Self-Assembling E2-Based Nanoparticles Improve Vaccine Thermostability and Protective Immunity against CSFV
Abstract
:1. Introduction
2. Results
2.1. Expression and Characterization of CSFV E2-mi3 NPs
2.2. Analysis of CSFV E2-mi3 Antigenic Epitopes
2.3. E2-mi3 NPs Exhibited Robust Thermostability and Long-Term Storage Stability
2.4. E2-mi3 NPs Promoted Cellular Uptake by RAW264.7 Cells
2.5. Enhanced Specific Antibody Responses Induced by E2-mi3 NPs
2.6. Neutralizing Ability of E2-mi3 NPs Immunized Serum
2.7. E2-mi3 NPs Induced Complete Protection from CSFV C-Strain Challenge
2.8. Virological Protection of Vaccinated Rabbits from CSFV C-Strain Challenge
2.9. E2-mi3 NPs Reduced Viral Replication in Rabbits following CSFV C-Strain Challenge
2.10. Observation of Pathological Injuries following CSFV C-Strain Challenge
2.11. E2-mi3 NPs Enhanced Immune Responses in Pigs
3. Discussion
4. Materials and Methods
4.1. Cloning
4.2. Expression and Purification of Recombinant Protein
4.3. Cells and Viruses
4.4. The 3D Structure Analysis of CSFV E2-mi3
4.5. Thermostability and Long-Term Storage Stability Evaluation of NPs
4.6. Cellular Uptake Assay
4.7. Animal Experiment
4.8. Determination of Specific Antibodies
4.9. Rabbit Neutralization Test
4.10. Histopathological Assessment
4.11. Immunohistochemical (IHC) Staining and Analysis
4.12. Real Time Quantitative PCR (RT-qPCR) Assay for Detection of Viral RNA Loads
4.13. Lymphocyte Proliferation Assay
4.14. Analysis of CD4+ and CD8+ T-Lymphocytes
4.15. Interferon (IFN)-γ Detection by ELISpot
4.16. Cytokines Measurement by Enzyme-Linked Immunosorbent Assay (ELISA)
4.17. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moennig, V.; Floegel-Niesmann, G.; Greiser-Wilke, I. Clinical Signs and Epidemiology of Classical Swine Fever: A Review of New Knowledge. Vet. J. 2003, 165, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Kleiboeker, S.B. Swine fever: Classical swine fever and African swine fever. Vet. Clin. N. Am. Food Anim. Pract. 2002, 18, 431–451. [Google Scholar] [CrossRef] [PubMed]
- Meyers, G.; Thiel, H.J. Molecular Characterization of Pestiviruses. Adv. Virus Res. 1996, 47, 53–118. [Google Scholar] [CrossRef] [PubMed]
- Weiland, E.; Ahl, R.; Stark, R.; Weiland, F.; Thiel, H.J. A second envelope glycoprotein mediates neutralization of a pestivirus, hog cholera virus. J. Virol. 1992, 66, 3677–3682. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhang, H.; Yang, L.; Chen, J.; Zhang, Y.; Yu, X.; Zheng, Q.; Hou, J. Surface display of classical swine fever virus E2 glycoprotein on gram-positive enhancer matrix (GEM) particles via the SpyTag/SpyCatcher system. Protein Expr. Purif. 2020, 167, 105526. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Deng, M.; Wang, F.; Huang, C.; Chang, C. The challenges of classical swine fever control: Modified live and E2 subunit vaccines. Virus Res. 2014, 179, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Rijn, P.A.; Van Bossers, A.; Wensvoort, G.; Moormann, R.J. Classical swine fever virus (CSFV) envelope glycoprotein E2 containing one structural antigenic unit protects pigs from lethal CSFV challenge. J. Gen. Virol. 1996, 77, 2737–2745. [Google Scholar] [CrossRef]
- Lin, G.; Liu, T.; Tseng, Y.; Chen, Z.; You, C.; Hsuan, S.; Chien, M.; Huang, C. Yeast-expressed classical swine fever virus glycoprotein E2 induces a protective immune response. Vet. Microbiol. 2009, 139, 369–374. [Google Scholar] [CrossRef]
- Oirschot, J.T. Vaccinology of classical swine fever: From lab to field. Vet. Microbiol. 2003, 96, 367–384. [Google Scholar] [CrossRef]
- Luo, Y.; Li, S.; Sun, Y.; Qiu, H. Classical swine fever in China: A minireview. Vet. Microbiol. 2014, 172, 1–6. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, H.; Han, G.; Tao, L.; He, F. A self-assembling nanoparticle: Implications for the development of thermostable vaccine candidates. Int. J. Biol. Macromol. 2021, 183, 2162–2173. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xu, H.; Han, G.; Tao, L.; He, F. Self-Assembling Nanovaccine Enhances Protective Efficacy Against CSFV in Pigs. Front. Immunol. 2021, 12, 689187. [Google Scholar] [CrossRef]
- Guo, H.; Sun, S.; Jin, Y.; Yang, S.; Wei, Y. Foot-and-mouth disease virus-like particles produced by a SUMO fusion protein system in Escherichia coli induce potent protective immune responses in guinea pigs, swine and cattle. Vet. Res. 2013, 44, 48. [Google Scholar] [CrossRef] [PubMed]
- Grgacic, E.V.; Anderson, D.A. Virus-like particles: Passport to immune recognition. Methods 2006, 40, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Rweyemamu, M.M.; Terry, G.; Pay, T.W. Stability and immunogenicity of empty particles of foot-and-mouth disease virus. Arch. Virol. 1979, 59, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Jennings, G.T.; Bachmann, M.F. The coming of age of virus-like particle vaccines. Biol. Chem. 2008, 389, 521–536. [Google Scholar] [CrossRef] [PubMed]
- Noad, R.; Roy, P. Virus-like particles as immunogens. Trends Microbiol. 2003, 11, 438–444. [Google Scholar] [CrossRef]
- Mohsen, M.O.; Zha, L.; Cabral-Miranda, G.; Bachmann, M.F. Major findings and recent advances in virus-like particle (VLP)-based vaccines. Semin. Immunol. 2017, 34, 123–132. [Google Scholar] [CrossRef]
- Negahdaripour, M.; Golkar, N.; Hajighahramani, N.; Kianpour, S.; Ghasemi, Y. Harnessing self-assembled peptide nanoparticles in epitope vaccine design. Biotechnol. Adv. 2017, 35, 575–596. [Google Scholar] [CrossRef]
- Yang, H.; Bale, J.B.; Shane, G.; Dan, S.; William, S.; Fong, K.K.; Una, N.; Chunfu, X.; Po-Ssu, H.; Rashmi, R. Design of a hypersTable 60-subunit protein dodecahedron. Nature 2016, 535, 136–139. [Google Scholar] [CrossRef]
- Bruun, T.; Andersson, A.; Draper, S.J.; Howarth, M. Engineering a Rugged Nanoscaffold To Enhance Plug-and-Display Vaccination. ACS Nano 2018, 12, 8855–8866. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, S.; Renukaradhya, G.J. Nanoparticle-based vaccine development and evaluation against viral infections in pigs. Vet. Res. 2019, 50, 90. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, W.; Kirberger, M.; Liao, W.; Ren, J. Design of nanomaterial based systems for novel vaccine development. Biomater. Sci. 2016, 4, 785–802. [Google Scholar] [CrossRef] [PubMed]
- Omari, K.E.; Iourin, O.; Harlos, K.; Grimes, J.M.; Stuart, D.I. Structure of a Pestivirus Envelope Glycoprotein E2 Clarifies Its Role in Cell Entry. Cell Rep. 2012, 3, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Coronado, L.; Rios, L.; Frías, M.T.; Amarán, L.; Naranjo, P.; Percedo, M.I.; Perera, C.L.; Prieto, F.; Fonseca-Rodriguez, O.; Perez, L.J. Positive selection pressure on E2 protein of classical swine fever virus drives variations in virulence, pathogenesis and antigenicity: Implication for epidemiological surveillance in endemic areas. Transbound. Emerg. Dis. 2019, 66, 2362–2382. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Meyer, D.; Postel, A.; Tsai, K.; Liu, H.; Yang, C.; Huang, Y.; Berkley, N.; Deng, M.; Wang, F. Identification of a Common Conformational Epitope on the Glycoprotein E2 of Classical Swine Fever Virus and Border Disease Virus. Viruses 2021, 13, 1655. [Google Scholar] [CrossRef] [PubMed]
- Lycke, N. Recent progress in mucosal vaccine development: Potential and limitations. Nat. Rev. Immunol. 2012, 12, 592–605. [Google Scholar] [CrossRef]
- Gregory, A.E.; Titball, R.; Williamson, D. Vaccine delivery using nanoparticles. Front. Cell Infect. Microbiol. 2013, 3, 13. [Google Scholar] [CrossRef]
- Ma, X.; Zou, F.; Yu, F.; Li, R.; Yuan, Y.; Zhang, Y.; Zhang, X.; Deng, J.; Chen, T.; Song, Z. Nanoparticle Vaccines Based on the Receptor Binding Domain (RBD) and Heptad Repeat (HR) of SARS-CoV-2 Elicit Robust Protective Immune Responses. Immunity 2020, 53, 1315–1330. [Google Scholar] [CrossRef]
- Ren, H.; Zhu, S.; Zheng, G. Nanoreactor Design Based on Self-Assembling Protein Nanocages. Int. J. Mol. Sci. 2019, 20, 592. [Google Scholar] [CrossRef]
- Kanekiyo, M.; Wei, C.; Yassine, H.M.; Mctamney, P.M.; Boyington, J.C.; Whittle, J.R.R.; Rao, S.S.; Kong, W.P.; Wang, L.; Nabel, G.J. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature 2013, 499, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Fernando, G.J.P.; Crichton, M.L.; Flaim, C.; Yukiko, S.R.; Fairmaid, E.J.; Corbett, H.J.; Primiero, C.A.; Ansaldo, A.B.; Frazer, I.H. Improving the reach of vaccines to low-resource regions, with a needle-free vaccine delivery device and long-term thermostabilization. J. Control. Release 2011, 152, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Pelliccia, M.; Andreozzi, P.; Paulose, J.; D’Alicarnasso, M.; Cagno, V.; Donalisio, M.; Civra, A.; Broeckel, R.M.; Haese, N.; Jacob Silva, P. Additives for vaccine storage to improve thermal stability of adenoviruses from hours to months. Nat. Commun. 2016, 7, 13520. [Google Scholar] [CrossRef] [PubMed]
- Das, P. Revolutionary vaccine technology breaks the cold chain. Lancet Infect. Dis. 2005, 4, 719. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Chung, Y.; Chiu, H.; Chi, W.; Chiang, B.; Hu, Y. Evaluation of the stability of enterovirus 71 virus-like particle. J. Biosci. Bioeng. 2014, 117, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Graham, B.S.; Gilman, M.S.A.; Mclellan, J.S. Structure-Based Vaccine Antigen Design. Annu. Rev. Med. 2019, 70, 91–104. [Google Scholar] [CrossRef]
- Bachmann, M.F.; Jennings, G.T. Vaccine delivery: A matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 2010, 10, 787–796. [Google Scholar] [CrossRef]
- Yang, F.; Wang, F.; Guo, Y.; Zhou, Q.; Wang, Y.; Yin, Y.; Sun, S. Enhanced Capacity of Antigen Presentation of HBc-VLP-Pulsed RAW264.7 Cells Revealed by Proteomics Analysis. J. Proteome Res. 2008, 7, 4898–4903. [Google Scholar] [CrossRef]
- Reimann, I.; Depner, K.; Utke, K.; Leifer, I.; Lange, E.; Beer, M. Characterization of a new chimeric marker vaccine candidate with a mutated antigenic E2-epitope. Vet. Microbiol. 2010, 142, 45–50. [Google Scholar] [CrossRef]
- Terpstra, C.; Wensvoort, G. The protective value of vaccine-induced neutralising antibody titres in swine fever. Vet. Microbiol. 1988, 16, 123–128. [Google Scholar] [CrossRef]
- Le, P.; Génin, P.; Baines, M.G.; Hiscott, J. Interferon activation and innate immunity. Rev. Immunogenet. 2000, 2, 374–386. [Google Scholar]
- O’Shea, J.J.; Nutman, T.B. Immunoregulation; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2001. [Google Scholar] [CrossRef]
- Pauly, T.; Elbers, K.; Konig, M.; Lengsfeld, T.; Saalmuller, A.; Thiel, H.J. Classical swine fever virus-specific cytotoxic T lymphocytes and identification of a T cell epitope. J. Gen. Virol. 1995, 76, 3039–3049. [Google Scholar] [CrossRef] [PubMed]
- Teng, Z.; Hou, F.; Bai, M.; Li, J.; Wang, J.; Wu, J.; Ru, J.; Ren, M.; Sun, S.; Guo, H. Bio-mineralization of virus-like particles by metal-organic framework nanoparticles enhances the thermostability and immune responses of the vaccines. J. Mater. Chem. B 2022, 10, 2853–2864. [Google Scholar] [CrossRef] [PubMed]
- Nakiboneka, R.; Mugaba, S.; Auma, B.; Kintu, C.; Lindan, C.; Nanteza, M.; Kaleebu, P.; Serwanga, J. Interferon gamma (IFN-γ) negative CD4+ and CD8+ T-cells can produce immune mediators in response to viral antigens. Vaccine 2019, 37, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Smeltz, R.B.; Chen, J.; Ehrhardt, R.; Shevach, E.M. Role of IFN-gamma in Th1 differentiation: IFN-gamma regulates IL-18R alpha expression by preventing the negative effects of IL-4 and by inducing/maintaining IL-12 receptor beta 2 expression. J. Immunol. 2002, 168, 6165–6172. [Google Scholar] [CrossRef]
- Yokota, T.; Otsuka, T.; Mosmann, T.; Banchereau, J.; Defrance, T.; Blanchard, D.; De Vries, J.E.; Lee, F.; Arai, K. Isolation and characterization of a human interleukin cDNA clone, homologous to mouse B-cell stimulatory factor 1, that expresses B-cell- and T-cell-stimulating activities. Proc. Natl. Acad. Sci. USA 1986, 83, 5894–5898. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Zou, P.; Wang, M.; Wu, F. Self-Assembly M2e-Based Peptide Nanovaccine Confers Broad Protection Against Influenza Viruses. Front. Microbiol. 2020, 11, 1961. [Google Scholar] [CrossRef]
- Luo, Y.; Li, L.; Busch, S.; Dong, M.; Xu, J.; Shao, L.; Lei, J.; Li, N.; He, W.R.; Zhao, B. Enhanced expression of the Erns protein of classical swine fever virus in yeast and its application in an indirect enzyme-linked immunosorbent assay for antibody differentiation of infected from vaccinated animals. J. Virol. Methods 2015, 222, 22–27. [Google Scholar] [CrossRef]
- Program, N. NTP Toxicology and Carcinogenesis Studies of Pyridine (CAS No. 110-86-1) in F344/N Rats, Wistar Rats, and B6C3F1 Mice (Drinking Water Studies). Natl. Toxicol. Program. Tech. Rep. Ser. 2000, 470, 1–330. [Google Scholar]
- Program, N. Toxicology and carcinogenesis studies of 4-methylimidazole (Cas No. 822-36-6) in F344/N rats and B6C3F1 mice (feed studies). Natl. Toxicol. Program. Tech. Rep. Ser. 2007, 535, 1–274. [Google Scholar]
- Huang, Y.; Zhang, C.; Huang, Q.; Yeong, J. Clinicopathologic features, tumor immune microenvironment and genomic landscape of Epstein-Barr virus-associated intrahepatic cholangiocarcinoma. J. Hepatol. 2021, 74, 838–849. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Jiang, Y.; Li, G.; Zhou, Y.; Yu, L.; Li, L.; Tong, W.; Zheng, H.; Zhang, Y.; Yu, H. Porcine reproductive and respiratory syndrome virus expressing E2 of classical swine fever virus protects pigs from a lethal challenge of highly-pathogenic PRRSV and CSFV. Vaccine 2018, 36, 3269–3277. [Google Scholar] [CrossRef] [PubMed]
- Blanco, E.; Guerra, B.; Torre, B.; Defaus, S.; Dekker, A.; Andreu, D.; Sobrino, F. Full protection of swine against foot-and-mouth disease by a bivalent B-cell epitope dendrimer peptide. Antivir. Res. 2016, 129, 74–80. [Google Scholar] [CrossRef] [PubMed]
Groups | Number | Rabbit Serum | Pig Serum | ||||
---|---|---|---|---|---|---|---|
1:4 | 1:16 | 1:64 | 1:4 | 1:16 | 1:64 | ||
E2-mi3 NPs | 1 | — | — | — | — | — | — |
2 | — | — | — | — | — | — | |
3 | — | — | — | — | — | — | |
4 | — | — | — | — | — | — | |
5 | — | — | + | — | — | + | |
E2 | 1 | — | — | + | — | — | + |
2 | — | — | + | — | — | + | |
3 | — | — | + | — | — | + | |
4 | — | + | + | — | + | + | |
5 | — | + | + | — | + | + | |
PBS | 1 | + | + | ||||
2 | + | + | |||||
3 | + | + | |||||
4 | + | + | |||||
5 | + | + |
Groups | Number | Counts of Fever Reactions | Rate of Protection (%) |
---|---|---|---|
PBS | 5 | 5/5 | 0 |
E2 | 5 | 2/5 | 60 |
E2-mi3 NPs | 5 | 0/5 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.; Abdullah, S.W.; Pei, C.; Shi, X.; Chen, X.; Ma, Y.; Yin, S.; Sun, S.; Huang, Y.; Guo, H. Self-Assembling E2-Based Nanoparticles Improve Vaccine Thermostability and Protective Immunity against CSFV. Int. J. Mol. Sci. 2024, 25, 596. https://doi.org/10.3390/ijms25010596
Song H, Abdullah SW, Pei C, Shi X, Chen X, Ma Y, Yin S, Sun S, Huang Y, Guo H. Self-Assembling E2-Based Nanoparticles Improve Vaccine Thermostability and Protective Immunity against CSFV. International Journal of Molecular Sciences. 2024; 25(1):596. https://doi.org/10.3390/ijms25010596
Chicago/Turabian StyleSong, Hetao, Sahibzada Waheed Abdullah, Chenchen Pei, Xiaoni Shi, Xiangyang Chen, Yuqing Ma, Shuanghui Yin, Shiqi Sun, Yong Huang, and Huichen Guo. 2024. "Self-Assembling E2-Based Nanoparticles Improve Vaccine Thermostability and Protective Immunity against CSFV" International Journal of Molecular Sciences 25, no. 1: 596. https://doi.org/10.3390/ijms25010596
APA StyleSong, H., Abdullah, S. W., Pei, C., Shi, X., Chen, X., Ma, Y., Yin, S., Sun, S., Huang, Y., & Guo, H. (2024). Self-Assembling E2-Based Nanoparticles Improve Vaccine Thermostability and Protective Immunity against CSFV. International Journal of Molecular Sciences, 25(1), 596. https://doi.org/10.3390/ijms25010596