Transcriptomic–Proteomic Analysis Revealed the Regulatory Mechanism of Peanut in Response to Fusarium oxysporum
Abstract
:1. Introduction
2. Results
2.1. Histomorphological Changes in Peanut after Being Infected with F. oxysporum
2.2. Results of Transcriptome Sequencing
2.3. Analysis of the DEGs
2.4. Proteome Sequencing
2.5. Analysis of the DEPs
2.6. Correlation Analysis of the Transcriptome and Proteome Sequencing
2.7. Verification of the Levels of Expression of Key Genes Using qRT-PCR
2.8. Expression of the Key Genes in the Phenylpropanoid Metabolic Pathways
2.9. Determination of the Activities of Key Enzymes
2.10. Measurement of the Contents of Metabolites in Peanut
3. Discussion
4. Materials and Methods
4.1. Plants
4.2. Strains
4.3. Treatment
4.4. Analysis of Transcriptome Sequencing
4.5. Analysis of Proteome Sequencing
4.6. DEPs and Transcript Screening
4.7. Verification Using qRT-PCR
4.8. Determination of Five Metabolites and Four Enzymes from Peanut Data
4.9. Data Processing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guan, Y.; He, X.; Wen, D.; Chen, S.; Chen, F.; Chen, F.; Jiang, Y. Fusarium oxysporum infection on root elicit aboveground terpene production and salicylic acid accumulation in Chrysanthemum morifolium. Plant Physiol. Biochem. 2022, 190, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Michielse, C.; Rep, M.; Michielse, C.; Rep, M. Pathogen profile update: Fusarium oxysporum. Mol. Plant Pathol. 2009, 10, 311–324. [Google Scholar] [CrossRef] [PubMed]
- Zuriegat, Q.; Zheng, Y.; Liu, H.; Wang, Z.; Yun, Y. Current progress on pathogenicity-related transcription factors in Fusarium oxysporum. Mol. Plant Pathol. 2021, 22, 882–895. [Google Scholar] [CrossRef]
- Parkunan, V.; Brenneman, T.; Ji, P. First Report of Pythium defense associated with peanut pod rot in Georgia. Plant Dis. 2014, 98, 1269. [Google Scholar] [CrossRef] [PubMed]
- Chitwood-Brown, J.; Vallad, G.E.; Lee, T.G.; Hutton, S.F. Breeding for resistance to fusarium wilt of tomato: A review. Genes 2021, 12, 1673. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, C.; Pan, L.; Wang, T.; Chen, N.; Chen, M.; Yang, Z.; Guo, X.; Yu, S.; Chi, X. Small RNA profiling reveal regulation of microRNAs in field peanut pod rot pathogen infection. Biologia 2020, 75, 1779–1788. [Google Scholar] [CrossRef]
- Wang, M.; Chen, M.; Yang, Z.; Chen, N.; Chi, X.; Pan, L.; Wang, T.; Yu, S.; Guo, X. Influence of peanut cultivars and environmental conditions on the diversity and community composition of pod rot soil fungi in China. Mycobiology 2017, 45, 392–400. [Google Scholar] [CrossRef]
- Kang, X.; Wang, L.; Guo, Y.; Arifeen, M.Z.U.; Cai, X.; Xue, Y.; Bu, Y.; Wang, G.; Liu, C. A Comparative Transcriptomic and proteomic analysis of hexaploid wheat’s responses to colonization by Bacillus velezensis and Gaeumannomyces graminis, Both Separately and Combined. Mol. Plant Microbe Interact. 2019, 32, 1336–1347. [Google Scholar] [CrossRef]
- Jeon, J.; Kim, K.T.; Choi, J.; Cheong, K.; Ko, J.; Choi, G.; Lee, H.; Lee, G.W.; Park, S.Y.; Kim, S. Alternative splicing diversifies the transcriptome and proteome of the rice blast fungus during host infection. RNA Biol. 2022, 19, 373–385. [Google Scholar] [CrossRef]
- Yang, J.; Xia, X.; Guo, M.; Zhong, L.; Zhang, X.; Duan, X.; Liu, J.; Huang, R. 2-Methoxy-1,4-naphthoquinone regulated molecular alternation of Fusarium proliferatum revealed by high-dimensional biological data. RSC Adv. 2022, 12, 15133–15144. [Google Scholar] [CrossRef]
- Fang, H.; Zhong, C.; Sun, J.; Chen, H. Revealing the different resistance mechanisms of banana ‘Guijiao 9’ to Fusarium oxysporum f. sp. cubense tropical race 4 using comparative proteomic analysis. J. Proteom. 2023, 283–284, 104937. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Fokkens, L.; Rep, M. A single gene in Fusarium oxysporum limits host range. Mol. Plant Pathol. 2021, 22, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Sumera, N.S.; Iqbal, S.S.; Khan, S.T.; Rehman, Z.U. Fusarium oxysporum; its enhanced entomopathogenic activity with acidic silver nanoparticles against Rhipicephalus microplus ticks. Braz. J. Biol. 2023, 84, e266741. [Google Scholar] [CrossRef] [PubMed]
- Choubey, V.K.; Sakure, A.A.; Kumar, S.; Vaja, M.B.; Mistry, J.G.; Patel, D.A. Proteomics profiling and in silico analysis of peptides identified during Fusarium oxysporum infection in castor (Ricinus communis). Phytochemistry 2023, 213, 113776. [Google Scholar] [CrossRef] [PubMed]
- Syed, S.; Tollamadugu, N.V.K.V.P.; Lian, B. Aspergillus and Fusarium control in the early stages of Arachis hypogaea (groundnut crop) by plant growth-promoting rhizobacteria (PGPR) consortium. Microbiol. Res. 2020, 240, 126562. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.Y.; Yang, B.; Wang, H.W.; Yang, Q.Y.; Dai, C.C. Application of Serratia marcescens RZ-21 significantly enhances peanut yield and remediates continuously cropped peanut soil. J. Sci. Food Agric. 2016, 96, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, X.; Sun, X.; Huo, X.; Li, M.; Han, C.; Liu, A. Establishment and Application of a Multiplex PCR Assay for Detection of Sclerotium rolfsii, Lasiodiplodia theobromae, and Fusarium oxysporum in Peanut. Mol. Biotechnol. 2023, 65, 1369–1377. [Google Scholar] [CrossRef]
- Simkovich, A.; Kohalmi, S.E.; Wang, A. Purification and proteomics analysis of phloem tissues from virus-infected plants. Methods Mol. Biol. 2022, 2400, 125–137. [Google Scholar] [CrossRef]
- Liu, N.; Qin, L.; Mazhar, M.; Miao, S. Integrative transcriptomic-proteomic analysis revealed the flavor formation mechanism and antioxidant activity in rice-acid inoculated with Lactobacillus paracasei and Kluyveromyces marxianus. J. Proteom. 2021, 238, 104158. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, E.; Li, H.; Chen, X.; Zhu, F.; Hong, Y.; Liao, B.; Liu, S.; Liang, X. Comparative proteomics analysis of developing peanut aerial and subterranean pods identifies pod swelling related proteins. J. Proteom. 2013, 91, 172–187. [Google Scholar] [CrossRef]
- Li, C.; Yan, C.; Sun, Q.; Wang, J.; Yuan, C.; Mou, Y.; Shan, S.; Zhao, X. Proteomic profiling of Arachis hypogaea in response to drought stress and overexpression of AhLEA2 improves drought tolerance. Plant Biol. 2022, 24, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Yu, M.; Zhang, L.; Shi, T. Transcriptome and proteome analysis of ultrasound pretreated peanut sprouts. Food Chem. 2022, 14, 100102. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Q.; Li, Z.; Hou, L.; Dai, S.; Liu, W. Comparative proteomics of peanut gynophore development under dark and mechanical stimulation. J. Proteome Res. 2013, 12, 5502–5511. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Liu, S.; Liu, X.; Zhang, B.; Li, M.; Zeng, L.; Li, L. Transcriptome profiling reveals histone deacetylase 1 gene overexpression improves flavonoid, isoflavonoid, and phenylpropanoid metabolism in Arachis hypogaea hairy roots. PeerJ 2021, 9, e10976. [Google Scholar] [CrossRef]
- Wang, G.; Wu, L.; Zhang, H.; Wu, W.; Zhang, M.; Li, X.; Wu, H. Regulation of the Phenylpropanoid Pathway: A Mechanism of selenium tolerance in peanut (Arachis hypogaea L.) seedlings. J. Agric. Food Chem. 2016, 64, 3626–3635. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, D.; Yin, H.; Wang, H.; Cao, C.; Wang, J.; Zheng, J.; Liu, J. Transcriptomic and metabolomic analyses of the response of resistant peanut seeds to Aspergillus flavus infection. Toxins 2023, 15, 414. [Google Scholar] [CrossRef]
- Pratyusha, D.S.; Sarada, D.V.L. MYB transcription factors-master regulators of phenylpropanoid biosynthesis and diverse developmental and stress responses. Plant Cell Rep. 2022, 41, 2245–2260. [Google Scholar] [CrossRef]
- Sharma, A.; Shahzad, B.; Rehman, A. Response of phenylpropanoid pathway and the role of polyphenols in plants abiotic stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef]
- Abdelkhalek, A.; Király, L.; Al-Mansori, A.A.; Younes, H.A.; Zeid, A.; Elsharkawy, M.M.; Behiry, S.I. Defense responses and metabolic changes involving phenylpropanoid pathway and PR genes in Squash (Cucurbita pepo L.) following Cucumber mosaic virus infection. Plants 2022, 11, 1908. [Google Scholar] [CrossRef]
- Yu, X.Y.; Bi, Y.; Yan, L.; Liu, X.; Wang, Y.; Shen, K.P.; Li, Y.C. Activation of phenylpropanoid pathway and PR of potato tuber against Fusarium sulphureum by fungal elicitor from Trichothecium roseum. World J. Microbiol. Biotechnol. 2016, 32, 142. [Google Scholar] [CrossRef]
- Gill, U.S.; Uppalapati, S.R.; Gallego-Giraldo, L.; Ishiga, Y.; Dixon, R.A.; Mysore, K.S. Metabolic flux towards the (iso)flavonoid pathway in lignin modified alfalfa lines induces resistance against Fusarium oxysporum f. sp. medicaginis. Plant Cell Environ. 2018, 41, 1997–2007. [Google Scholar] [CrossRef]
- Abdallah, N.A.; Shah, D.; Abbas, D.; Madkour, M. Stable integration and expression of a plant defensin in tomato confers resistance to fusarium wilt. GM Crops 2010, 1, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Cariño, H.F.; Guadarrama-Mendoza, P.C.; Sánchez-López, V.; Cuervo-Parra, J.A.; Ramírez-Reyes, T.; Dunlap, C.A.; Valadez-Blanco, R. Biocontrol of Alternaria alternata and Fusarium oxysporum by Trichoderma asperelloides and Bacillus paralicheniformis in tomato plants. Antonie Van Leeuwenhoek 2020, 113, 1247–1261. [Google Scholar] [CrossRef] [PubMed]
- Woodward, J.E.; Baughman, T.A. Evaluation of Rhizoctonia diseases on peanut cultivars and advanced breeding lines in west Texas. Phytopathology 2007, 97, S183. [Google Scholar] [CrossRef]
- Xanthopoulou, A.; Moysiadis, T.; Bazakos, C.; Karagiannis, E.; Karamichali, I.; Stamatakis, G.; Samiotaki, M.; Manioudaki, M.; Michailidis, M.; Madesis, P.; et al. The perennial fruit tree proteogenomics atlas: A spatial map of the sweet cherry proteome and transcriptome. Plant J. 2022, 109, 1319–1336. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Ding, Y.; Gao, T.; He, S.; Zhao, K.; Yang, X.; Zhang, J.; Yang, Z. Transcriptomic and proteomic analyses of Cucurbita ficifolia Bouché (Cucurbitaceae) response to Fusarium oxysporum f.sp. cucumerium. BMC Genom. 2022, 23 (Suppl. S1), 436. [Google Scholar] [CrossRef]
- Chen, H.; Liu, N.; Xu, R.; Chen, X.; Zhang, Y.; Hu, R.; Lan, X.; Tang, Z.; Lin, G. Quantitative proteomics analysis reveals the response mechanism of peanut (Arachis hypogaea L.) to imbibitional chilling stress. Plant Biol. 2021, 23, 517–527. [Google Scholar] [CrossRef]
- Mergner, J.; Frejno, M.; List, M.; Papacek, M.; Chen, X.; Chaudhary, A.; Samaras, P.; Richter, S.; Shikata, H.; Messerer, M.; et al. Mass-spectrometry-based draft of the Arabidopsis proteome. Nature 2020, 579, 409–414. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, M.; Zhang, X.; Cao, Y.; Sun, S.; Zhu, Z.; Han, S.; Chen, Y.; Ku, L.; Duan, C. Integrative transcriptome and proteome analysis reveals maize responses to Fusarium verticillioides infection inside the stalks. Mol. Plant Pathol. 2023, 24, 693–710. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Bai, L.; Sun, H.B.; Yang, C.; Cai, B.Y. Transcriptomic and proteomic analysis revealed the effect of Funneliformis mosseae in soybean roots differential expression genes and proteins. J. Proteome Res. 2020, 19, 3631–3643. [Google Scholar] [CrossRef]
- Fraser, C.M.; Chapple, C. The phenylpropanoid pathway in Arabidopsis. Arab. Book 2011, 9, e0152. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Wu, J.; Lin, L.; Li, P.; Li, S.; Wang, Y.; Li, J.; Sun, Q.; Liang, J.; Wang, Y. Overexpression of cinnamoyl-CoA reductase in Brassica napus increases resistance to Sclerotinia sclerotiorum by affecting lignin biosynthesis. Front. Plant Sci. 2021, 12, 732733. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.; Wang, Z.; Wei, C.; Amo, A.; Ahmed, B.; Yang, X.; Zhang, X. Phenylpropanoid pathway engineering: An emerging approach towards plant defence. Pathogens 2020, 9, 312. [Google Scholar] [CrossRef] [PubMed]
- Miao, W.; Yang, Y.; Wu, M.; Huang, G.; Ge, L.; Liu, Y.; Guan, Z.; Chen, S.; Fang, W.; Chen, F.; et al. Potential pathways and genes expressed in Chrysanthemum in response to early fusarium oxysporum infection. BMC Plant Biol. 2023, 23, 312. [Google Scholar] [CrossRef] [PubMed]
- Kurepa, J.; Shull, T.E.; Karunadasa, S.S.; Smalle, J.A. Modulation of auxin and cytokinin responses by early steps of the phenylpropanoid pathway. BMC Plant Biol. 2018, 18, 278. [Google Scholar] [CrossRef]
- Peng, W.; Wang, Y.; Zeng, X.; Li, W.; Song, N.; Liu, J.; Wang, B.; Dai, L. Integrative transcriptomic, proteomic, and phosphoproteomic analysis on the defense response to Magnaporthe oryzae reveals different expression patterns at the molecular level of durably resistant rice cultivar Mowanggu. Front. Plant Sci. 2023, 14, 1212510. [Google Scholar] [CrossRef]
- Jeon, H.S.; Jang, E.; Kim, J.; Kim, S.H.; Lee, M.H.; Nam, M.H.; Tobimatsu, Y.; Park, O.K. Pathogen-induced autophagy regulates monolignol transport and lignin formation in plant immunity. Autophagy 2023, 19, 597–615. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, X.; Zhang, X.; He, X.; Li, H.; Cui, D.; Yin, D. ITRAQ-Based proteomic analysis of the metabolic mechanisms behind lipid accumulation and degradation during peanut seed development and post germination. J. Proteome Res. 2016, 15, 4277–4289. [Google Scholar] [CrossRef]
BMK-ID | Clean Reads | Clean Bases | GC Content | %≥Q30 |
---|---|---|---|---|
wm-ck-1 | 37,451,368 | 11,190,787,760 | 44.72 | 93.80 |
wm-ck-2 | 38,209,482 | 11,378,388,158 | 45.07 | 94.1 |
wm-ck-3 | 36,157,206 | 10,806,638,472 | 44.82 | 93.71 |
wm-LG-1 | 39,863,104 | 11,892,536,984 | 44.81 | 93.49 |
wm-LG-2 | 36,858,805 | 11,005,017,808 | 44.73 | 93.93 |
wm-LG-3 | 37,493,168 | 11,208,113,484 | 44.91 | 93.98 |
KEGG Pathway | Fold Enrichment | Protein Accession | Protein Description | Ratio | Sequence Coverage (%) | Mol. Weight (kDa) | MS/MS Counts | Peptides | Lg/Ck Ratio | Lg/Ck p-Value |
---|---|---|---|---|---|---|---|---|---|---|
aip00940 Phenylpropanoid biosynthesis up | 2.34 | C8QSDY.1 | Peroxidase superfamily protein | 2.085 | 29.1 | 37.382 | 32 | 7 | 2.085 | 7.935 × 10−5 |
2.34 | L4CNUE.1 | beta glucosidase 46; | 16.294 | 30.4 | 66.892 | 43 | 13 | 16.294 | 0.0002401 | |
2.34 | 5H4H17.1 | phenylalanine ammonia-lyase 2 | 8.886 | 52.2 | 77.944 | 74 | 26 | 8.886 | 0.0002387 | |
2.34 | IE3GQ3.1 | Peroxidase superfamily protein | 3.229 | 52 | 31.802 | 68 | 10 | 3.229 | 3.127 × 10−6 | |
2.34 | EEZ4Y8.1 | phenylalanine ammonia-lyase 2 | 284.714 | 53.4 | 79.697 | 101 | 30 | 284.714 | 0.0007626 | |
2.34 | J17R0W.1 | aldehyde dehydrogenase family 2 member C4-like | 7.863 | 37.4 | 55.249 | 38 | 17 | 7.863 | 0.000939 | |
2.34 | SGZ2CH.1 | Cytochrome P450 superfamily protein | 4.344 | 46.6 | 56.811 | 75 | 23 | 4.344 | 0.0033236 | |
2.34 | ULUR0X.1 | cinnamoyl coa reductase | 2.589 | 56.7 | 36.14 | 48 | 14 | 2.589 | 0.0002397 | |
2.34 | I3Z6BS.1 | Peroxidase superfamily protein | 4.029 | 60.5 | 34.435 | 63 | 10 | 4.029 | 5.461 × 10−7 | |
aip00940 Phenylpropanoid biosynthesis down | 2.6 | 333C3Q.1 | caffeoyl-CoA 3-O-methyltransferase | 0.337 | 54.7 | 27.63 | 28 | 9 | 0.337 | 2.104 × 10−6 |
2.6 | H8P4Q7.2 | lysosomal beta glucosidase-like | 0.353 | 22.5 | 74.236 | 34 | 10 | 0.353 | 1.683 × 10−5 | |
2.6 | PX7TTT.1 | lysosomal beta glucosidase-like | 0.474 | 27.9 | 67.094 | 19 | 12 | 0.474 | 0.0086181 | |
2.6 | VFYD46.1 | Peroxidase superfamily protein | 0.435 | 45.7 | 35.785 | 33 | 12 | 0.435 | 0.0039972 | |
2.6 | F20QAX.1 | Peroxidase superfamily protein | 0.47 | 48.7 | 34.222 | 24 | 9 | 0.47 | 0.0108624 | |
2.6 | 7BH383.1 | Alkyl hydroperoxide reductase | 0.353 | 43 | 27.123 | 42 | 8 | 0.353 | 6.402 × 10−7 | |
2.6 | 0XM443.1 | beta glucosidase 43 | 0.486 | 45.2 | 58.95 | 79 | 16 | 0.486 | 7.419 × 10−7 |
Transcription ID | Protein Accession | Protein Description | Ratio | p-Value | log2FC x | FDR | log2FC y | Type |
---|---|---|---|---|---|---|---|---|
LMT3MR | LMT3MR.1 | polyphenol oxidase A1 | 3.138 | 2.46 × 10−5 | 1.649845 | 1.02 × 10−273 | 7.164713 | Up–up |
2J0KXT | 2J0KXT.1 | Chitinase family protein | 6.634 | 1.95 × 10−9 | 2.729879 | 5.37 × 10−225 | 5.913499 | Up–up |
4T2HBI | 4T2HBI.1 | disease-resistance response protein | 62.168 | 3.18 × 10−7 | 5.9581 | 3.02 × 10−78 | 5.450114 | Up–up |
EEZ4Y8 | EEZ4Y8.1 | phenylalanine ammonia-lyase 2 | 284.714 | 7.63 × 10−3 | 8.15337 | 3.84 × 10−131 | 5.229844 | Up–up |
GX4Q6M | GX4Q6M.1 | disease-resistance response protein | 61.5 | 2.19 × 10−5 | 5.942515 | 6.37 × 10−18 | 5.18639 | Up–up |
Y9G6RS | Y9G6RS.1 | isoflavone reductase homolog | 75.923 | 5.27 × 10−8 | 6.246465 | 4.80 × 10−183 | 4.846734 | Up–up |
JSZ7GP | JSZ7GP.1 | isoflavone reductase-like | 74.949 | 9.36 × 10−8 | 6.227837 | 5.28 × 10−202 | 4.817667 | Up–up |
0BML12 | 0BML12.1 | aldo/keto reductase family oxidoreductase | 132.356 | 0.00548 | 7.04828 | 4.90 × 10−196 | 4.746672 | Up–up |
X2DMBM | X2DMBM.2 | 4-hydroxy-3-methylbut-2-enyl diphosphate synthase | 3.175 | 9.69 × 10−8 | 1.666757 | 7.38 × 10−194 | 4.685075 | Up–up |
1WY37S | 1WY37S.1 | Cytochrome P450 superfamily protein | 73.074 | 0.003817 | 6.191286 | 5.23 × 10−171 | 4.435238 | Up–up |
L0R0IL | L0R0IL.1 | Non-specific lipid-transfer protein | 0.484 | 0.006977 | −1.04692 | 1.35 × 10−19 | −5.17955 | Down–down |
YZ06AV | YZ06AV.1 | chlorophyll A/B binding protein 1 | 0.271 | 3.59 × 10−5 | −1.88364 | 1.02 × 10−147 | −3.95799 | Down–down |
P96X61 | P96X61.2 | fructose-bisphosphate aldolase 2 | 0.434 | 0.000585 | −1.20423 | 9.48 × 10−63 | −3.36928 | Down–down |
Y7HUGW | Y7HUGW.1 | photosystem II oxygen-evolving enhancer protein | 0.103 | 0.000861 | −3.27928 | 1.85 × 10−56 | −3.07236 | Down–down |
IYE9TT | IYE9TT.1 | L-type lectin-domain containing receptor kinase IX.1-like | 0.294 | 2.25 × 10−5 | −1.76611 | 1.26 × 10−7 | −2.95814 | Down–down |
TAR5IY | TAR5IY.1 | receptor lectin kinase | 0.368 | 1.33 × 10−6 | −1.44222 | 1.85 × 10−25 | −2.93076 | Down–down |
VFYD46 | VFYD46.1 | Peroxidase superfamily protein | 0.435 | 3.997 × 10−3 | −1.20091 | 6.67 × 10−28 | −2.59009 | Down–down |
FN6RIW | FN6RIW.1 | glyceraldehyde-3-phosphate dehydrogenase C2 | 0.324 | 4.53 × 10−6 | −1.62593 | 1.95 × 10−54 | −2.58726 | Down–down |
GJ4Q3S | GJ4Q3S.1 | MLP-like protein 43 | 0.279 | 2.55 × 10−6 | −1.84166 | 2.25 × 10−20 | −2.55715 | Down–down |
KSV0XM | KSV0XM.1 | ATP synthase gamma chain 1 family protein | 0.364 | 1.51 × 10−5 | −1.45799 | 3.54 × 10−18 | −2.50991 | Down–down |
Name of Genes | Forward Primer (5′–3′) | Reverse Primer (5′–3′) |
---|---|---|
Ah1WY37S.1 | CGGAAAGCCCCTCAAGGGTA | TGTTGCGGTGGACCTAGCAA |
AhLGAM8W.1 | TCCCACCAGGCTCTACTGTCT | ACACTGCCTCTGAAAGTGCCT |
Ah0BML12.1 | GGGATTGCGGATTCTCATGGC | GTCGTAGCTCTTTGGCACAGC |
AhSGZ2CH.1 | CTTGGACCAGGCCACCAAGTA | GGTTCATGTGTGGGACGAGGA |
AhULUR0X.1 | CTGCCTCGAAAGTTCCCTCCA | AACACTTGGTGGGAACAGGGT |
Ah333C3Q.1 | TGGAGGGTTGATCGGCTATGA | GCAAGGTGCTTGTTGAGTTCC |
AhJB63H4.1 | TTGGGGGATTGATTGGCTACG | CATGCGCGAGGTACTTGTTGA |
Ah5H4H17.1 | GCCAAGTTGCCAAGAGGACAC | AGGGTATGTAGCACTGCAAGGA |
Ah1KSV8R.1 | TCAGGGTTATGGCTTGACGGA | GGGTCGACAATCTTAGCCTGG |
AhP96X61.2 | CCAGCAAGGTGCTCGTTTCG | GGCTGCTTCCTTAACTGCAAGAG |
AhP6MJUK.1 | GCCCCAATGATGAGTGCCTTG | CTTCCGGGTTGGCACACATTC |
Actin11 | TTGGAATGGGTCAGAAGGATGC | AGTGGTGCCTCAGTAAGAAGC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Zhu, L.; Zhang, C.; Zhou, H.; Tang, Y.; Cao, S.; Chen, J.; Zhang, J. Transcriptomic–Proteomic Analysis Revealed the Regulatory Mechanism of Peanut in Response to Fusarium oxysporum. Int. J. Mol. Sci. 2024, 25, 619. https://doi.org/10.3390/ijms25010619
Wang M, Zhu L, Zhang C, Zhou H, Tang Y, Cao S, Chen J, Zhang J. Transcriptomic–Proteomic Analysis Revealed the Regulatory Mechanism of Peanut in Response to Fusarium oxysporum. International Journal of Molecular Sciences. 2024; 25(1):619. https://doi.org/10.3390/ijms25010619
Chicago/Turabian StyleWang, Mian, Lifei Zhu, Chushu Zhang, Haixiang Zhou, Yueyi Tang, Shining Cao, Jing Chen, and Jiancheng Zhang. 2024. "Transcriptomic–Proteomic Analysis Revealed the Regulatory Mechanism of Peanut in Response to Fusarium oxysporum" International Journal of Molecular Sciences 25, no. 1: 619. https://doi.org/10.3390/ijms25010619
APA StyleWang, M., Zhu, L., Zhang, C., Zhou, H., Tang, Y., Cao, S., Chen, J., & Zhang, J. (2024). Transcriptomic–Proteomic Analysis Revealed the Regulatory Mechanism of Peanut in Response to Fusarium oxysporum. International Journal of Molecular Sciences, 25(1), 619. https://doi.org/10.3390/ijms25010619