A New Approach in Lipase-Octyl-Agarose Biocatalysis of 2-Arylpropionic Acid Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. CALB—Optimization of Immobilization
2.1.1. Effect of Buffer pH
2.1.2. Effect of Buffer Concentration
2.2. CALB—The Reactor Material, Reaction Medium, and Lipase Stability Tests
2.2.1. Effect of Reactor Material
2.2.2. Effect of Reaction Medium
2.2.3. Climatic Chamber Stability Tests of CALB
2.3. CRL-OF—Effect of Immobilization on Enzymatic Activity
3. Materials and Methods
3.1. Materials
3.2. Equipment
3.3. Methods
3.3.1. Octyl-Agarose Preparation Technique
3.3.2. Immobilization of CALB onto Octyl-Agarose
3.3.3. Immobilization of CRL-OF onto Octyl-Agarose
3.3.4. Determination of the Amount of Immobilized CALB
3.3.5. Enantioselectivity—Kinetic Resolution of (R,S)-Flurbiprofen
3.3.6. Stability Tests of CALB and CRL-OF in Dry Form—Climatic Chamber and Refrigerator
- Climatic chamber—65 °C (without humidity and light-Vis)
- Climatic chamber—65 °C with light-Vis (without humidity)
- Climatic chamber—65 °C with humidity 75% (without light-Vis)
- Climatic chamber—65 °C with humidity 75% and light-Vis
- Refrigerator—4 °C (without humidity and light-Vis)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, L.J.; Wu, Y.P.; Deng, J.P. Enantioselective Release of Chiral Drugs. Prog. Chem. 2021, 33, 1550–1559. [Google Scholar] [CrossRef]
- Pu, J.L.; Wang, H.W.; Huang, C.; Bo, C.M.; Gong, B.L.; Ou, J.J. Progress of molecular imprinting technique for enantioseparation of chiral drugs in recent ten years. J. Chromatogr. A 2022, 1668, 462914. [Google Scholar] [CrossRef] [PubMed]
- Rossino, G.; Robescu, M.S.; Licastro, E.; Tedesco, C.; Martello, I.; Maffei, L.; Vincenti, G.; Bavaro, T.; Collina, S. Biocatalysis: A smart and green tool for the preparation of chiral drugs. Chirality 2022, 34, 1403–1418. [Google Scholar] [CrossRef]
- Sanchez, D.A.; Tonetto, G.M.; Ferreira, M.L. Burkholderia cepacia lipase: A versatile catalyst in synthesis reactions. Biotechnol. Bioeng. 2018, 115, 6–24. [Google Scholar] [CrossRef] [PubMed]
- Stauch, B.; Fisher, S.J.; Cianci, M. Open and closed states of Candida antarctica lipase B: Protonation and the mechanism of interfacial activation. J. Lipid Res. 2015, 56, 2348–2358. [Google Scholar] [CrossRef] [PubMed]
- Zisis, T.; Freddolino, P.L.; Turunen, P.; van Teeseing, M.C.F.; Rowan, A.E.; Blank, K.G. Interfacial Activation of Candida antarctica Lipase B: Combined Evidence from Experiment and Simulation. Biochemistry 2015, 54, 5969–5979. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, C.; Ferreira, M.L.; Barbosa, O.; dos Santos, J.C.S.; Rodrigues, R.C.; Berenguer-Murcia, A.; Briand, L.E.; Fernandez-Lafuente, R. Novozym 435: The “perfect” lipase immobilized biocatalyst? Catal. Sci. Technol. 2019, 9, 2380–2420. [Google Scholar] [CrossRef]
- Manoel, E.A.; dos Santos, J.C.S.; Freire, D.M.G.; Rueda, N.; Fernandez-Lafuente, R. Immobilization of lipases on hydrophobic supports involves the open form of the enzyme. Enzyme Microb. Technol. 2015, 71, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Souza, P.M.P.; Carballares, D.; Goncalves, L.R.B.; Fernandez-Lafuente, R.; Rodrigues, S. Immobilization of Lipase B from Candida antarctica in Octyl-Vinyl Sulfone Agarose: Effect of the Enzyme-Support Interactions on Enzyme Activity, Specificity, Structure and Inactivation Pathway. Int. J. Mol. Sci. 2022, 23, 14268. [Google Scholar] [CrossRef] [PubMed]
- Mathpati, A.C.; Bhanage, B.M. Prediction of enantioselectivity of lipase catalyzed kinetic resolution using umbrella sampling. J. Biotechnol. 2018, 283, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Ferraccioli, R. Progress on the Stereoselective Synthesis of Chiral Molecules Based on Metal-Catalyzed Dynamic Kinetic Resolution of Alcohols with Lipases. Symmetry 2021, 13, 1744. [Google Scholar] [CrossRef]
- Carvalho, A.; Fonseca, T.D.; de Mattos, M.C.; de Oliveira, M.D.F.; de Lemos, T.L.G.; Molinari, F.; Romano, D.; Serra, I. Recent Advances in Lipase-Mediated Preparation of Pharmaceuticals and Their Intermediates. Int. J. Mol. Sci. 2015, 16, 29682–29716. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Fang, B.S. Synthesizing Chiral Drug Intermediates by Biocatalysis. Appl. Biochem. Biotechnol. 2020, 192, 146–179. [Google Scholar] [CrossRef] [PubMed]
- Ceramella, J.; Iacopetta, D.; Franchini, A.; De Luca, M.; Saturnino, C.; Andreu, I.; Sinicropi, M.S.; Catalano, A. A Look at the Importance of Chirality in Drug Activity: Some Significative Examples. Appl. Sci. 2022, 12, 10909. [Google Scholar] [CrossRef]
- Sikora, A.; Siódmiak, T.; Marszałł, M.P. Kinetic Resolution of Profens by Enantioselective Esterification Catalyzed by Candida antarctica and Candida rugosa Lipases. Chirality 2014, 26, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Park, Y.C.; Lee, H.H.; Jeon, S.T.; Min, W.K.; Seo, J.H. Simple Amino Acid Tags Improve Both Expression and Secretion of Candida antarctica Lipase B in Recombinant Escherichia coli. Biotechnol. Bioeng. 2015, 112, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Siódmiak, T.; Dulęba, J.; Haraldsson, G.G.; Siódmiak, J.; Marszałł, M.P. The Studies of Sepharose-Immobilized Lipases: Combining Techniques for the Enhancement of Activity and Thermal Stability. Catalysts 2023, 13, 887. [Google Scholar] [CrossRef]
- Siódmiak, T.; Haraldsson, G.G.; Dulęba, J.; Ziegler-Borowska, M.; Siódmiak, J.; Marszałł, M.P. Evaluation of Designed Immobilized Catalytic Systems: Activity Enhancement of Lipase B from Candida antarctica. Catalysts 2020, 10, 876. [Google Scholar] [CrossRef]
- Siódmiak, T.; Mangelings, D.; Vander Heyden, Y.; Ziegler-Borowska, M.; Marszałł, M.P. High Enantioselective Novozym 435-Catalyzed Esterification of (R,S)-Flurbiprofen Monitored with a Chiral Stationary Phase. Appl. Biochem. Biotechnol. 2015, 175, 2769–2785. [Google Scholar] [CrossRef] [PubMed]
- Suster, C.R.L.; Toledo, M.V.; Matkovic, S.R.; Morcelle, S.R.; Briand, L.E. Rational Design of a Biocatalyst Based on Immobilized CALB onto Nanostructured SiO2. Catalysts 2023, 13, 625. [Google Scholar] [CrossRef]
- Khiari, O.; Bouzemi, N.; Sánchez-Montero, J.M.; Alcántara, A.R. On the Use of Orthoformates as an Efficient Approach to Enhance the Enzymatic Enantioselective Synthesis of (S)-Ibuprofen. Catalysts 2023, 13, 251. [Google Scholar] [CrossRef]
- Zhao, Z.B.; Liao, M.; Hu, G.; Zeng, S.W.; Ge, L.; Yang, K.D. Enantioselective adsorption of ibuprofen enantiomers using chiral-active carbon nanoparticles induced (S)-α-methylbenzylamine. Chirality 2023, 36, e23628. [Google Scholar] [CrossRef] [PubMed]
- Zdun, B.; Cieśla, P.; Kutner, J.; Borowiecki, P. Expanding Access to Optically Active Non-Steroidal Anti-Inflammatory Drugs via Lipase-Catalyzed KR of Racemic Acids Using Trialkyl Orthoesters as Irreversible Alkoxy Group Donors. Catalysts 2022, 12, 546. [Google Scholar] [CrossRef]
- Spelmezan, C.G.; Bacos, A.; Katona, G. Stable and efficient biopolymeric nanocompozite of Candida antarctica Lipase B. Stud. Univ. Babes-Bolyai Chem. 2023, 68, 53–71. [Google Scholar] [CrossRef]
- Silva, F.; Szemes, J.; Mustashev, A.; Takács, O.; Imarah, A.O.; Poppe, L. Immobilization of Lipase B from Candida antarctica on Magnetic Nanoparticles Enhances Its Selectivity in Kinetic Resolutions of Chiral Amines with Several Acylating Agents. Life 2023, 13, 1560. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.C.; Lee, L.C.; Sava, V.; Shaw, J.F. Multiple mutagenesis of non-universal serine codons of the Candida rugosa LIP2 gene and biochemical characterization of purified recombinant LIP2 lipase overexpressed in Pichia pastoris. Biochem. Technol. 2002, 366, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Gabriele, F.; Spreti, N.; Del Giacco, T.; Germani, R.; Tiecco, M. Effect of Surfactant Structure on the Superactivity of Candida rugosa Lipase. Langmuir 2018, 34, 11510–11517. [Google Scholar] [CrossRef] [PubMed]
- Velasco-Lozano, S.; López-Gallego, F.; Rocha-Martin, J.; Guisán, J.M.; Favela-Torres, E. Improving enantioselectivity of lipase from Candida rugosa by carrier-bound and carrier-free immobilization. J. Mol. Catal. B Enzym 2016, 130, 32–39. [Google Scholar] [CrossRef]
- Banoth, L.; Thakur, N.S.; Bhaumik, J.; Banerjee, U.C. Biocatalytic Approach for the Synthesis of Enantiopure Acebutolol as a β1-Selective Blocker. Chirality 2015, 27, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Wahab, R.A.; Elias, N.; Abdullah, F.; Ghoshal, S.K. On the taught new tricks of enzymes immobilization: An all-inclusive overview. React. Funct. Polym. 2020, 152, 104613. [Google Scholar] [CrossRef]
- Bilal, M.; Singh, A.K.; Iqbal, H.M.N.; Zdarta, J.; Chrobok, A.; Jesionowski, T. Enzyme-linked carbon nanotubes as biocatalytic tools to degrade and mitigate environmental pollutants. Environ. Res. 2024, 241, 117579. [Google Scholar] [CrossRef]
- Arana-Peña, S.; Mendez-Sanchez, C.; Rios, N.S.; Ortiz, C.; Gonçalves, L.R.B.; Fernandez-Lafuente, R. New applications of glyoxyl-octyl agarose in lipases co-immobilization: Strategies to reuse the most stable lipase. Int. J. Biol. Macromol. 2019, 131, 989–997. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, S.M.; Velasco-Lozano, S.; Orrego, A.H.; Rocha-Martín, J.; Moreno-Pérez, S.; Fraile, J.M.; López-Gallego, F.; Guisán, J.M. Functionalization of Porous Cellulose with Glyoxyl Groups as a Carrier for Enzyme Immobilization and Stabilization. Biomacromolecules 2021, 22, 927–937. [Google Scholar] [CrossRef] [PubMed]
- Alnoch, R.C.; dos Santos, L.A.; de Almeida, J.M.; Krieger, N.; Mateo, C. Recent Trends in Biomaterials for Immobilization of Lipases for Application in Non-Conventional Media. Catalysts 2020, 10, 697. [Google Scholar] [CrossRef]
- Siódmiak, T.; Siódmiak, J.; Mastalerz, R.; Kocot, N.; Dulęba, J.; Haraldsson, G.G.; Wątróbska-Świetlikowska, D.; Marszałł, M.P. Climatic Chamber Stability Tests of Lipase-Catalytic Octyl-Sepharose Systems. Catalysts 2023, 13, 501. [Google Scholar] [CrossRef]
- Subinya, M.; Steudle, A.K.; Jurkowski, T.P.; Stubenrauch, C. Conformation and activity of lipase B from Candida antarctica in bicontinuous microemulsions. Colloids Surf. B Biointerfaces 2015, 131, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Li, D.M.; Wang, W.F.; Liu, P.Z.; Xu, L.; Faiza, M.; Yang, B.; Wang, L.Y.; Lan, D.M.; Wang, Y.H. Immobilization of Candida antarctica Lipase B Onto ECR1030 Resin and its Application in the Synthesis of n-3 PUFA-Rich Triacylglycerols. Eur. J. Lipid Sci. Technol. 2017, 119, 1700266. [Google Scholar] [CrossRef]
- Lokha, Y.; Arana-Pena, S.; Rios, N.S.; Mendez-Sanchez, C.; Goncalves, L.R.B.; Lopez-Gallego, F.; Fernandez-Lafuente, R. Modulating the properties of the lipase from Thermomyces lanuginosus immobilized on octyl agarose beads by altering the immobilization conditions. Enzyme Microb. Technol. 2020, 133, 109461. [Google Scholar] [CrossRef] [PubMed]
- Arana-Pena, S.; Lokha, Y.; Fernandez-Lafuente, R. Immobilization on octyl-agarose beads and some catalytic features of commercial preparations of lipase A from Candida antarctica (Novocor ADL): Comparison with immobilized lipase B from Candida antarctica. Biotechnol. Prog. 2019, 35, e2735. [Google Scholar] [CrossRef] [PubMed]
- Abellanas-Perez, P.; Carballares, D.; Rocha-Martin, J.; Fernandez-Lafuente, R. The nature of the buffer alters the effects of the chemical modification on the stability of immobilized lipases. Process Biochem. 2023, 133, 20–27. [Google Scholar] [CrossRef]
- Braham, S.A.; Morellon-Sterling, R.; de Andrades, D.; Rodrigues, R.C.; Siar, E.H.; Aksas, A.; Pedroche, J.; Millán, M.D.; Fernandez-Lafuente, R. Effect of Tris Buffer in the Intensity of the Multipoint Covalent Immobilization of Enzymes in Glyoxyl-Agarose Beads. Appl. Biochem. Biotechnol. 2021, 193, 2843–2857. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.; Wei, R.; Oeser, T.; Belisário-Ferrari, M.R.; Barth, M.; Then, J.; Zimmermann, W. Effect of Tris, MOPS, and phosphate buffers on the hydrolysis of polyethylene terephthalate films by polyester hydrolases. FEBS Open Bio. 2016, 6, 919–927. [Google Scholar] [CrossRef]
- Abellanas-Perez, P.; Carballares, D.; Rocha-Martin, J.; Fernandez-Lafuente, R. The Effects of Buffer Nature on Immobilized Lipase Stability Depend on Enzyme Support Loading. Catalysts 2024, 14, 105. [Google Scholar] [CrossRef]
- Dong, Y.H.; Laaksonen, A.; Gao, Q.W.; Ji, X.Y. Molecular Mechanistic Insights into the Ionic-Strength-Controlled Interfacial Behavior of Proteins on a TiO2 Surface. Langmuir 2021, 37, 11499–11507. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Otero, M.G.; Quintana-Castro, R.; Rojas-Vázquez, A.S.; Badillo-Zeferino, G.L.; Mondragón-Vázquez, K.; Espinosa-Luna, G.; Nadda, A.K.; Oliart-Ros, R.M. Polypropylene as a selective support for the immobilization of lipolytic enzymes: Hyper-activation, purification and biotechnological applications. J. Chem. Technol. Biotechnol. 2022, 97, 436–445. [Google Scholar] [CrossRef]
- Godoy, C.A. New Strategy for the Immobilization of Lipases on Glyoxyl-Agarose Supports: Production of Robust Biocatalysts for Natural Oil Transformation. Int. J. Mol. Sci. 2017, 18, 2130. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, M.; Mohammadi, M.; Habibi, Z. Enantioselective resolution of racemic ibuprofen esters using different lipases immobilized on octyl sepharose. J. Mol. Catal. B Enzym. 2014, 104, 87–94. [Google Scholar] [CrossRef]
- Matte, C.R.; Bordinhao, C.; Poppe, J.K.; Rodrigues, R.C.; Hertz, P.F.; Ayub, M.A.Z. Synthesis of butyl butyrate in batch and continuous enzymatic reactors using Thermomyces lanuginosus lipase immobilized in Immobead 150. J. Mol. Catal. B Enzym. 2016, 127, 67–75. [Google Scholar] [CrossRef]
- Matte, C.R.; Bussamara, R.; Dupont, J.; Rodrigues, R.C.; Hertz, P.F.; Ayub, M.A.Z. Immobilization of Thermomyces lanuginosus Lipase by Different Techniques on Immobead 150 Support: Characterization and Applications. Appl. Biochem. Biotechnol. 2014, 172, 2507–2520. [Google Scholar] [CrossRef] [PubMed]
- Banik, S.D.; Nordblad, M.; Woodley, J.M.; Peters, G.H. A Correlation between the Activity of Candida antarctica Lipase B and Differences in Binding Free Energies of Organic Solvent and Substrate. ACS Catal. 2016, 6, 6350–6361. [Google Scholar] [CrossRef]
- Siódmiak, T.; Dulęba, J.; Kocot, N.; Wątrobska-Świetlikowska, D.; Marszałł, M.P. The High ‘Lipolytic Jump’ of Immobilized Amano A Lipase from Aspergillus niger in Developed ‘ESS Catalytic Triangles’ Containing Natural Origin Substrates. Catalysts 2022, 12, 853. [Google Scholar] [CrossRef]
Lipase | Reactor Material | Reaction Medium | Lipase Loading (mg/g Support) | Reaction Time | Immobilization Conditions | ees (%) | eep (%) | c (%) |
---|---|---|---|---|---|---|---|---|
CALB | polypropylene | DCP | pH 4 64.8 ± 0.9 | 24 h | pH 4; 100 mM | 3.9 ± 0.2 | 63.0 ± 0.8 | 5.8 ± 0.1 |
pH 7; 100 mM | 4.9 ± 0.3 | 74.4 ± 2.4 | 6.2 ± 0.2 | |||||
pH 7 42.1 ± 1.4 | pH 9; 100 mM | 29.6 ± 0.6 | 89.6 ± 2.0 | 24.9 ± 0.1 | ||||
48 h | pH 4; 100 mM | 11.3 ± 0.8 | 63.4 ± 1.8 | 15.1 ± 0.5 | ||||
pH 9 30.5 ± 0.6 | pH 7; 100 mM | 13.7 ± 0.4 | 73.1 ± 3.0 | 15.8 ± 0.2 | ||||
pH 9; 100 mM | 51.1 ± 1.2 | 80.5 ± 0.4 | 38.8 ± 0.5 |
Lipase | Reactor Material | Reaction Medium | Immobilization Conditions | Reaction Time | ees (%) | eep (%) | c (%) |
---|---|---|---|---|---|---|---|
CALB | polypropylene | DCP | pH 9; 50 mM | 24 h | 17.7 ± 0.8 | 82.5 ± 0.8 | 17.7 ± 0.5 |
48 h | 43.8 ± 1.2 | 80.2 ± 0.9 | 35.3 ± 0.4 | ||||
pH 9; 100 mM | 24 h | 29.6 ± 0.6 | 89.6 ± 2.0 | 24.9 ± 0.1 | |||
48 h | 51.1 ± 1.2 | 80.5 ± 0.4 | 38.8 ± 0.5 | ||||
pH 9; 300 mM | 24 h | 32.8 ± 1.9 | 75.7 ± 1.5 | 30.2 ± 0.9 | |||
48 h | 36.6 ± 0.7 | 63.9 ± 1.5 | 36.4 ± 0.1 | ||||
pH 9; 500 mM | 24 h | 4.8 ± 0.3 | 43.6 ± 1.7 | 9.9 ± 0.1 | |||
48 h | 6.8 ± 0.5 | 43.1 ± 1.5 | 13.7 ± 0.5 |
Lipase | Reactor Material | Reaction Medium | Reaction Time | ees (%) | eep (%) | c (%) |
---|---|---|---|---|---|---|
CALB (free) | polypropylene | DCP | 24 h | 1.0 ± 0.1 | 99.9 ± 0.0 | 1.0 ± 0.1 |
48 h | 1.2 ± 0.2 | 99.9 ± 0.0 | 1.2 ± 0.1 |
Lipase | Reactor Material | Reaction Medium | Reaction Time | Immobilization Conditions | ees (%) | eep (%) | c (%) |
---|---|---|---|---|---|---|---|
CALB | glass | DCM | 24 h | pH 7; 100 mM | 1.4 ± 0.1 | 99.9 ± 0.0 | 1.4 ± 0.1 |
polypropylene | DCM | 18 h | pH 7; 100 mM | 12.6 ± 0.5 | 90.7 ± 1.0 | 12.2 ± 0.3 | |
glass | DCP | 22 h | pH 7; 100 mM | 0.8 ± 0.3 | 39.6 ± 0.7 | 2.0 ± 0.6 | |
polypropylene | DCP | 24 h | pH 7; 100 mM | 4.9 ± 0.3 | 74.4 ± 2.4 | 6.2 ± 0.2 | |
glass | DCP | 24 h | pH 9; 100 mM | 0.9 ± 0.2 | 32.8 ± 2.1 | 2.6 ± 0.4 | |
polypropylene | DCP | 24 h | pH 9; 100 mM | 29.6 ± 0.6 | 89.6 ± 2.0 | 24.9 ± 0.1 |
Lipase | Reactor Material | Reaction Medium | Reaction Time | ees (%) | eep (%) | c (%) |
---|---|---|---|---|---|---|
CALB (free) | glass | DCM | 24 h | 1.5 ± 0.2 | 99.9 ± 0.0 | 1.5 ± 0.1 |
polypropylene | DCM | 24 h | 1.6 ± 0.2 | 99.9 ± 0.0 | 1.6 ± 0.1 |
Lipase | Reactor Material | Reaction Medium | Reaction Time | ees (%) | eep (%) | c (%) |
---|---|---|---|---|---|---|
Immobilized CRL-OF | polypropylene | DCM | 24 h | - | - | - |
DCE | 0.7 ± 0.1 | 33.6 ± 0.5 | 2.0 ± 0.3 | |||
DCP | 0.4 ± 0.1 | 22.3 ± 0.6 | 1.8 ± 0.4 | |||
DIPE | 0.8 ± 0.1 | 39.6 ± 0.6 | 2.0 ± 0.2 | |||
MTBE | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siódmiak, J.; Dulęba, J.; Kocot, N.; Mastalerz, R.; Haraldsson, G.G.; Marszałł, M.P.; Siódmiak, T. A New Approach in Lipase-Octyl-Agarose Biocatalysis of 2-Arylpropionic Acid Derivatives. Int. J. Mol. Sci. 2024, 25, 5084. https://doi.org/10.3390/ijms25105084
Siódmiak J, Dulęba J, Kocot N, Mastalerz R, Haraldsson GG, Marszałł MP, Siódmiak T. A New Approach in Lipase-Octyl-Agarose Biocatalysis of 2-Arylpropionic Acid Derivatives. International Journal of Molecular Sciences. 2024; 25(10):5084. https://doi.org/10.3390/ijms25105084
Chicago/Turabian StyleSiódmiak, Joanna, Jacek Dulęba, Natalia Kocot, Rafał Mastalerz, Gudmundur G. Haraldsson, Michał Piotr Marszałł, and Tomasz Siódmiak. 2024. "A New Approach in Lipase-Octyl-Agarose Biocatalysis of 2-Arylpropionic Acid Derivatives" International Journal of Molecular Sciences 25, no. 10: 5084. https://doi.org/10.3390/ijms25105084
APA StyleSiódmiak, J., Dulęba, J., Kocot, N., Mastalerz, R., Haraldsson, G. G., Marszałł, M. P., & Siódmiak, T. (2024). A New Approach in Lipase-Octyl-Agarose Biocatalysis of 2-Arylpropionic Acid Derivatives. International Journal of Molecular Sciences, 25(10), 5084. https://doi.org/10.3390/ijms25105084