Chronic Stress-Induced Neuroinflammation: Relevance of Rodent Models to Human Disease
Abstract
:1. Introduction
2. Chronic Stress Paradigms
3. Chronic Stress Promotes Inflammation
3.1. Inflammatory Mediators
3.1.1. NF-κB
3.1.2. TLRs
3.2. Inflammatory Cytokines
3.2.1. IL-1β
3.2.2. IL-6
3.2.3. TNF-α
3.2.4. IL-10
3.2.5. IFN-γ
3.2.6. IL-17
3.2.7. IL-18
Duration (Days) | Tissue | Inflammatory Modulators | Inflammatory Factors | Species/Sex | Citation |
---|---|---|---|---|---|
21 | FC | NF-κB | IL-1β, IL-6, and TNF-α | C57BL/6 mice | [70] |
21 | HPC | NF-κB | IL-1β, IL-6, and TNF-α | C57BL/6 mice | [70] |
21 | HPC | BDNF, p-IkBα, and Nfr2 | IL-6, IL-1β, and TNF-α | C57BL/6 mice | [50] |
24 | Blood | IL-1β, IL-6, TNF-α, and IFNγ | C57BL/6 mice | [92] | |
24 | CA1 | IL-1β, IL-6, TNF-α, IFNγ, and IL-22 | C57BL/6 mice | [92] | |
28 | Serum | IL-1β | C57BL/6 mice | [12] | |
28 | HPC | NLRP3, p-p65, p-JNK, and p-p38 | IL-1β | C57BL/6 mice | [12] |
28 | HPC | NF-κB | BALB/c mice * BALB/c mice C57BL/6 mice * C57BL/6 mice | [38] | |
28 | HPC | TLR4, MyD88, and NFκB | IL-1β, IL-6, and TNF-α | * BALB/c mice | [87] |
28 | HPC | NLRP3, caspase-1 | IL-1β | BALB/c mice | [96] |
28 | Plasma | TNF-α, IL-1β, and IL-18 | BALB/c mice | [97] | |
28 | mPFC | Clec2d, TLR9, MyD88, NF-κB, IκBα, NLRs, and NLRP3 | IL-1β | C57BL/6 mice | [88] |
28 | HPC | TLR4, NF-κB, and MyD88 | IL-1β, IL-10, and TNF-α | C57BL/6 mice | [84] |
28 | HPC | NF-κB, MAPK, caspase-1, and NLRP3 | IL-1β, TNF-α, and IL-18 | C57BL/6 mice | [47] |
28 | HPC | IDO, BDNF | TNF-α, IL-1β, and IL-6 | C57BL/6 mice | [15] |
28 | PFC | IDO, BDNF | TNF-α, IL-1β, and IL-6 | C57BL/6 mice | [15] |
28 | Serum | TNF-α, IL-1β, and IL-6 | C57BL/6 mice | [15] | |
28 | Striatum | TNF-α, IL-6 | C57BL/6 mice | [15] | |
30 | HPC | BDNF | TNF-α, IL-6, and IL-10 | C57BL/6 mice | [111] |
30 | PFC | TNF-α, IL-6 | C57BL/6 mice | [111] | |
35 | Cortex | BDNF, TLR4 | TNF-α, IL-6, and IL-1β | C57BL/6 mice | [82] |
35 | HPC | BDNF, TLR4 | TNF-α, IL-6, and IL-1β | C57BL/6 mice | [82] |
35 | HPC | TLR4 | IL-6, IL-1β, and TNF-α | C57BL/6 mice | [81] |
35 | Serum | IL-1β | C57BL/6 mice | [49] | |
35 | HPC | NLRP3, caspase-1, and p-p65 | IL-1β, IL-18 | C57BL/6 mice | [49] |
35 | HPC | BDNF, TrkB, and CREB | IL-1β, IL-6 | C57BL/6 mice | [95] |
35 | HPC | IL-1β | C57BL/6 mice | [8] | |
35 | HPC | NLRC5, NF-κB | IL-6, IL-1β, and TNF-α | C57BL/6 mice | [64] |
35 | HPC | TNF-α, IL-1β, and IL-6 | C57BL/6 mice | [94] | |
35 | PFC | TNF-α, IL-1β, and IL-6 | C57BL/6 mice | [94] | |
35 | HYP | NF-κB, NLRP3, and caspase-1 | TNF-α, IL-6, IL-18, and IL-1β | C57BL/6 mice | [45] |
35 | Serum | TNF-α, IL-6 | C57BL/6 mice | [45] | |
42 | HPC | NF-κB, NLRP3, and IkB-α | TNF-α, IL-1β, and IL-6 | BALB/c mice | [39] |
42 | HPC | TNF-α | C57BL/6 mice | [125] | |
42 | HPC | NF-κB | TNF-α, IL-1β, TGF-β, and IL-10 | C57BL/6 mice | [52] |
42 | HPC | GPR39, CREB, and NF-ΚB | TNFα, IL-6 | C57BL/6 mice | [60] |
42 | Serum | GPR39, CREB, and NF-ΚB | TNFα, IL-6 | C57BL/6 mice | [60] |
42 | PFC | HMGB1, TLR4, NF-κB, TNFR1, MyD88, IκB-α, iNOS, and TRAF2 | IL-1β, TNF-α, IL-5, IL-6, IL-7, IL-9, IL-13, and IFN-γ | C57BL/6 mice | [79] |
42 | Serum | IL-1β, TNF-α | C57BL/6 mice | [79] | |
42 | Serum | TNF-α | C57BL/6 mice | [125] | |
44 | HPC | TLR1, TLR6 | C57BL/6 mice | [10] | |
49 | HPC | NF-κB, IKKα, and IκBα | TNF-α, IL-1β | C57BL/6 mice | [62] |
56 | HPC | NF-κB, IKKβ, and IKKα | IL-1β, IL-6, and TNF-α | C57BL/6 mice | [48] |
56 | HPC | TrkB, ERK, CREB, NF-κB, and NLRP3 | C57BL/6 mice | [74] | |
56 | PFC | TLR4, TNFR1, NK-kB, IκB-α, iNOS, and TRAF2 | TNF-α, IL-1β | C57BL/6 mice | [80] |
56 | Serum | TNF-α, IL-1β | C57BL/6 mice | [80] | |
56 | Serum | IL-1β, IL-6, IL-17A, and IL-17F | C57BL/6 mice | [142] | |
56 | HPC | RORγt | IL-6, IL-4 | C57BL/6 mice | [142] |
63 | HPC | CREB, Myd88, NF-κB, and TLR4 | C57BL/6 mice | [83] | |
84 | PFC | NLRP3, caspase-1 | IL-1β, IL-18 | C57BL/6 mice | [101] |
23 | HPC | CREB | IL-6, IL-1β | ICR mice | [99] |
23 | PFC | IL-6, IL-1β | ICR mice | [99] | |
23 | HYP | BDNF, NLRP3, and CREB | IL-6, IL-1β | ICR mice | [99] |
23 | Corpus Striatum | IL-6, IL-1β | ICR mice | [99] | |
28 | HPC | MCP-1, TLR4, NF-κB, and p-p38 | TNF-α, IL-1β, and IL-6 | ICR mice | [73] |
28 | PFC | NF-κB, NLRP3, and capsase-1 | TNF-α, IL-1β, and IL-6 | ICR mice | [56] |
28 | Serum | IL-1β | ICR mice | [56] | |
42 | HPC | NLRP3, NF-ΚB | TNF-α, IL-1β | ICR mice | [41] |
42 | HPC | NLRP3, caspase-1 | TNF-α, IL-1β, and IL-6 | ICR mice | [130] |
42 | HPC | HMGB1, TLR4, and NF-κB | IL-1β, IL-6, and TNF-α | ICR mice | [76] |
42 | Serum | IL-1β, IL-6, and TNF-α | ICR mice | [76] | |
42 | HPC | TLR4, p38, NF-κB, NLRP3, and caspase-1 | TNF-α, IL-1β, and IL-6 | ICR mice | [78] |
42 | PFC | TLR4, p38, NF-κB, NLRP3, and caspase-1 | TNF-α, IL-1β, and IL-6 | ICR mice | [78] |
42 | HPC | IL-6, IL-17A, IL-17Rc, and TGF-β | ICR mice | [141] | |
42 | PFC | NF-κB, NLRP3 | IL-1β, IL-6, and TNF-α | ICR mice | [55] |
42 | AMY | NLRP3, NF-κB | TNF-α, IL-18, IL-1β, and IL-4 | ICR mice | [57] |
42 | Cortex | NLRP3, NF-κB | TNF-α, IL-18, IL-1β, and IL-4 | ICR mice | [57] |
42 | HPC | NLRP3, NF-κB | TNF-α, IL-18, IL-1β, and IL-4 | ICR mice | [57] |
44 | HPC | HMGB1, RAGE, IκBα, TrKb, and NF-ΚB | IL-1β, IL-6, and TNF-α | ICR mice | [51] |
44 | Serum | IL-1β, IL-6, and TNF-α | ICR mice | [51] | |
56 | HPC | TLR4 | IL-1β, IL-6, and TNF-α | ICR mice | [75] |
60 | HPC | NF-κB, IKKα, IKKβ, and iNOS | IL-1β, TNF-α, and IL-6 | ICR mice | [54] |
28 | HPC | TNF-α, IL-1β | *SAMP8 mice | [131] | |
21 | HPC | TLR4, NF-κB-1, p-p65, IκBα NLRP3, ASC, and caspase-1 | TNF-α, IL-1β, and IL-18 | SD rats | [43] |
21 | PFC | TLR4, NF-κB-1, p-p65, IκBα NLRP3, ASC, and caspase-1 | TNF-α, IL-1β, and IL-18 | SD rats | [43] |
21 | Serum | TNF-α, IL-1β, and IL-18 | SD rats | [43] | |
21 | HPC | NF-κB, FGF2 | SD rats | [46] | |
28 | Habenular nucleus | NLRP3, TrkB, and NF-κB | IL-1β, TNF-α, and IL-6 | SD rats | [36] |
28 | HPC | NLRP3, TrkB, and NF-κB | IL-1β, TNF-α, and IL-6 | SD rats | [36] |
28 | Cortex | TLR-4, NLRP3, and caspase-1 | IL-1Β, TNF-α | SD rats | [77] |
28 | HPC | TLR-4, NLRP3, and caspase-1 | IL-1Β, TNF-α | SD rats | [77] |
28 | Serum | IL-10 | SD rats | [139] | |
28 | Serum | TNF-α, IL-1β, and IL-6 | SD rats | [85] | |
28 | AMY | TLR4 | HMGB1, IL-6, TNF-α, and IL-1β | SD rats | [85] |
35 | Serum | IL-1β | SD rats | [93] | |
35 | FC | p-Akt/Akt | SD rats | [93] | |
42 | HPC | NLRP3, NF-ΚB | IL-1β | SD rats | [53] |
42 | HPC | TrKB, p75, GDNF, and GFR-α1 | IL-1β, IFN-γ, IL-4, IL-10, and TGF-β | SD rats * SD rats | [137] |
42 | Serum | IFN-γ, IL-1β, IL-4, IL-10, and TGF-β | SD rats * SD rats | [137] | |
49 | HPC | iNOS, NF-κB | TNF-α, IL-1β, IL-6, and IL-10 | SD rats | [37] |
49 | Serum | TNF-α, IL-1β, IL-6, and IL-10 | SD rats | [37] | |
70 | HPC | NF-κB IκB-α | IL-1α, TNF-α | SD rats | [61] |
84 | HPC | IKKβ, IκBα, iNOS, and COX2 | IL-1β, TNF-α, and IL-6 | SD rats | [42] |
84 | Serum | IL-1β, TNF-α, and IL-6 | SD rats | [42] | |
56 | HPC | TrKB | TNF-α, IL-6 | SPF mice | [112] |
56 | Serum | TNF-α, IL-6 | SPF mice | [112] | |
28 | PFC | IDO, NF-κB | IL-1β, IL-4 | Swiss mice | [63] |
28 | HPC | IDO, NF-κB | IL-1β, IL-4 | Swiss mice | [63] |
28 | HPC | NLRP3, Caspase-1 | IL-18 | Wistar rats | [144] |
28 | Serum | TNF-α, IL-6 | Wistar rats | [110] | |
35 | Cortex | TNF-α | Wistar rats | [58] | |
35 | HPC | NF-κB p65, NLRP3, and caspase-1 | IL-1β, IL-18, and TNF-α | Wistar rats | [58] |
35 | Serum | IL-1β, IL-18 | Wistar rats | [58] | |
35 | DG | p65 NF-κB | TNF-α, IL-1β, and IFN-γ | Wistar rats | [59] |
35 | mPFC | NF-κB | IL-1b, IL-6, and TNF-a | Wistar rats | [40] |
40 | Serum | IL-6 | Wistar rats | [107] | |
42 | HPC | CX3CL1, CX3CR1, p-p38, and p-JNK | TNF-α, IL-1β, and IL-6 | Wistar rats | [113] |
42 | HPC | HMGB1, RAGE, NLRP3, TLR4, and NF-κB | IL-1β, IL-2, IL-6, and TNF-α | Wistar rats | [86] |
42 | mPFC | NLRP3, pERK, p-p38α, and pAkt | IL-1β | Wistar rats * Wister rats | [100] |
42 | HPC | NLRP3, pERK, p-p38α, and pAkt | IL-1β | Wistar rats * Wister rats | [100] |
49 | HPC | IFN-γ, IL-6, IL-17, and CD11b | Wistar rats * Wistar rats | [138] | |
49 | Serum | IFN-γ, IL-10, and IL-17 | Wistar rats * Wistar rats | [138] | |
56 | Serum | IL-6 | Wistar rats | [108] | |
56 | Serum | TNF-α, IL-1β, and IL-6 | Wistar rats | [114] | |
56 | Serum | TNF-α, IL-6, and IL-10 | Wistar rats | [109] | |
91 | Blood | IL-1β, IL-37, and IL-38 | Wistar rats | [44] | |
91 | Cortex | 8-iso-PGF2α | Wistar rats | [44] | |
21 | Serum | TLR4, MyD88, NF-κB, and TrkB | IL-6, TNF-α | Unknown | [72] |
21 | HPC | TLR4, MyD88, NF-κB, and TrkB | IL-6, TNF-α | Unknown | [72] |
84 | Blood | TLR4, NF-κB, and IκB-α | IL-1β, TNF-α | Unknown | [71] |
3.2.8. IL-22
3.2.9. IL-4
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Liu, Y.-Z.; Wang, Y.-X.; Jiang, C.-L. Inflammation: The Common Pathway of Stress-Related Diseases. Front. Hum. Neurosci. 2017, 11, 316. [Google Scholar] [CrossRef] [PubMed]
- Nollet, M. Models of Depression: Unpredictable Chronic Mild Stress in Mice. Curr. Protoc. 2021, 1, e208. [Google Scholar] [CrossRef] [PubMed]
- Markov, D.D.; Novosadova, E.V. Chronic Unpredictable Mild Stress Model of Depression: Possible Sources of Poor Reproducibility and Latent Variables. Biology 2022, 11, 1621. [Google Scholar] [CrossRef] [PubMed]
- Atrooz, F.; Alkadhi, K.A.; Salim, S. Understanding Stress: Insights from Rodent Models. Curr. Res. Neurobiol. 2021, 2, 100013. [Google Scholar] [CrossRef] [PubMed]
- Mineur, Y.S.; Belzung, C.; Crusio, W.E. Effects of Unpredictable Chronic Mild Stress on Anxiety and Depression-like Behavior in Mice. Behav. Brain Res. 2006, 175, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Verbitsky, A.; Dopfel, D.; Zhang, N. Rodent Models of Post-Traumatic Stress Disorder: Behavioral Assessment. Transl. Psychiatry 2020, 10, 132. [Google Scholar] [CrossRef]
- Kendler, K.S.; Karkowski, L.M.; Prescott, C.A. Causal Relationship Between Stressful Life Events and the Onset of Major Depression. Am. J. Psychiatry 1999, 156, 837–841. [Google Scholar] [CrossRef] [PubMed]
- Goshen, I.; Kreisel, T.; Ben-Menachem-Zidon, O.; Licht, T.; Weidenfeld, J.; Ben-Hur, T.; Yirmiya, R. Brain Interleukin-1 Mediates Chronic Stress-Induced Depression in Mice via Adrenocortical Activation and Hippocampal Neurogenesis Suppression. Mol. Psychiatry 2008, 13, 717–728. [Google Scholar] [CrossRef]
- Kubera, M.; Maes, M.; Holan, V.; Basta-Kaim, A.; Roman, A.; Shani, J. Prolonged Desipramine Treatment Increases the Production of Interleukin-10, an Anti-Inflammatory Cytokine, in C57BL/6 Mice Subjected to the Chronic Mild Stress Model of Depression. J. Affect. Disord. 2001, 63, 171–178. [Google Scholar] [CrossRef]
- Manners, M.T.; Brynildsen, J.K.; Schechter, M.; Liu, X.; Eacret, D.; Blendy, J.A. CREB Deletion Increases Resilience to Stress and Downregulates Inflammatory Gene Expression in the Hippocampus. Brain Behav. Immun. 2019, 81, 388–398. [Google Scholar] [CrossRef]
- Rodgers, A.B.; Morgan, C.P.; Bronson, S.L.; Revello, S.; Bale, T.L. Paternal Stress Exposure Alters Sperm MicroRNA Content and Reprograms Offspring HPA Stress Axis Regulation. J. Neurosci. 2013, 33, 9003–9012. [Google Scholar] [CrossRef] [PubMed]
- Su, W.-J.; Zhang, Y.; Chen, Y.; Gong, H.; Lian, Y.-J.; Peng, W.; Liu, Y.-Z.; Wang, Y.-X.; You, Z.-L.; Feng, S.-J.; et al. NLRP3 Gene Knockout Blocks NF-κB and MAPK Signaling Pathway in CUMS-Induced Depression Mouse Model. Behav. Brain Res. 2017, 322, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.-Z.; Yang, J.; Liu, Q.-H.; Wang, Y.-R.; Wang, W.-S. Up-regulated miR-192-5p Expression Rescues Cognitive Impairment and Restores Neural Function in Mice with Depression via the Fbln2 -mediated TGF-β1 Signaling Pathway. FASEB J. 2019, 33, 606–618. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wang, P.-P.; Hu, K.-L.; Li, L.-N.; Yu, X.; Lu, Y.; Chang, H.-S. Antidepressant-Like Effect and Mechanism of Action of Honokiol on the Mouse Lipopolysaccharide (LPS) Depression Model. Molecules 2019, 24, 2035. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Cao, F.; Liu, Q.; Li, X.; Xu, G.; Liu, G.; Zhang, Y.; Yang, X.; Yi, S.; Xu, F.; et al. Behavioral, Inflammatory and Neurochemical Disturbances in LPS and UCMS-Induced Mouse Models of Depression. Behav. Brain Res. 2019, 364, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Antoniuk, S.; Bijata, M.; Ponimaskin, E.; Wlodarczyk, J. Chronic Unpredictable Mild Stress for Modeling Depression in Rodents: Meta-Analysis of Model Reliability. Neurosci. Biobehav. Rev. 2019, 99, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Belzung, C.; Griebel, G. Measuring Normal and Pathological Anxiety-like Behaviour in Mice: A Review. Behav. Brain Res. 2001, 125, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Elias, E.; Zhang, A.Y.; White, A.G.; Pyle, M.J.; Manners, M.T. Voluntary Wheel Running Promotes Resilience to the Behavioral Effects of Unpredictable Chronic Mild Stress in Male and Female Mice. Stress 2023, 26, 2203769. [Google Scholar] [CrossRef] [PubMed]
- Vollmayr, B.; Henn, F.A. Stress Models of Depression. Clin. Neurosci. Res. 2003, 3, 245–251. [Google Scholar] [CrossRef]
- Frisbee, J.C.; Brooks, S.D.; Stanley, S.C.; d’Audiffret, A.C. An Unpredictable Chronic Mild Stress Protocol for Instigating Depressive Symptoms, Behavioral Changes and Negative Health Outcomes in Rodents. J. Vis. Exp. 2015, 106, e53109. [Google Scholar] [CrossRef]
- Vezzani, A.; Viviani, B. Neuromodulatory Properties of Inflammatory Cytokines and Their Impact on Neuronal Excitability. Neuropharmacology 2015, 96, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Roberto, M.; Patel, R.R.; Bajo, M. Ethanol and Cytokines in the Central Nervous System. In The Neuropharmacology of Alcohol; Grant, K.A., Lovinger, D.M., Eds.; Handbook of Experimental Pharmacology; Springer International Publishing: Cham, Switzerland, 2017; Volume 248, pp. 397–431. ISBN 978-3-319-96522-2. [Google Scholar]
- Kubera, M.; Obuchowicz, E.; Goehler, L.; Brzeszcz, J.; Maes, M. In Animal Models, Psychosocial Stress-Induced (Neuro)Inflammation, Apoptosis and Reduced Neurogenesis Are Associated to the Onset of Depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 744–759. [Google Scholar] [CrossRef] [PubMed]
- Young, J.J.; Bruno, D.; Pomara, N. A Review of the Relationship between Proinflammatory Cytokines and Major Depressive Disorder. J. Affect. Disord. 2014, 169, 15–20. [Google Scholar] [CrossRef]
- Sun, Y.; Koyama, Y.; Shimada, S. Inflammation from Peripheral Organs to the Brain: How Does Systemic Inflammation Cause Neuroinflammation? Front. Aging Neurosci. 2022, 14, 903455. [Google Scholar] [CrossRef] [PubMed]
- Hudson, L.C.; Bragg, D.C.; Tompkins, M.B.; Meeker, R.B. Astrocytes and Microglia Differentially Regulate Trafficking of Lymphocyte Subsets across Brain Endothelial Cells. Brain Res. 2005, 1058, 148–160. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Nakaoke, R.; Dohgu, S.; Banks, W.A. Release of Cytokines by Brain Endothelial Cells: A Polarized Response to Lipopolysaccharide. Brain Behav. Immun. 2006, 20, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.A.; Das, A.; Ray, S.K.; Banik, N.L. Role of Pro-Inflammatory Cytokines Released from Microglia in Neurodegenerative Diseases. Brain Res. Bull. 2012, 87, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.S.; Lee, H.J.; Lim, I.; Satoh, J.; Kim, S.U. Human Astrocytes: Secretome Profiles of Cytokines and Chemokines. PLoS ONE 2014, 9, e92325. [Google Scholar] [CrossRef] [PubMed]
- Matejuk, A.; Ransohoff, R.M. Crosstalk Between Astrocytes and Microglia: An Overview. Front. Immunol. 2020, 11, 1416. [Google Scholar] [CrossRef]
- Banks, W.A.; Kovac, A.; Morofuji, Y. Neurovascular Unit Crosstalk: Pericytes and Astrocytes Modify Cytokine Secretion Patterns of Brain Endothelial Cells. J. Cereb. Blood Flow Metab. 2018, 38, 1104–1118. [Google Scholar] [CrossRef]
- Lotrich, F.E. Inflammatory Cytokine-Associated Depression. Brain Res. 2015, 1617, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.K. Complementary and Alternative Medicine: An Overview. Curr. Sci. 2002, 82, 518–524. [Google Scholar]
- Lawrence, T. The Nuclear Factor NF- B Pathway in Inflammation. Cold Spring Harb. Perspect. Biol. 2009, 1, a001651. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-κB Signaling in Inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qu, P.; Sun, Y.; Li, Z.; Liu, L.; Yang, L. Association between Increased Inflammatory Cytokine Expression in the Lateral Habenular Nucleus and Depressive-like Behavior Induced by Unpredictable Chronic Stress in Rats. Exp. Neurol. 2022, 349, 113964. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.-Y.; Xu, Y.-W.; Feng, L.-P.; Dong, J.; Zhao, L.-Q.; Liu, C.; Wang, H.-Y.; Zhang, X.-Y.; Song, C.; Wang, C.-H. Enriched Environment Mitigates Depressive Behavior by Changing the Inflammatory Activation Phenotype of Microglia in the Hippocampus of Depression Model Rats. Brain Res. Bull. 2021, 177, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Malki, K.; Mineur, Y.S.; Tosto, M.G.; Campbell, J.; Karia, P.; Jumabhoy, I.; Sluyter, F.; Crusio, W.E.; Schalkwyk, L.C. Pervasive and Opposing Effects of Unpredictable Chronic Mild Stress (UCMS) on Hippocampal Gene Expression in BALB/cJ and C57BL/6J Mouse Strains. BMC Genom. 2015, 16, 262. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Gu, J.; Zou, Z.; Yu, M.; Zhang, C.; Xiao, Q.; Chen, X.; Li, C. Suppressive Effects of Isofraxidin on Depressive-like Behaviors Induced by Chronic Unpredictable Mild Stress in Mice. Brain Sci. 2022, 12, 1376. [Google Scholar] [CrossRef]
- Fan, C.; Song, Q.; Wang, P.; Li, Y.; Yang, M.; Liu, B.; Yu, S.Y. Curcumin Protects Against Chronic Stress-Induced Dysregulation of Neuroplasticity and Depression-like Behaviors via Suppressing IL-1β Pathway in Rats. Neuroscience 2018, 392, 92–106. [Google Scholar] [CrossRef]
- Li, H.; Lin, S.; Qin, T.; Li, H.; Ma, Z.; Ma, S. Senegenin Exerts Anti-Depression Effect in Mice Induced by Chronic Un-Predictable Mild Stress via Inhibition of NF-κB Regulating NLRP3 Signal Pathway. Int. Immunopharmacol. 2017, 53, 24–32. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Li, H.; Zhou, T.; Zhou, A.; Zhong, Z.; Liu, Y.; Yuan, L.; Zhu, H.; Luan, D.; et al. Antidepressant-like Effects of Helicid on a Chronic Unpredictable Mild Stress-Induced Depression Rat Model: Inhibiting the IKK/IκBα/NF-κB Pathway through NCALD to Reduce Inflammation. Int. Immunopharmacol. 2021, 93, 107165. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yan, S.; Zhou, Y.; Xie, P. Trans-Cinnamaldehyde Reverses Depressive-Like Behaviors in Chronic Unpredictable Mild Stress Rats by Inhibiting NF-κB/NLRP3 Inflammasome Pathway. Evid. Based Complement. Alternat. Med. 2020, 2020, 4572185. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, G.; Tao, S.; Xia, P.; Chaudhry, N.; Kaura, S.; Stone, S.S.; Liu, M. Ginkgo Biloba Extract Reduces Cardiac and Brain Inflammation in Rats Fed a HFD and Exposed to Chronic Mental Stress through NF-κB Inhibition. Mediat. Inflamm. 2022, 2022, 2408598. [Google Scholar] [CrossRef] [PubMed]
- Batsukh, S.; Oh, S.; Rheu, K.; Lee, B.-J.; Park, C.-H.; Son, K.H.; Byun, K. Rice Germ Ameliorated Chronic Unpredictable Mild Stress-Induced Depressive-like Behavior by Reducing Neuroinflammation. Nutrients 2022, 14, 5382. [Google Scholar] [CrossRef] [PubMed]
- Chao, B.; Huang, S.; Pan, J.; Zhang, Y.; Wang, Y. Saikosaponin d Downregulates microRNA-155 and Upregulates FGF2 to Improve Depression-like Behaviors in Rats Induced by Unpredictable Chronic Mild Stress by Negatively Regulating NF-κB. Brain Res. Bull. 2020, 157, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; Wang, T.; Wu, L.; Tong, Y.; Tian, J.; Zhao, K.; Wang, H. Saikosaponin-d Alleviates Depression by Promoting NLRP3 Ubiquitination and Inhibiting Inflammasome Activation. Int. Immunopharmacol. 2024, 127, 111324. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.-Q.; Zhang, Q.-P.; Zhu, J.-X.; Chen, M.; Li, C.-F.; Liu, Q.; Geng, D.; Yi, L.-T. Gypenosides Reverses Depressive Behavior via Inhibiting Hippocampal Neuroinflammation. Biomed. Pharmacother. 2018, 106, 1153–1160. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Song, S.; Yang, P.; Rao, X.; Wang, Y.; Bai, X. Aucubin Improves Chronic Unpredictable Mild Stress-Induced Depressive Behavior in Mice via the GR/NF-κB/NLRP3 Axis. Int. Immunopharmacol. 2023, 123, 110677. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Men, Y.; Wang, Z. Polydatin Alleviates Chronic Stress-Induced Depressive and Anxiety-like Behaviors in a Mouse Model. ACS Chem. Neurosci. 2023, 14, 977–987. [Google Scholar] [CrossRef]
- Fu, H.; Liu, L.; Tong, Y.; Li, Y.; Zhang, X.; Gao, X.; Yong, J.; Zhao, J.; Xiao, D.; Wen, K.; et al. The Antidepressant Effects of Hesperidin on Chronic Unpredictable Mild Stress-Induced Mice. Eur. J. Pharmacol. 2019, 853, 236–246. [Google Scholar] [CrossRef]
- Wang, W.; Zheng, L.; Xu, L.; Tu, J.; Gu, X. Pinocembrin Mitigates Depressive-like Behaviors Induced by Chronic Unpredictable Mild Stress through Ameliorating Neuroinflammation and Apoptosis. Mol. Med. 2020, 26, 53. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.-Y.-Y.; Zeng, M.-J.; Zhou, L.-P.; Li, Y.-Q.; Zhao, F.; Shang, Z.-Y.; Deng, X.-Y.; Ma, Z.-Q.; Fu, Q.; Ma, S.-P.; et al. Baicalin Exerts Neuroprotective Effects via Inhibiting Activation of GSK3β/NF-κB/NLRP3 Signal Pathway in a Rat Model of Depression. Int. Immunopharmacol. 2018, 64, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-M.; Niu, L.; Wang, L.-L.; Bai, L.; Fang, X.-Y.; Li, Y.-C.; Yi, L.-T. Berberine Attenuates Depressive-like Behaviors by Suppressing Neuro-Inflammation in Stressed Mice. Brain Res. Bull. 2017, 134, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.-Y.; Xue, J.-S.; Li, H.-Y.; Ma, Z.-Q.; Fu, Q.; Qu, R.; Ma, S.-P. Geraniol Produces Antidepressant-like Effects in a Chronic Unpredictable Mild Stress Mice Model. Physiol. Behav. 2015, 152, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-M.; Shen, J.-D.; Xu, L.-P.; Li, H.-B.; Li, Y.-C.; Yi, L.-T. Ferulic Acid Inhibits Neuro-Inflammation in Mice Exposed to Chronic Unpredictable Mild Stress. Int. Immunopharmacol. 2017, 45, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-Q.; Yan, Z.-Y.; Lan, F.-J.; Dong, Y.-Q.; Xiong, Y. Suppression of NLRP3 Inflammasome Attenuates Stress-Induced Depression-like Behavior in NLGN3-Deficient Mice. Biochem. Biophys. Res. Commun. 2018, 501, 933–940. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, R.N.; Ahmed, L.A.; Abdul Salam, R.M.; Ahmed, K.A.; Attia, A.S. Crosstalk Among NLRP3 Inflammasome, ETBR Signaling, and miRNAs in Stress-Induced Depression-Like Behavior: A Modulatory Role for SGLT2 Inhibitors. Neurotherapeutics 2021, 18, 2664–2681. [Google Scholar] [CrossRef]
- Lan, T.; Li, Y.; Fan, C.; Wang, L.; Wang, W.; Chen, S.; Yu, S.Y. MicroRNA-204-5p Reduction in Rat Hippocampus Contributes to Stress-Induced Pathology via Targeting RGS12 Signaling Pathway. J. Neuroinflamm. 2021, 18, 243. [Google Scholar] [CrossRef]
- Tang, Y.; Yang, J.; Ye, C.; Xu, X.; Cai, M.; Zhang, Y.; Lu, H.; Mo, F.; Li, H.; Shen, H. miR-182 Mediated the Inhibitory Effects of NF-κB on the GPR39/CREB/BDNF Pathway in the Hippocampus of Mice with Depressive-like Behaviors. Behav. Brain Res. 2022, 418, 113647. [Google Scholar] [CrossRef]
- Cong, T.; Sun, Y.; Zhou, Y.; Wu, H.; Li, L.; Chu, Z.; Chen, X.; Li, J.; Zhao, D.; Wang, Y.; et al. Blocking Two-Pore Domain Potassium Channel TREK-1 Inhibits the Activation of A1-Like Reactive Astrocyte Through the NF-κB Signaling Pathway in a Rat Model of Major Depressive Disorder. Neurochem. Res. 2023, 48, 1737–1754. [Google Scholar] [CrossRef]
- Meng, J.; Wang, D.-M.; Luo, L.-L. CTRP3 Acts as a Novel Regulator in Depressive-like Behavior Associated Inflammation and Apoptosis by Meditating P38 and JNK MAPK Signaling. Biomed. Pharmacother. 2019, 120, 109489. [Google Scholar] [CrossRef] [PubMed]
- Smaniotto, T.Â.; Casaril, A.M.; De Andrade Lourenço, D.; Sousa, F.S.; Seixas, F.K.; Collares, T.; Woloski, R.; Da Silva Pinto, L.; Alves, D.; Savegnago, L. Intranasal Administration of Interleukin-4 Ameliorates Depression-like Behavior and Biochemical Alterations in Mouse Submitted to the Chronic Unpredictable Mild Stress: Modulation of Neuroinflammation and Oxidative Stress. Psychopharmacology 2023, 240, 935–950. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Shen, Y.; Liu, P.; Shen, Y.; Hu, Y.; Li, P.; Zhang, Y.; Miao, F.; Zhang, J. NLRC5 Deficiency Reduces LPS-Induced Microglial Activation via Inhibition of NF-κB Signaling and Ameliorates Mice’s Depressive-like Behavior. Int. J. Mol. Sci. 2023, 24, 13265. [Google Scholar] [CrossRef] [PubMed]
- Slavich, G.M.; Irwin, M.R. From Stress to Inflammation and Major Depressive Disorder: A Social Signal Transduction Theory of Depression. Psychol. Bull. 2014, 140, 774–815. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, T.; Kawai, T. Toll-Like Receptor Signaling Pathways. Front. Immunol. 2014, 5, 461. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-Hall, L.K.; Paulus, M.P.; Savitz, J. Toll-Like Receptor Signaling in Depression. Psychoneuroendocrinology 2020, 121, 104843. [Google Scholar] [CrossRef] [PubMed]
- Hung, Y.-Y.; Huang, K.-W.; Kang, H.-Y.; Huang, G.Y.-L.; Huang, T.-L. Antidepressants Normalize Elevated Toll-like Receptor Profile in Major Depressive Disorder. Psychopharmacology 2016, 233, 1707–1714. [Google Scholar] [CrossRef] [PubMed]
- Ii Timberlake, M.; Dwivedi, Y. Linking Unfolded Protein Response to Inflammation and Depression: Potential Pathologic and Therapeutic Implications. Mol. Psychiatry 2019, 24, 987–994. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, J.; Liu, Y.; Li, Z.; Li, X. TLR4-NF-κB Signal Involved in Depressive-Like Behaviors and Cytokine Expression of Frontal Cortex and Hippocampus in Stressed C57BL/6 and Ob/Ob Mice. Neural. Plast. 2018, 2018, 7254016. [Google Scholar] [CrossRef]
- Tang, Y.L.; Jiang, J.H.; Wang, S.; Liu, Z.; Tang, X.Q.; Peng, J.; Yang, Y.-Z.; Gu, H.-F. TLR4/NF-κB Signaling Contributes to Chronic Unpredictable Mild Stress-Induced Atherosclerosis in ApoE-/- Mice. PLoS ONE 2015, 10, e0123685. [Google Scholar] [CrossRef]
- Chen, T.; Liu, S.; Zheng, M.; Li, Y.; He, L. The Effect of Geniposide on Chronic Unpredictable Mild Stress-induced Depressive Mice through BTK/TLR4/NF-κB and BDNF/TrkB Signaling Pathways. Phytother. Res. 2021, 35, 932–945. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Sun, P.; Li, Z.; Li, J.; Lv, X.; Chen, S.; Zhu, X.; Chai, X.; Zhao, S. Eucommiae Cortex Polysaccharides Attenuate Gut Microbiota Dysbiosis and Neuroinflammation in Mice Exposed to Chronic Unpredictable Mild Stress: Beneficial in Ameliorating Depressive-like Behaviors. J. Affect. Disord. 2023, 334, 278–292. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.; Zhang, M.; Cheng, J.; Wan, H.; Li, C.; Zhu, J.; Zhang, Q.; Liu, Q.; Xu, G. Antidepressant-like Effects of Degraded Porphyran Isolated from Porphyra haitanensis. Mol. Nutr. Food Res. 2021, 65, 2000869. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.-T.; Wang, S.-Q.; Su, J.; Xu, L.-X.; Ji, Z.-Y.; Zhang, R.-Y.; Zhao, Q.-W.; Ma, Z.-Q.; Deng, X.-Y.; Ma, S.-P. Baicalin Ameliorates Neuroinflammation-Induced Depressive-like Behavior through Inhibition of Toll-like Receptor 4 Expression via the PI3K/AKT/FoxO1 Pathway. J. Neuroinflamm. 2019, 16, 95. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Dong, Y.; Shan, X.; Li, L.; Xia, B.; Wang, H. Anti-Depressive Effectiveness of Baicalin In Vitro and In Vivo. Molecules 2019, 24, 326. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.-A.M.; Gad, A.M.; Menze, E.T.; Badary, O.A.; El-Naga, R.N. Protective Effects of Morin against Depressive-like Behavior Prompted by Chronic Unpredictable Mild Stress in Rats: Possible Role of Inflammasome-Related Pathways. Biochem. Pharmacol. 2020, 180, 114140. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Wang, J.; Hao, C.; Dang, H.; Jiang, S. Tetramethylpyrazine Ameliorates Depression by Inhibiting TLR4-NLRP3 Inflammasome Signal Pathway in Mice. Psychopharmacology 2019, 236, 2173–2185. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Piao, H.; Aosai, F.; Zeng, X.; Cheng, J.; Cui, Y.; Li, J.; Ma, J.; Piao, H.; Jin, X.; et al. Arctigenin Protects against Depression by Inhibiting Microglial Activation and Neuroinflammation via HMGB1/TLR4/NF-κB and TNF-α/TNFR1/NF-κB Pathways. Br. J. Pharmacol. 2020, 177, 5224–5245. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zeng, X.-Y.; Cui, Y.-X.; Li, Y.-B.; Cheng, J.-H.; Zhao, X.-D.; Xu, G.-H.; Ma, J.; Piao, H.-N.; Jin, X.; et al. Antidepressive Effect of Arctiin by Attenuating Neuroinflammation via HMGB1/TLR4- and TNF-α/TNFR1-Mediated NF-κB Activation. ACS Chem. Neurosci. 2020, 11, 2214–2230. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Zeng, X.; Yang, K.; Peng, H.; Chen, J. N-3 Polyunsaturated Fatty Acids Improve Depression-like Behavior by Inhibiting Hippocampal Neuroinflammation in Mice via Reducing TLR4 Expression. Immun. Inflamm. Dis. 2022, 10, e707. [Google Scholar] [CrossRef]
- Wang, D.; Wu, J.; Zhu, P.; Xie, H.; Lu, L.; Bai, W.; Pan, W.; Shi, R.; Ye, J.; Xia, B.; et al. Tryptophan-Rich Diet Ameliorates Chronic Unpredictable Mild Stress Induced Depression- and Anxiety-like Behavior in Mice: The Potential Involvement of Gut-Brain Axis. Food Res. Int. 2022, 157, 111289. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, Z.; Lan, Y.; Tuo, Y.; Ma, S.; Liu, X. Inulin Attenuates Blood–Brain Barrier Permeability and Alleviates Behavioral Disorders by Modulating the TLR4/MyD88/NF-κB Pathway in Mice with Chronic Stress. J. Agric. Food Chem. 2023, 71, 13325–13337. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Liu, R.; Chen, J.; Zheng, L.; Chen, R. Aerobic Exercise Inhibits CUMS-Depressed Mice Hippocampal Inflammatory Response via Activating Hippocampal miR-223/TLR4/MyD88-NF-κB Pathway. Int. J. Environ. Res. Public Health 2020, 17, 2676. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Chen, Y.; Cheng, W.; Li, P.; Shen, J.; Tong, T.; Lai, L.; Yan, S.; Huang, Z.; Li, J.; et al. Acupuncture Exerts Preventive Effects in Rats of Chronic Unpredictable Mild Stress: The Involvement of Inflammation in Amygdala and Brain-Spleen Axis. Biochem. Biophys. Res. Commun. 2023, 646, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Hendawy, N.; Salaheldin, T.H.; Abuelezz, S.A. PCSK9 Inhibition Reduces Depressive like Behavior in CUMS-Exposed Rats: Highlights on HMGB1/RAGE/TLR4 Pathway, NLRP3 Inflammasome Complex and IDO-1. J. Neuroimmune Pharmacol. 2023, 18, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Zhang, H.; Ning, W.; Yang, Z.; Wang, Y.; Zhang, T. Knockdown of FSTL1 Inhibits Microglia Activation and Alleviates Depressive-like Symptoms through Modulating TLR4/MyD88/NF-κB Pathway in CUMS Mice. Exp. Neurol. 2022, 353, 114060. [Google Scholar] [CrossRef]
- Wu, H.; Bao, H.; Liu, C.; Zhang, Q.; Huang, A.; Quan, M.; Li, C.; Xiong, Y.; Chen, G.; Hou, L. Extracellular Nucleosomes Accelerate Microglial Inflammation via C-Type Lectin Receptor 2D and Toll-Like Receptor 9 in mPFC of Mice with Chronic Stress. Front. Immunol. 2022, 13, 854202. [Google Scholar] [CrossRef] [PubMed]
- Troubat, R.; Barone, P.; Leman, S.; Desmidt, T.; Cressant, A.; Atanasova, B.; Brizard, B.; El Hage, W.; Surget, A.; Belzung, C.; et al. Neuroinflammation and Depression: A Review. Eur. J. Neurosci. 2021, 53, 151–171. [Google Scholar] [CrossRef]
- Das, R.; Emon, M.P.Z.; Shahriar, M.; Nahar, Z.; Islam, S.M.A.; Bhuiyan, M.A.; Islam, S.N.; Islam, M.R. Higher Levels of Serum IL-1β and TNF-α Are Associated with an Increased Probability of Major Depressive Disorder. Psychiatry Res. 2021, 295, 113568. [Google Scholar] [CrossRef]
- Owen, B.M.; Eccleston, D.; Ferrier, I.N.; Young, H. Raised Levels of Plasma Interleukin-1β in Major and Postviral Depression. Acta Psychiatr. Scand. 2001, 103, 226–228. [Google Scholar] [CrossRef]
- Ma, H.; Huang, H.; Li, C.; Li, S.; Gan, J.; Lian, C.; Ling, Y. The Antidepressive Mechanism of Longya Lilium Combined with Fluoxetine in Mice with Depression-like Behaviors. Npj Syst. Biol. Appl. 2024, 10, 5. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-E.; Chen, Y.-C.; Lu, K.-H.; Huang, Y.-J.; Panyod, S.; Liu, W.-T.; Yang, S.-H.; Lu, Y.-S.; Chen, M.-H.; Sheen, L.-Y. Antidepressant-like Effects of Water Extract of Cordyceps militaris (Linn.) Link by Modulation of ROCK2/PTEN/Akt Signaling in an Unpredictable Chronic Mild Stress-Induced Animal Model. J. Ethnopharmacol. 2021, 276, 114194. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Zhang, Y.; Pan, H.; Shi, R.; Zhu, H.; Yang, R.; Zhang, L.; Chen, B.; Zhu, T.; Lu, X.; et al. Mobilization of the Innate Immune Response by a Specific Immunostimulant β-Glucan Confers Resistance to Chronic Stress-Induced Depression-like Behavior by Preventing Neuroinflammatory Responses. Int. Immunopharmacol. 2024, 127, 111405. [Google Scholar] [CrossRef]
- Zhao, C.; Shi, R.; Lu, X.; Yang, R.; Chen, Z.; Chen, B.; Hu, W.; Ren, J.; Peng, J.; Zhu, T.; et al. Obligatory Role of Microglia-Mobilized Hippocampal CREB-BDNF Signaling in the Prophylactic Effect of β-Glucan on Chronic Stress-Induced Depression-like Behaviors in Mice. Eur. J. Pharmacol. 2024, 964, 176288. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, L.; Liu, Y.-Z.; Shen, X.-L.; Wu, T.-Y.; Zhang, T.; Wang, W.; Wang, Y.-X.; Jiang, C.-L. NLRP3 Inflammasome Mediates Chronic Mild Stress-Induced Depression in Mice via Neuroinflammation. Int. J. Neuropsychopharmacol. 2015, 18, pyv006. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-N.; Peng, Y.-L.; -Liu, L.; Wu, T.-Y.; Zhang, Y.; Lian, Y.-J.; Yang, Y.-Y.; Kelley, K.W.; Jiang, C.-L.; Wang, Y.-X. TNFα Mediates Stress-Induced Depression by Upregulating Indoleamine 2,3-Dioxygenase in a Mouse Model of Unpredictable Chronic Mild Stress. Eur. Cytokine Netw. 2015, 26, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Yogesh Bhatia, N.; Mahesh Doshi, G. Terazosin Produces an Antidepressant-like Effect in Mice Exposed to Chronic Unpredictable Mild Stress Behavioral Alteration. Neurosci. Lett. 2024, 822, 137653. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Tang, M.-H.; Zeng, Z.-Y.; Huang, S.-J.; Zheng, X.-F.; Liu, Z.-Y. Suppressive Effects of Gelsemine on Anxiety-like Behaviors Induced by Chronic Unpredictable Mild Stress in Mice. Brain Sci. 2022, 12, 191. [Google Scholar] [CrossRef]
- Jankovic, M.; Spasojevic, N.; Ferizovic, H.; Stefanovic, B.; Virijevic, K.; Vezmar, M.; Dronjak, S. Sex-Related and Brain Regional Differences of URB597 Effects on Modulation of MAPK/PI3K Signaling in Chronically Stressed Rats. Mol. Neurobiol. 2023, 61, 1495–1506. [Google Scholar] [CrossRef]
- Li, M.-M.; Wang, X.; Chen, X.-D.; Yang, H.-L.; Xu, H.-S.; Zhou, P.; Gao, R.; Zhang, N.; Wang, J.; Jiang, L.; et al. Lysosomal Dysfunction Is Associated with NLRP3 Inflammasome Activation in Chronic Unpredictable Mild Stress-Induced Depressive Mice. Behav. Brain Res. 2022, 432, 113987. [Google Scholar] [CrossRef]
- Karami, A.; Fakhri, S.; Kooshki, L.; Khan, H. Polydatin: Pharmacological Mechanisms, Therapeutic Targets, Biological Activities, and Health Benefits. Molecules 2022, 27, 6474. [Google Scholar] [CrossRef] [PubMed]
- Koo, J.W.; Duman, R.S. IL-1 Is an Essential Mediator of the Antineurogenic and Anhedonic Effects of Stress. Proc. Natl. Acad. Sci. USA 2008, 105, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Roohi, E.; Jaafari, N.; Hashemian, F. On Inflammatory Hypothesis of Depression: What Is the Role of IL-6 in the Middle of the Chaos? J. Neuroinflamm. 2021, 18, 45. [Google Scholar] [CrossRef] [PubMed]
- Ting, E.Y.-C.; Yang, A.C.; Tsai, S.-J. Role of Interleukin-6 in Depressive Disorder. Int. J. Mol. Sci. 2020, 21, 2194. [Google Scholar] [CrossRef] [PubMed]
- Chourbaji, S.; Urani, A.; Inta, I.; Sanchis-Segura, C.; Brandwein, C.; Zink, M.; Schwaninger, M.; Gass, P. IL-6 Knockout Mice Exhibit Resistance to Stress-Induced Development of Depression-like Behaviors. Neurobiol. Dis. 2006, 23, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Grolli, R.E.; Bertollo, A.G.; Behenck, J.P.; De Araujo Borba, L.; Plissari, M.E.; Soares, S.J.B.; Manica, A.; Da Silva Joaquim, L.; Petronilho, F.; Quevedo, J.; et al. Quetiapine Effect on Depressive-like Behaviors, Oxidative Balance, and Inflammation in Serum of Rats Submitted to Chronic Stress. Naunyn. Schmiedebergs Arch. Pharmacol. 2023, 396, 1423–1433. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, V.; Kaushik, A.S.; Rehman, M.; Chaudhary, R.; Jawaid, T.; Kamal, M.; Mishra, V. Interleukin-6 Expression and Its Modulation by Diacerein in a Rat Model of Chronic Stress Induced Cardiac Dysfunction. Heliyon 2021, 7, e08522. [Google Scholar] [CrossRef] [PubMed]
- Kandilarov, I.; Gardjeva, P.; Georgieva-Kotetarova, M.; Zlatanova, H.; Vilmosh, N.; Kostadinova, I.; Katsarova, M.; Atliev, K.; Dimitrova, S. Effect of Plant Extracts Combinations on TNF-α, IL-6 and IL-10 Levels in Serum of Rats Exposed to Acute and Chronic Stress. Plants 2023, 12, 3049. [Google Scholar] [CrossRef]
- Almohaimeed, H.M.; Albadawi, E.A.; Mohammedsaleh, Z.M.; Alghabban, H.M.; Seleem, H.S.; Ramadan, O.I.; Ayuob, N.N. Brain-Derived Neurotropic Factor (BDNF) Mediates the Protective Effect of Cucurbita Pepo L. on Salivary Glands of Rats Exposed to Chronic Stress Evident by Structural, Biochemical and Molecular Study. J. Appl. Oral Sci. 2021, 29, e20201080. [Google Scholar] [CrossRef]
- Du, Y.; Wang, Y.-L.; Chen, L.; Li, Q.-E.; Cheng, Y. Anti-Depressant-like Effects of Rannasangpei and Its Active Ingredient Crocin-1 on Chronic Unpredictable Mild Stress Mice. Front. Pharmacol. 2023, 14, 1143286. [Google Scholar] [CrossRef]
- Li, S.; Yang, C.; Wu, Z.; Chen, Y.; He, X.; Liu, R.; Ma, W.; Deng, S.; Li, J.; Liu, Q.; et al. Suppressive Effects of Bilobalide on Depression-like Behaviors Induced by Chronic Unpredictable Mild Stress in Mice. Food Funct. 2023, 14, 8409–8419. [Google Scholar] [CrossRef] [PubMed]
- Qin, M.; Chen, C.; Wang, N.; Yu, D.; Yu, S.; Wang, X.; Liu, T.; Lv, L.; Guan, Q. Total Saponins of Panax Ginseng via the CX3CL1/CX3CR1 Axis Attenuates Neuroinflammation and Exerted Antidepressant-like Effects in Chronic Unpredictable Mild Stress in Rats. Phytother. Res. 2023, 37, 1823–1838. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, V.; Kaushik, A.S.; Chaudhary, R.; Rehman, M.; Srivastava, S.; Mishra, V. Transcutaneous Vagus Nerve Stimulation Ameliorates Cardiac Abnormalities in Chronically Stressed Rats. Naunyn. Schmiedebergs Arch. Pharmacol. 2024, 397, 281–303. [Google Scholar] [CrossRef] [PubMed]
- Wajant, H.; Siegmund, D. TNFR1 and TNFR2 in the Control of the Life and Death Balance of Macrophages. Front. Cell Dev. Biol. 2019, 7, 91. [Google Scholar] [CrossRef] [PubMed]
- Pandey, G.N.; Rizavi, H.S.; Zhang, H.; Bhaumik, R.; Ren, X. Abnormal Protein and mRNA Expression of Inflammatory Cytokines in the Prefrontal Cortex of Depressed Individuals Who Died by Suicide. J. Psychiatry Neurosci. 2018, 43, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Uzzan, S.; Azab, A.N. Anti-TNF-α Compounds as a Treatment for Depression. Molecules 2021, 26, 2368. [Google Scholar] [CrossRef] [PubMed]
- Nollet, M.; Hicks, H.; McCarthy, A.P.; Wu, H.; Möller-Levet, C.S.; Laing, E.E.; Malki, K.; Lawless, N.; Wafford, K.A.; Dijk, D.-J.; et al. REM Sleep’s Unique Associations with Corticosterone Regulation, Apoptotic Pathways, and Behavior in Chronic Stress in Mice. Proc. Natl. Acad. Sci. USA 2019, 116, 2733–2742. [Google Scholar] [CrossRef] [PubMed]
- Berthold-Losleben, M.; Himmerich, H. The TNF-α System: Functional Aspects in Depression, Narcolepsy and Psychopharmacology. Curr. Neuropharmacol. 2008, 6, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.-Q.; Yu, J. Inflammation: A Mechanism of Depression? Neurosci. Bull. 2014, 30, 515–523. [Google Scholar] [CrossRef]
- Kenis, G.; Maes, M. Effects of Antidepressants on the Production of Cytokines. Int. J. Neuropsychopharmacol. 2002, 5, 401–412. [Google Scholar] [CrossRef]
- Miller, A.H.; Maletic, V.; Raison, C.L. Inflammation and Its Discontents: The Role of Cytokines in the Pathophysiology of Major Depression. Biol. Psychiatry 2009, 65, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Desse, S.; Martinez, A.; Worthen, R.J.; Jope, R.S.; Beurel, E. TNFα Disrupts Blood Brain Barrier Integrity to Maintain Prolonged Depressive-like Behavior in Mice. Brain Behav. Immun. 2018, 69, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Kastin, A.J. Tumor Necrosis Factor and Stroke: Role of the Blood–Brain Barrier. Prog. Neurobiol. 2007, 83, 363–374. [Google Scholar] [CrossRef]
- Sun, Z.-W.; Wang, X.; Zhao, Y.; Sun, Z.-X.; Wu, Y.-H.; Hu, H.; Zhang, L.; Wang, S.-D.; Li, F.; Wei, A.-J.; et al. Blood-Brain Barrier Dysfunction Mediated by the EZH2-Claudin-5 Axis Drives Stress-Induced TNF-α Infiltration and Depression-like Behaviors. Brain Behav. Immun. 2024, 115, 143–156. [Google Scholar] [CrossRef] [PubMed]
- De Klerk, O.L.; Bosker, F.J.; Willemsen, A.T.; Van Waarde, A.; Visser, A.K.; De Jager, T.; Dagyte, G.; Den Boer, J.A.; Dierckx, R.A.; Meerlo, P. Chronic Stress and Antidepressant Treatment Have Opposite Effects on P-Glycoprotein at the Blood—Brain Barrier: An Experimental PET Study in Rats. J. Psychopharmacol. 2010, 24, 1237–1242. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.-Q.; Fang, Z.; Chen, X.-L.; Yang, S.; Zhou, Y.-F.; Mao, L.; Xia, Y.-P.; Jin, H.-J.; Li, Y.-N.; You, M.-F.; et al. Microglia-Derived TNF-α Mediates Endothelial Necroptosis Aggravating Blood Brain–Barrier Disruption after Ischemic Stroke. Cell Death Dis. 2019, 10, 487. [Google Scholar] [CrossRef]
- Versele, R.; Sevin, E.; Gosselet, F.; Fenart, L.; Candela, P. TNF-α and IL-1β Modulate Blood-Brain Barrier Permeability and Decrease Amyloid-β Peptide Efflux in a Human Blood-Brain Barrier Model. Int. J. Mol. Sci. 2022, 23, 10235. [Google Scholar] [CrossRef]
- Şahin, T.D.; Karson, A.; Balcı, F.; Yazır, Y.; Bayramgürler, D.; Utkan, T. TNF-Alpha Inhibition Prevents Cognitive Decline and Maintains Hippocampal BDNF Levels in the Unpredictable Chronic Mild Stress Rat Model of Depression. Behav. Brain Res. 2015, 292, 233–240. [Google Scholar] [CrossRef]
- Xue, J.; Li, H.; Deng, X.; Ma, Z.; Fu, Q.; Ma, S. L-Menthone Confers Antidepressant-like Effects in an Unpredictable Chronic Mild Stress Mouse Model via NLRP3 Inflammasome-Mediated Inflammatory Cytokines and Central Neurotransmitters. Pharmacol. Biochem. Behav. 2015, 134, 42–48. [Google Scholar] [CrossRef]
- Puigoriol-Illamola, D.; Companys-Alemany, J.; McGuire, K.; Homer, N.Z.M.; Leiva, R.; Vázquez, S.; Mole, D.J.; Griñán-Ferré, C.; Pallàs, M. Inhibition of 11β-HSD1 Ameliorates Cognition and Molecular Detrimental Changes after Chronic Mild Stress in SAMP8 Mice. Pharmaceuticals 2021, 14, 1040. [Google Scholar] [CrossRef]
- Arnsten, A.F.T. Stress Signalling Pathways That Impair Prefrontal Cortex Structure and Function. Nat. Rev. Neurosci. 2009, 10, 410–422. [Google Scholar] [CrossRef]
- Han, Y.-Y.; Jin, K.; Pan, Q.-S.; Li, B.; Wu, Z.-Q.; Gan, L.; Yang, L.; Long, C. Microglial Activation in the Dorsal Striatum Participates in Anxiety-like Behavior in Cyld Knockout Mice. Brain Behav. Immun. 2020, 89, 326–338. [Google Scholar] [CrossRef] [PubMed]
- Hayden, M.S.; Ghosh, S. Regulation of NF-κB by TNF Family Cytokines. Semin. Immunol. 2014, 26, 253–266. [Google Scholar] [CrossRef]
- Dubois, A.; Wilson, V.; Bourn, D.; Rajan, N. CYLD Genetic Testing for Brooke-Spiegler Syndrome, Familial Cylindromatosis and Multiple Familial Trichoepitheliomas. PLoS Curr. 2015, 7. [Google Scholar] [CrossRef]
- Porro, C.; Cianciulli, A.; Panaro, M.A. The Regulatory Role of IL-10 in Neurodegenerative Diseases. Biomolecules 2020, 10, 1017. [Google Scholar] [CrossRef]
- Xia, J.; Wang, H.; Zhang, C.; Liu, B.; Li, Y.; Li, K.; Li, P.; Song, C. The Comparison of Sex Differences in Depression-like Behaviors and Neuroinflammatory Changes in a Rat Model of Depression Induced by Chronic Stress. Front. Behav. Neurosci. 2023, 16, 1059594. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, B.; Pawluski, J.; Steinbusch, H.W.M.; Kirthana Kunikullaya, U.; Song, C. The Effect of Chronic Stress on Behaviors, Inflammation and Lymphocyte Subtypes in Male and Female Rats. Behav. Brain Res. 2023, 439, 114220. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.; Feng, S.; Hao, Z.; Dong, C.; Liu, H. Antibiotics Exposure Attenuates Chronic Unpredictable Mild Stress-Induced Anxiety-like and Depression-like Behavior. Psychoneuroendocrinology 2022, 136, 105620. [Google Scholar] [CrossRef] [PubMed]
- Zenobia, C.; Hajishengallis, G. Basic Biology and Role of Interleukin-17 in Immunity and Inflammation. Periodontology 2000 2015, 69, 142–159. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, F.; Li, P.; Song, C. Low-Dose IL-2 Attenuated Depression-like Behaviors and Pathological Changes through Restoring the Balances between IL-6 and TGF-β and between Th17 and Treg in a Chronic Stress-Induced Mouse Model of Depression. Int. J. Mol. Sci. 2022, 23, 13856. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, S.; Lu, Y.; Wang, Y.; Zhao, J.; Li, L. T Cell Responses in Depressed Mice Induced by Chronic Unpredictable Mild Stress. J. Affect. Disord. 2022, 296, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Biet, F.; Locht, C.; Kremer, L. Immunoregulatory Functions of Interleukin 18 and Its Role in Defense against Bacterial Pathogens. J. Mol. Med. 2002, 80, 147–162. [Google Scholar] [CrossRef]
- Fawzi, S.F.; Michel, H.E.; Menze, E.T.; Tadros, M.G.; George, M.Y. Clotrimazole Ameliorates Chronic Mild Stress-Induced Depressive-like Behavior in Rats; Crosstalk between the HPA, NLRP3 Inflammasome, and Wnt/β-Catenin Pathways. Int. Immunopharmacol. 2024, 127, 111354. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wang, J.; Yang, H.; Sun, Y.; Chen, B.; Liu, Y.; Han, Y.; Shan, M.; Zhan, J. Interleukin 22 and Its Association with Neurodegenerative Disease Activity. Front. Pharmacol. 2022, 13, 958022. [Google Scholar] [CrossRef] [PubMed]
- Dudakov, J.A.; Hanash, A.M.; Van Den Brink, M.R.M. Interleukin-22: Immunobiology and Pathology. Annu. Rev. Immunol. 2015, 33, 747–785. [Google Scholar] [CrossRef]
- Cernackova, A.; Durackova, Z.; Trebaticka, J.; Mravec, B. Neuroinflammation and Depressive Disorder: The Role of the Hypothalamus. J. Clin. Neurosci. 2020, 75, 5–10. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
White, A.G.; Elias, E.; Orozco, A.; Robinson, S.A.; Manners, M.T. Chronic Stress-Induced Neuroinflammation: Relevance of Rodent Models to Human Disease. Int. J. Mol. Sci. 2024, 25, 5085. https://doi.org/10.3390/ijms25105085
White AG, Elias E, Orozco A, Robinson SA, Manners MT. Chronic Stress-Induced Neuroinflammation: Relevance of Rodent Models to Human Disease. International Journal of Molecular Sciences. 2024; 25(10):5085. https://doi.org/10.3390/ijms25105085
Chicago/Turabian StyleWhite, Abigail G., Elias Elias, Andrea Orozco, Shivon A. Robinson, and Melissa T. Manners. 2024. "Chronic Stress-Induced Neuroinflammation: Relevance of Rodent Models to Human Disease" International Journal of Molecular Sciences 25, no. 10: 5085. https://doi.org/10.3390/ijms25105085
APA StyleWhite, A. G., Elias, E., Orozco, A., Robinson, S. A., & Manners, M. T. (2024). Chronic Stress-Induced Neuroinflammation: Relevance of Rodent Models to Human Disease. International Journal of Molecular Sciences, 25(10), 5085. https://doi.org/10.3390/ijms25105085