrospinal fluid (CSF) during experimental bacterial meningitis. Clin. Exp. Immunol. 1998, 114, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Goda, V.; Malik, A.; Kalmar, T.; Maroti, Z.; Patel, B.; Ujhazi, B.; Csomos, K.; Hale, J.E.; Chen, K.; Bleesing, J.; et al. Partial RAG deficiency in a patient with varicella infection, autoimmune cytopenia, and anticytokine antibodies. J. Allergy Clin. Immunol. Pract. 2018, 6, 1769–1771.e1762. [Google Scholar] [CrossRef] [PubMed]
- Parsons, K.; Cipriano, S.D.; Rosen, L.B.; Browne, S.K.; Walter, J.E.; Stone, B.L.; Keeshin, S.; Chen, K. Severe Facial Herpes Vegetans and Viremia in. Front. Pediatr. 2019, 7, 61. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Pan, M.; Qiu, Y.; Huang, J.; Zeng, W.; Zhang, J. Sweet’s Syndrome Accompanied by Coinfection with Multiple Pathogens and Disseminated. Infect. Drug Resist. 2022, 15, 2459–2467. [Google Scholar] [CrossRef] [PubMed]
- Bayat, A.; Burbelo, P.D.; Browne, S.K.; Quinlivan, M.; Martinez, B.; Holland, S.M.; Buvanendran, A.; Kroin, J.S.; Mannes, A.J.; Breuer, J.; et al. Anti-cytokine autoantibodies in postherpetic neuralgia. J. Transl. Med. 2015, 13, 333. [Google Scholar] [CrossRef] [PubMed]
- Poulin, S.; Corbeil, C.; Nguyen, M.; St-Denis, A.; Côté, L.; Le Deist, F.; Carignan, A. Fatal Mycobacterium colombiense/cytomegalovirus coinfection associated with acquired immunodeficiency due to autoantibodies against interferon gamma: A case report. BMC Infect. Dis. 2013, 13, 24. [Google Scholar] [CrossRef] [PubMed]
- Capini, C.J.; Richardson, M.W.; Hendel, H.; Sverstiuk, A.; Mirchandani, J.; Régulier, E.G.; Khalili, K.; Zagury, J.F.; Rappaport, J. Autoantibodies to TNFα in HIV-1 infection: Prospects for anti-cytokine vaccine therapy. Biomed. Pharmacother. 2001, 55, 23–31. [Google Scholar] [CrossRef]
- Caruso, A.; Foresti, I.; Gribaudo, G.; Bonfanti, C.; Pollara, P.; Dolei, A.; Landolfo, S.; Turano, A. Anti-interferon-gamma antibodies in sera from HIV infected patients. J. Biol. Regul. Homeost. Agents 1989, 3, 8–12. [Google Scholar]
- De Francesco, M.A.; Caruso, A.; Dima, F.; Cantalamessa, A.; Canaris, A.D.; Folghera, S.; Fiorentini, S.; Flamminio, G.; Licenziati, S.; Peroni, L.; et al. IFN-γ restores HIV- and non-HIV-specific cell mediated immune response in vitro and its activity is neutralized by antibodies from patients with AIDS. Scand. J. Immunol. 1996, 43, 94–100. [Google Scholar] [CrossRef]
- Su, H.C.; Jing, H.; Zhang, Y.; Casanova, J.L. Interfering with Interferons: A Critical Mechanism for Critical COVID-19 Pneumonia. Annu. Rev. Immunol. 2023, 41, 561–585. [Google Scholar] [CrossRef]
- Wang, E.Y.; Mao, T.; Klein, J.; Dai, Y.; Huck, J.D.; Jaycox, J.R.; Liu, F.; Zhou, T.; Israelow, B.; Wong, P.; et al. Diverse functional autoantibodies in patients with COVID-19. Nature 2021, 595, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.E.; Feng, A.; Meng, W.; Apostolidis, S.A.; Mack, E.; Artandi, M.; Barman, L.; Bennett, K.; Chakraborty, S.; Chang, I.; et al. New-onset IgG autoantibodies in hospitalized patients with COVID-19. Nat. Commun. 2021, 12, 5417. [Google Scholar] [CrossRef] [PubMed]
- Manry, J.; Bastard, P.; Gervais, A.; Le Voyer, T.; Rosain, J.; Philippot, Q.; Michailidis, E.; Hoffmann, H.H.; Eto, S.; Garcia-Prat, M.; et al. The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies. Proc. Natl. Acad. Sci. USA 2022, 119, e2200413119. [Google Scholar] [CrossRef] [PubMed]
- Bastard, P.; Rosen, L.B.; Zhang, Q.; Michailidis, E.; Hoffmann, H.H.; Zhang, Y.; Dorgham, K.; Philippot, Q.; Rosain, J.; Béziat, V.; et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 2020, 370, eabd4585. [Google Scholar] [CrossRef] [PubMed]
- Bastard, P.; Gervais, A.; Le Voyer, T.; Rosain, J.; Philippot, Q.; Manry, J.; Michailidis, E.; Hoffmann, H.H.; Eto, S.; Garcia-Prat, M.; et al. Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Sci. Immunol. 2021, 6, eabl4340. [Google Scholar] [CrossRef] [PubMed]
- Eto, S.; Nukui, Y.; Tsumura, M.; Nakagama, Y.; Kashimada, K.; Mizoguchi, Y.; Utsumi, T.; Taniguchi, M.; Sakura, F.; Noma, K.; et al. Neutralizing Type I Interferon Autoantibodies in Japanese Patients with Severe COVID-19. J. Clin. Immunol. 2022, 42, 1360–1370. [Google Scholar] [CrossRef] [PubMed]
- Solanich, X.; Rigo-Bonnin, R.; Gumucio, V.D.; Bastard, P.; Rosain, J.; Philippot, Q.; Perez-Fernandez, X.L.; Fuset-Cabanes, M.P.; Gordillo-Benitez, M.; Suarez-Cuartin, G.; et al. Pre-existing Autoantibodies Neutralizing High Concentrations of Type I Interferons in Almost 10% of COVID-19 Patients Admitted to Intensive Care in Barcelona. J. Clin. Immunol. 2021, 41, 1733–1744. [Google Scholar] [CrossRef] [PubMed]
- Lopez, J.; Mommert, M.; Mouton, W.; Pizzorno, A.; Brengel-Pesce, K.; Mezidi, M.; Villard, M.; Lina, B.; Richard, J.C.; Fassier, J.B.; et al. Early nasal type I IFN immunity against SARS-CoV-2 is compromised in patients with autoantibodies against type I IFNs. J. Exp. Med. 2021, 218, e20211211. [Google Scholar] [CrossRef]
- Frasca, F.; Scordio, M.; Santinelli, L.; Gabriele, L.; Gandini, O.; Criniti, A.; Pierangeli, A.; Angeloni, A.; Mastroianni, C.M.; d’Ettorre, G.; et al. Anti-IFN-α/-ω neutralizing antibodies from COVID-19 patients correlate with downregulation of IFN response and laboratory biomarkers of disease severity. Eur. J. Immunol. 2022, 52, 1120–1128. [Google Scholar] [CrossRef]
- Troya, J.; Bastard, P.; Planas-Serra, L.; Ryan, P.; Ruiz, M.; de Carranza, M.; Torres, J.; Martínez, A.; Abel, L.; Casanova, J.L.; et al. Neutralizing Autoantibodies to Type I IFNs in >10% of Patients with Severe COVID-19 Pneumonia Hospitalized in Madrid, Spain. J. Clin. Immunol. 2021, 41, 914–922. [Google Scholar] [CrossRef]
- Kalil, A.C.; Mehta, A.K.; Patterson, T.F.; Erdmann, N.; Gomez, C.A.; Jain, M.K.; Wolfe, C.R.; Ruiz-Palacios, G.M.; Kline, S.; Regalado Pineda, J.; et al. Efficacy of interferon beta-1a plus remdesivir compared with remdesivir alone in hospitalised adults with COVID-19: A double-bind, randomised, placebo-controlled, phase 3 trial. Lancet Respir. Med. 2021, 9, 1365–1376. [Google Scholar] [CrossRef] [PubMed]
- de Prost, N.; Bastard, P.; Arrestier, R.; Fourati, S.; Mahévas, M.; Burrel, S.; Dorgham, K.; Gorochov, G.; Tandjaoui-Lambiotte, Y.; Azzaoui, I.; et al. Plasma Exchange to Rescue Patients with Autoantibodies against Type I Interferons and Life-Threatening COVID-19 Pneumonia. J. Clin. Immunol. 2021, 41, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Lemarquis, A.; Campbell, T.; Aranda-Guillén, M.; Hennings, V.; Brodin, P.; Kämpe, O.; Blennow, K.; Zetterberg, H.; Wennerås, C.; Eriksson, K.; et al. Severe COVID-19 in an APS1 patient with interferon autoantibodies treated with plasmapheresis. J. Allergy Clin. Immunol. 2021, 148, 96–98. [Google Scholar] [CrossRef] [PubMed]
- Meisel, C.; Akbil, B.; Meyer, T.; Lankes, E.; Corman, V.M.; Staudacher, O.; Unterwalder, N.; Kölsch, U.; Drosten, C.; Mall, M.A.; et al. Mild COVID-19 despite autoantibodies against type I IFNs in autoimmune polyendocrine syndrome type 1. J. Clin. Investig. 2021, 131, e150867. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, J.; Thurner, B.; Kessel, C.; Fadle, N.; Kheiroddin, P.; Regitz, E.; Hoffmann, M.C.; Kos, I.A.; Preuss, K.D.; Fischer, Y.; et al. Autoantibodies against interleukin-1 receptor antagonist in multisystem inflammatory syndrome in children: A multicentre, retrospective, cohort study. Lancet Rheumatol. 2022, 4, e329–e337. [Google Scholar] [CrossRef] [PubMed]
- Netea, S.A.; Biesbroek, G.; van Stijn, D.; Ijspeert, H.; van der Made, C.I.; Jansen, M.H.; Geissler, J.; van den Berg, J.M.M.; van der Kuip, M.; Gruppen, M.P.; et al. Transient anti-cytokine autoantibodies superimpose the hyperinflammatory response in Kawasaki disease and multisystem inflammatory syndrome in children: A comparative cohort study on correlates of disease. EBioMedicine 2023, 95, 104736. [Google Scholar] [CrossRef] [PubMed]
- Bodansky, A.; Vazquez, S.E.; Chou, J.; Novak, T.; Al-Musa, A.; Young, C.; Newhams, M.; Kucukak, S.; Zambrano, L.D.; Mitchell, A.; et al. NFKB2 haploinsufficiency identified via screening for IFN-α2 autoantibodies in children and adolescents hospitalized with SARS-CoV-2-related complications. J. Allergy Clin. Immunol. 2023, 151, 926–930.e922. [Google Scholar] [CrossRef]
- Feng, A.; Yang, E.Y.; Moore, A.R.; Dhingra, S.; Chang, S.E.; Yin, X.; Pi, R.; Mack, E.K.; Völkel, S.; Geßner, R.; et al. Autoantibodies are highly prevalent in non-SARS-CoV-2 respiratory infections and critical illness. JCI Insight 2023, 8, e163150. [Google Scholar] [CrossRef]
- Kisand, K.; Bøe Wolff, A.S.; Podkrajsek, K.T.; Tserel, L.; Link, M.; Kisand, K.V.; Ersvaer, E.; Perheentupa, J.; Erichsen, M.M.; Bratanic, N.; et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J. Exp. Med. 2010, 207, 299–308. [Google Scholar] [CrossRef]
- Puel, A.; Döffinger, R.; Natividad, A.; Chrabieh, M.; Barcenas-Morales, G.; Picard, C.; Cobat, A.; Ouachée-Chardin, M.; Toulon, A.; Bustamante, J.; et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J. Exp. Med. 2010, 207, 291–297. [Google Scholar] [CrossRef]
- Kärner, J.; Meager, A.; Laan, M.; Maslovskaja, J.; Pihlap, M.; Remm, A.; Juronen, E.; Wolff, A.S.; Husebye, E.S.; Podkrajšek, K.T.; et al. Anti-cytokine autoantibodies suggest pathogenetic links with autoimmune regulator deficiency in humans and mice. Clin. Exp. Immunol. 2013, 171, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Puel, A.; Cypowyj, S.; Maródi, L.; Abel, L.; Picard, C.; Casanova, J.L. Inborn errors of human IL-17 immunity underlie chronic mucocutaneous candidiasis. Curr. Opin. Allergy Clin. Immunol. 2012, 12, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, Y.; Yamada, M.; Kawai, T.; Morio, T.; Onodera, M.; Ueki, M.; Watanabe, N.; Takada, H.; Takezaki, S.; Chida, N.; et al. Two novel gain-of-function mutations of STAT1 responsible for chronic mucocutaneous candidiasis disease: Impaired production of IL-17A and IL-22, and the presence of anti-IL-17F autoantibody. J. Immunol. 2014, 193, 4880–4887. [Google Scholar] [CrossRef] [PubMed]
- Sarkadi, A.K.; Taskó, S.; Csorba, G.; Tóth, B.; Erdős, M.; Maródi, L. Autoantibodies to IL-17A may be correlated with the severity of mucocutaneous candidiasis in APECED patients. J. Clin. Immunol. 2014, 34, 181–193. [Google Scholar] [CrossRef]
- Burbelo, P.D.; Browne, S.K.; Sampaio, E.P.; Giaccone, G.; Zaman, R.; Kristosturyan, E.; Rajan, A.; Ding, L.; Ching, K.H.; Berman, A.; et al. Anti-cytokine autoantibodies are associated with opportunistic infection in patients with thymic neoplasia. Blood 2010, 116, 4848–4858. [Google Scholar] [CrossRef] [PubMed]
- Humbert, L.; Cornu, M.; Proust-Lemoine, E.; Bayry, J.; Wemeau, J.L.; Vantyghem, M.C.; Sendid, B. Chronic Mucocutaneous Candidiasis in Autoimmune Polyendocrine Syndrome Type 1. Front. Immunol. 2018, 9, 2570. [Google Scholar] [CrossRef]
- Kuo, C.Y.; Wang, S.Y.; Shih, H.P.; Tu, K.H.; Huang, W.C.; Ding, J.Y.; Lin, C.H.; Yeh, C.F.; Ho, M.W.; Chang, S.C.; et al. Disseminated Cryptococcosis Due to Anti-Granulocyte-Macrophage Colony-Stimulating Factor Autoantibodies in the Absence of Pulmonary Alveolar Proteinosis. J. Clin. Immunol. 2017, 37, 143–152. [Google Scholar] [CrossRef]
- Saijo, T.; Chen, J.; Chen, S.C.; Rosen, L.B.; Yi, J.; Sorrell, T.C.; Bennett, J.E.; Holland, S.M.; Browne, S.K.; Kwon-Chung, K.J. Anti-granulocyte-macrophage colony-stimulating factor autoantibodies are a risk factor for central nervous system infection by Cryptococcus gattii in otherwise immunocompetent patients. mBio 2014, 5, e00912–e00914. [Google Scholar] [CrossRef]
- Chetchotisakd, P.; Anunnatsiri, S.; Nithichanon, A.; Lertmemongkolchai, G. Cryptococcosis in Anti-Interferon-Gamma Autoantibody-Positive Patients: A Different Clinical Manifestation from HIV-Infected Patients. Jpn. J. Infect. Dis. 2017, 70, 69–74. [Google Scholar] [CrossRef]
- Rujirachun, P.; Sangwongwanich, J.; Chayakulkeeree, M. Triple infection with Cryptococcus, varicella-zoster virus, and Mycobacterium abscessus in a patient with anti-interferon-gamma autoantibodies: A case report. BMC Infect. Dis. 2020, 20, 232. [Google Scholar] [CrossRef]
- Chetchotisakd, P.; Anunnatsiri, S. Linezolid in the treatment of disseminated nontuberculous mycobacterial infection in anti-interferon-gamma autoantibody-positive patients. Southeast Asian J. Trop. Med. Public Health 2014, 45, 1125–1131. [Google Scholar] [PubMed]
- Pithukpakorn, M.; Roothumnong, E.; Angkasekwinai, N.; Suktitipat, B.; Assawamakin, A.; Luangwedchakarn, V.; Umrod, P.; Thongnoppakhun, W.; Foongladda, S.; Suputtamongkol, Y. HLA-DRB1 and HLA-DQB1 Are Associated with Adult-Onset Immunodeficiency with Acquired Anti-Interferon-Gamma Autoantibodies. PLoS ONE 2015, 10, e0128481. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Lo, Y.F.; Shih, H.P.; Ho, M.W.; Yeh, C.F.; Peng, J.J.; Ting, H.T.; Lin, K.H.; Huang, W.C.; Chen, Y.C.; et al. Cryptococcus gattii Infection as the Major Clinical Manifestation in Patients with Autoantibodies against Granulocyte-Macrophage Colony-Stimulating Factor. J. Clin. Immunol. 2022, 42, 1730–1741. [Google Scholar] [CrossRef] [PubMed]
- Kuo, P.H.; Wu, U.I.; Pan, Y.H.; Wang, J.T.; Wang, Y.C.; Sun, H.Y.; Sheng, W.H.; Chen, Y.C.; Chang, S.C. Neutralizing Anti-Granulocyte-Macrophage Colony-Stimulating Factor Autoantibodies in Patients with Central Nervous System and Localized Cryptococcosis: Longitudinal Follow-Up and Literature Review. Clin. Infect. Dis. 2022, 75, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Viola, G.M.; Malek, A.E.; Rosen, L.B.; DiNardo, A.R.; Nishiguchi, T.; Okhuysen, P.C.; Holland, S.M.; Kontoyiannis, D.P. Disseminated cryptococcosis and anti-granulocyte-macrophage colony-stimulating factor autoantibodies: An underappreciated association. Mycoses 2021, 64, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Demir, S.; Chebib, N.; Thivolet-Bejui, F.; Cottin, V. Pulmonary alveolar proteinosis following cryptococcal meningitis: A possible cause? BMJ Case Rep. 2018, 2018, bcr-2017-222940. [Google Scholar] [CrossRef] [PubMed]
- Hartung, M.; Salfelder, K. Pulmonary alveolar proteinosis and histoplasmosis: Report of three cases. Virchows Arch. A Pathol. Anat. Histol. 1975, 368, 281–287. [Google Scholar] [CrossRef]
- Deepe, G.S.; Gibbons, R.; Woodward, E. Neutralization of endogenous granulocyte-macrophage colony-stimulating factor subverts the protective immune response to Histoplasma capsulatum. J. Immunol. 1999, 163, 4985–4993. [Google Scholar] [CrossRef]
- van de Vosse, E.; van Wengen, A.; van der Meide, W.F.; Visser, L.G.; van Dissel, J.T. A 38-year-old woman with necrotising cervical lymphadenitis due to Histoplasma capsulatum. Infection 2017, 45, 917–920. [Google Scholar] [CrossRef]
- Meijer, J.A.; Sjögren, E.V.; Kuijper, E.; Verbist, B.M.; Visser, L.G. Necrotizing cervical lymphadenitis due to disseminated Histoplasma capsulatum infection. Eur. J. Clin. Microbiol. Infect. Dis. 2005, 24, 574–576. [Google Scholar] [CrossRef]
- Guo, J.; Ning, X.Q.; Ding, J.Y.; Zheng, Y.Q.; Shi, N.N.; Wu, F.Y.; Lin, Y.K.; Shih, H.P.; Ting, H.T.; Liang, G.; et al. Anti-IFN-γ autoantibodies underlie disseminated Talaromyces marneffei infections. J. Exp. Med. 2020, 217, e20190502. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.M.; Li, Z.T.; Li, S.Q.; Guan, W.J.; Qiu, Y.; Lei, Z.Y.; Zhan, Y.Q.; Zhou, H.; Lin, S.; Wang, X.; et al. Clinical findings of Talaromyces marneffei infection among patients with anti-interferon-γ immunodeficiency: A prospective cohort study. BMC Infect. Dis. 2021, 21, 587. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Huang, J.; Li, Y.; Zeng, W.; Pan, M.; Cen, J.; Zhang, H.; Sun, X.; Qu, D.; Zhang, J. Talaromyces marneffei and nontuberculous mycobacteria co-infection in HIV-negative patients. Sci. Rep. 2021, 11, 16177. [Google Scholar] [CrossRef] [PubMed]
- Du, R.; Feng, Y.; Mao, H. Case report: Diagnosis of Talaromyces marneffei infection in an HIV-negative patient with septic shock and high-titer anti-interferon gamma autoantibodies by metagenomic next-generation sequencing. Front. Cell. Infect. Microbiol. 2023, 13, 1163846. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Yang, Z.; Qiu, Y.; Zeng, W.; Liu, G.; Zhang, J. Infection in Lung Cancer Patients with Positive AIGAs: A Rare Case Report. Infect. Drug Resist. 2021, 14, 5005–5013. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Tang, M.; Yang, M.; Fang, G.; Tang, S.; Zhang, J. Intravenous Cyclophosphamide Therapy for Anti-IFN-γ Autoantibody-Associated. Open Forum Infect. Dis. 2022, 9, ofac612. [Google Scholar] [CrossRef]
- Yamaguchi, E.; Tanaka, H.; Fukuoka, T.; Ohbayashi, Y.; Sato, M.; Yokoi, T. A case of disseminated nontuberculous mycobacteriosis and cerebellar toxoplasmosis with autoantibody to interferon-γ. Sarcoidosis Vasc. Diffus. Lung Dis. 2013, 30, 312–316. [Google Scholar]
- Miédougé, M.; Bessières, M.H.; Cassaing, S.; Swierczynski, B.; Séguéla, J.P. Parasitemia and parasitic loads in acute infection and after anti-gamma-interferon treatment in a toxoplasmic mouse model. Parasitol. Res. 1997, 83, 339–344. [Google Scholar] [CrossRef]
- Eltayeb, R.; Mustafa, M.; Lycke, N.; van der Meide, P.H.; Bakhiet, M. Cytokines and anti-cytokine autoantibodies during experimental african trypanosomiasis in mice with disrupted interferon-gamma and interferon-gamma receptor genes. Int. J. Mol. Med. 1998, 1, 177–183. [Google Scholar] [CrossRef]
Disease | ACAA Target | Evidence | Future Directions for Research |
---|---|---|---|
Bacterial | |||
Tuberculosis | IFNγ | Case reports | Define role in larger cohorts |
GM-CSF/IL-12 | Case reports | Define role in larger cohorts | |
NTM | IFNγ | Proven in larger cohort studies | Therapeutic interventions |
GM-CSF | Case reports | Define role in larger cohorts | |
Nocardia | GM-CSF | Clear association in PAP patients Only case reports in non-PAP patients | Define role in larger cohorts and provide long-term follow-up data |
Viral | |||
Herpes simplex/zoster | Type I and II IFNs | Multiple case reports | Define role in larger cohorts |
HIV | IFNγ | Two older cohort studies | Evaluate ACAAs in a new cohort |
COVID-19 | IFNα and -ω | Large cohort studies No effect of IFNβ supplementation | Therapeutic interventions |
Fungal | |||
Candida (in APECED/APS1) | IL-17/IL-22/IFNα | Shown in several cohort studies | Therapeutic interventions |
Cryptococcosis (especially C. gattii, but also C. neoformans) | GM-CSF | Shown in small cohort studies | Define role in larger cohorts and provide long-term follow-up data |
IFNγ | Case reports | Define role in larger cohorts | |
Histoplasmosis | IFNγ/GM-CSF | Case reports | Define role in larger cohorts |
Talaromycosis | IFNγ | Proven in cohort studies | Therapeutic interventions |
Parasites | |||
Toxoplasmosis | IFNγ | Two case reports | Define role in larger cohorts |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arts, R.J.W.; Janssen, N.A.F.; van de Veerdonk, F.L. Anticytokine Autoantibodies in Infectious Diseases: A Practical Overview. Int. J. Mol. Sci. 2024, 25, 515. https://doi.org/10.3390/ijms25010515
Arts RJW, Janssen NAF, van de Veerdonk FL. Anticytokine Autoantibodies in Infectious Diseases: A Practical Overview. International Journal of Molecular Sciences. 2024; 25(1):515. https://doi.org/10.3390/ijms25010515
Chicago/Turabian StyleArts, Rob J. W., Nico A. F. Janssen, and Frank L. van de Veerdonk. 2024. "Anticytokine Autoantibodies in Infectious Diseases: A Practical Overview" International Journal of Molecular Sciences 25, no. 1: 515. https://doi.org/10.3390/ijms25010515
APA StyleArts, R. J. W., Janssen, N. A. F., & van de Veerdonk, F. L. (2024). Anticytokine Autoantibodies in Infectious Diseases: A Practical Overview. International Journal of Molecular Sciences, 25(1), 515. https://doi.org/10.3390/ijms25010515