Mechanisms Involved in the Link between Depression, Antidepressant Treatment, and Associated Weight Change
Abstract
:1. Introduction
2. Physiology of Appetite Regulation: The Homeostatic and Hedonic Systems
2.1. The Homeostatic System: Regulation Based on Energy Demand
2.2. The Hedonic System: Regulation Based on Reward
3. Mechanisms Linking Depression and Appetite Regulation
4. The Effect of Antidepressant Treatment on Weight Change
4.1. Tricyclic Antidepressants
4.2. Selective Serotonin Reuptake Inhibitors
4.3. Serotonin and Norepinephrine Reuptake Inhibitors
4.4. Atypical Antidepressants
4.5. MAOIs
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Clinical Descriptions and Diagnostic Requirements for ICD-11 Mental, Behavioural and Neurodevelopmental Disorders (CDDR). Available online: https://www.who.int/publications-detail-redirect/9789240077263 (accessed on 15 April 2024).
- Dattani, S.; Rodés-Guirao, L.; Ritchie, H.; Roser, M. Mental Health. Our World Data 2023. Available online: https://ourworldindata.org/mental-health (accessed on 19 April 2024).
- Lim, G.Y.; Tam, W.W.; Lu, Y.; Ho, C.S.; Zhang, M.W.; Ho, R.C. Prevalence of Depression in the Community from 30 Countries between 1994 and 2014. Sci. Rep. 2018, 8, 2861. [Google Scholar] [CrossRef] [PubMed]
- Fischer, F.; Zocholl, D.; Rauch, G.; Levis, B.; Benedetti, A.; Thombs, B.; Rose, M.; Kostoulas, P. Prevalence Estimates of Major Depressive Disorder in 27 European Countries from the European Health Interview Survey: Accounting for Imperfect Diagnostic Accuracy of the PHQ-8. BMJ Ment Health 2023, 26, e300675. [Google Scholar] [CrossRef] [PubMed]
- Kessler, R.C.; Bromet, E.J. The Epidemiology of Depression across Cultures. Annu. Rev. Public Health 2013, 34, 119–138. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Xie, X.-M.; Zhang, Q.; Cui, X.; Lin, J.-X.; Sim, K.; Ungvari, G.S.; Zhang, L.; Xiang, Y.-T. Prevalence of Suicidality in Major Depressive Disorder: A Systematic Review and Meta-Analysis of Comparative Studies. Front. Psychiatry 2021, 12, 690130. [Google Scholar] [CrossRef] [PubMed]
- Bueno-Notivol, J.; Gracia-García, P.; Olaya, B.; Lasheras, I.; López-Antón, R.; Santabárbara, J. Prevalence of Depression during the COVID-19 Outbreak: A Meta-Analysis of Community-Based Studies. Int. J. Clin. Health Psychol. 2021, 21, 100196. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.M.; Renshaw, P.F.; Bilello, J. The Diagnosis of Depression: Current and Emerging Methods. Compr. Psychiatry 2013, 54, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Sacher, J.; Neumann, J.; Fünfstück, T.; Soliman, A.; Villringer, A.; Schroeter, M.L. Mapping the Depressed Brain: A Meta-Analysis of Structural and Functional Alterations in Major Depressive Disorder. J. Affect. Disord. 2012, 140, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, C.; Li, G.; Lin, X.; Jiang, D.; Xu, Y.; Tian, H.; Wang, W.; Song, X. The Rise and Fall of MRI Studies in Major Depressive Disorder. Transl. Psychiatry 2019, 9, 335. [Google Scholar] [CrossRef]
- Rigucci, S.; Serafini, G.; Pompili, M.; Kotzalidis, G.D.; Tatarelli, R. Anatomical and Functional Correlates in Major Depressive Disorder: The Contribution of Neuroimaging Studies. World J. Biol. Psychiatry 2010, 11, 165–180. [Google Scholar] [CrossRef]
- Simmons, W.K.; Burrows, K.; Avery, J.A.; Kerr, K.L.; Bodurka, J.; Savage, C.R.; Drevets, W.C. Depression-Related Increases and Decreases in Appetite: Dissociable Patterns of Aberrant Activity in Reward and Interoceptive Neurocircuitry. Am. J. Psychiatry 2016, 173, 418–428. [Google Scholar] [CrossRef] [PubMed]
- Jauch-Chara, K.; Oltmanns, K.M. Obesity—A Neuropsychological Disease? Systematic Review and Neuropsychological Model. Prog. Neurobiol. 2014, 114, 84–101. [Google Scholar] [CrossRef] [PubMed]
- Luppino, F.S.; de Wit, L.M.; Bouvy, P.F.; Stijnen, T.; Cuijpers, P.; Penninx, B.W.J.H.; Zitman, F.G. Overweight, Obesity, and Depression: A Systematic Review and Meta-Analysis of Longitudinal Studies. Arch. Gen. Psychiatry 2010, 67, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Manelis, A.; Halchenko, Y.; Satz, S.; Ragozzino, R.; Iyengar, S.; Swartz, H.; Levine, M. The Interaction between Depression Diagnosis and BMI Is Related to Altered Activation Pattern in the Right Inferior Frontal Gyrus and Anterior Cingulate Cortex during Food Anticipation. Brain Behav. 2022, 12, e2695. [Google Scholar] [CrossRef] [PubMed]
- Kuo, L.E.; Kitlinska, J.B.; Tilan, J.U.; Li, L.; Baker, S.B.; Johnson, M.D.; Lee, E.W.; Burnett, M.S.; Fricke, S.T.; Kvetnansky, R.; et al. Neuropeptide Y Acts Directly in the Periphery on Fat Tissue and Mediates Stress-Induced Obesity and Metabolic Syndrome. Nat. Med. 2007, 13, 803–811. [Google Scholar] [CrossRef]
- Gill, H.; Gill, B.; El-Halabi, S.; Chen-Li, D.; Lipsitz, O.; Rosenblat, J.D.; Van Rheenen, T.E.; Rodrigues, N.B.; Mansur, R.B.; Majeed, A.; et al. Antidepressant Medications and Weight Change: A Narrative Review. Obesity 2020, 28, 2064–2072. [Google Scholar] [CrossRef] [PubMed]
- Serretti, A.; Mandelli, L. Antidepressants and Body Weight: A Comprehensive Review and Meta-Analysis. J. Clin. Psychiatry 2010, 71, 979. [Google Scholar] [CrossRef]
- Verhaegen, A.A.; Van Gaal, L.F. Drugs Affecting Body Weight, Body Fat Distribution, and Metabolic Function-Mechanisms and Possible Therapeutic or Preventive Measures: An Update. Curr. Obes. Rep. 2021, 10, 1–13. [Google Scholar] [CrossRef]
- Luo, Y.; Kataoka, Y.; Ostinelli, E.G.; Cipriani, A.; Furukawa, T.A. National Prescription Patterns of Antidepressants in the Treatment of Adults with Major Depression in the US between 1996 and 2015: A Population Representative Survey Based Analysis. Front. Psychiatry 2020, 11, 35. [Google Scholar] [CrossRef]
- Halford, J.C.G.; Harrold, J.A.; Lawton, C.L.; Blundell, J.E. Serotonin (5-HT) Drugs: Effects on Appetite Expression and Use for the Treatment of Obesity. Curr. Drug Targets 2005, 6, 201–213. [Google Scholar] [CrossRef]
- Field, B.C.T.; Chaudhri, O.B.; Bloom, S.R. Bowels Control Brain: Gut Hormones and Obesity. Nat. Rev. Endocrinol. 2010, 6, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Weltens, N.; Zhao, D.; Van Oudenhove, L. Where Is the Comfort in Comfort Foods? Mechanisms Linking Fat Signaling, Reward, and Emotion. Neurogastroenterol. Motil. 2014, 26, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Deem, J.D.; Faber, C.L.; Morton, G.J. AgRP Neurons: Regulators of Feeding, Energy Expenditure, and Behavior. FEBS J. 2022, 289, 2362–2381. [Google Scholar] [CrossRef] [PubMed]
- Haynes, S.E.; Han, M.-H. A Novel Role for Hypothalamic AgRP Neurons in Mediating Depressive Behavior. Trends Neurosci. 2021, 44, 243–246. [Google Scholar] [CrossRef] [PubMed]
- Tural, U.; Iosifescu, D.V. Neuropeptide Y in PTSD, MDD, and Chronic Stress: A Systematic Review and Meta-Analysis. J. Neurosci. Res. 2020, 98, 950–963. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.D. Appetite Regulation: Hormones, Peptides, and Neurotransmitters and Their Role in Obesity. Am. J. Lifestyle Med. 2019, 13, 586–601. [Google Scholar] [CrossRef] [PubMed]
- Cerit, H.; Christensen, K.; Moondra, P.; Klibanski, A.; Goldstein, J.M.; Holsen, L.M. Divergent Associations between Ghrelin and Neural Responsivity to Palatable Food in Hyperphagic and Hypophagic Depression. J. Affect. Disord. 2019, 242, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Morin, V.; Hozer, F.; Costemale-Lacoste, J.-F. The Effects of Ghrelin on Sleep, Appetite, and Memory, and Its Possible Role in Depression: A Review of the Literature. L’Encéphale 2018, 44, 256–263. [Google Scholar] [CrossRef]
- Obradovic, M.; Sudar-Milovanovic, E.; Soskic, S.; Essack, M.; Arya, S.; Stewart, A.J.; Gojobori, T.; Isenovic, E.R. Leptin and Obesity: Role and Clinical Implication. Front. Endocrinol. 2021, 12, 585887. [Google Scholar] [CrossRef]
- Lang, U.E.; Borgwardt, S. Molecular Mechanisms of Depression: Perspectives on New Treatment Strategies. Cell. Physiol. Biochem. 2013, 31, 761–777. [Google Scholar] [CrossRef]
- McNaughton, B.A.; Burrows, K.; Choquette, E.; Poplin, T.; Kuplicki, R.; Paulus, M.P.; Ironside, M.; Stewart, J.L. Impaired Eating Behaviors but Intact Metabolic Hormone Levels in Individuals with Major Depressive Disorder and Generalized Anxiety Disorder. J. Psychiatr. Res. 2023, 168, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Mills, J.G.; Larkin, T.A.; Deng, C.; Thomas, S.J. Weight Gain in Major Depressive Disorder: Linking Appetite and Disordered Eating to Leptin and Ghrelin. Psychiatry Res. 2019, 279, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Vohra, M.S.; Benchoula, K.; Serpell, C.J.; Hwa, W.E. AgRP/NPY and POMC Neurons in the Arcuate Nucleus and Their Potential Role in Treatment of Obesity. Eur. J. Pharmacol. 2022, 915, 174611. [Google Scholar] [CrossRef] [PubMed]
- Qu, N.; He, Y.; Wang, C.; Xu, P.; Yang, Y.; Cai, X.; Liu, H.; Yu, K.; Pei, Z.; Hyseni, I.; et al. A POMC-Originated Circuit Regulates Stress-Induced Hypophagia, Depression, and Anhedonia. Mol. Psychiatry 2020, 25, 1006–1021. [Google Scholar] [CrossRef] [PubMed]
- Stadlbauer, U.; Woods, S.C.; Langhans, W.; Meyer, U. PYY3–36: Beyond Food Intake. Front. Neuroendocrinol. 2015, 38, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Tyszkiewicz-Nwafor, M.; Jowik, K.; Dutkiewicz, A.; Krasinska, A.; Pytlinska, N.; Dmitrzak-Weglarz, M.; Suminska, M.; Pruciak, A.; Skowronska, B.; Slopien, A. Neuropeptide Y and Peptide YY in Association with Depressive Symptoms and Eating Behaviours in Adolescents across the Weight Spectrum: From Anorexia Nervosa to Obesity. Nutrients 2021, 13, 598. [Google Scholar] [CrossRef] [PubMed]
- Neary, M.T.; Batterham, R.L. Peptide YY: Food for Thought. Physiol. Behav. 2009, 97, 616–619. [Google Scholar] [CrossRef] [PubMed]
- Frick, L.R.; Bernardez-Vidal, M.; Hocht, C.; Zanutto, B.S.; Rapanelli, M. Dual Role of Serotonin in the Acquisition and Extinction of Reward-Driven Learning: Involvement of 5-HT1A, 5-HT2A and 5-HT3 Receptors. Behav. Brain Res. 2015, 277, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Borgland, S.L. Regulation of the Mesolimbic Dopamine Circuit by Feeding Peptides. Neuroscience 2015, 289, 19–42. [Google Scholar] [CrossRef]
- Karkhanis, A.; Holleran, K.M.; Jones, S.R. Chapter Three—Dynorphin/Kappa Opioid Receptor Signaling in Preclinical Models of Alcohol, Drug, and Food Addiction. In International Review of Neurobiology; Thiele, T.E., Ed.; The Role of Neuropeptides in Addiction and Disorders of Excessive Consumption; Academic Press: Cambridge, MA, USA, 2017; Volume 136, pp. 53–88. [Google Scholar]
- Matikainen-Ankney, B.A.; Legaria, A.A.; Pan, Y.; Vachez, Y.M.; Murphy, C.A.; Schaefer, R.F.; McGrath, Q.J.; Wang, J.G.; Bluitt, M.N.; Ankney, K.C.; et al. Nucleus Accumbens D1 Receptor–Expressing Spiny Projection Neurons Control Food Motivation and Obesity. Biol. Psychiatry 2023, 93, 512–523. [Google Scholar] [CrossRef]
- Fox, M.E.; Lobo, M.K. The Molecular and Cellular Mechanisms of Depression: A Focus on Reward Circuitry. Mol. Psychiatry 2019, 24, 1798–1815. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Bansal, Y.; Medhi, B.; Kuhad, A. Antipsychotics-Induced Metabolic Alterations: Recounting the Mechanistic Insights, Therapeutic Targets and Pharmacological Alternatives. Eur. J. Pharmacol. 2019, 844, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Philpot, K.; Smith, Y. CART Peptide and the Mesolimbic Dopamine System. Peptides 2006, 27, 1987–1992. [Google Scholar] [CrossRef] [PubMed]
- Rogge, G.; Jones, D.; Hubert, G.W.; Lin, Y.; Kuhar, M.J. CART Peptides: Regulators of Body Weight, Reward and Other Functions. Nat. Rev. Neurosci. 2008, 9, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Hopf, F.W. Recent Perspectives on Orexin/Hypocretin Promotion of Addiction-Related Behaviors. Neuropharmacology 2020, 168, 108013. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. DSM-V: Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing: Washington, DC, USA, 2013; ISBN 978-0-89042-554-1. [Google Scholar]
- Baik, J.-H. Stress and the Dopaminergic Reward System. Exp. Mol. Med. 2020, 52, 1879–1890. [Google Scholar] [CrossRef] [PubMed]
- Ouakinin, S.R.S.; Barreira, D.P.; Gois, C.J. Depression and Obesity: Integrating the Role of Stress, Neuroendocrine Dysfunction and Inflammatory Pathways. Front. Endocrinol. 2018, 9, 431. [Google Scholar] [CrossRef] [PubMed]
- Dedovic, K.; Ngiam, J. The Cortisol Awakening Response and Major Depression: Examining the Evidence. Neuropsychiatr. Dis. Treat. 2015, 11, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Douma, E.H.; de Kloet, E.R. Stress-Induced Plasticity and Functioning of Ventral Tegmental Dopamine Neurons. Neurosci. Biobehav. Rev. 2020, 108, 48–77. [Google Scholar] [CrossRef]
- Du, X.; Pang, T.Y. Is Dysregulation of the HPA-Axis a Core Pathophysiology Mediating Co-Morbid Depression in Neurodegenerative Diseases? Front. Psychiatry 2015, 6, 32. [Google Scholar] [CrossRef]
- García-Eguren, G.; Giró, O.; Del Mar Romero, M.; Grasa, M.; Hanzu, F.A. Chronic Hypercortisolism Causes More Persistent Visceral Adiposity than HFD-Induced Obesity. J. Endocrinol. 2019, 242, 65–77. [Google Scholar] [CrossRef]
- Björntorp, P.; Rosmond, R. Obesity and Cortisol. Nutrition 2000, 16, 924–936. [Google Scholar] [CrossRef]
- Paredes, S.; Ribeiro, L. Cortisol: The Villain in Metabolic Syndrome? Rev. Assoc. Médica Bras. 2014, 60, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Barik, J.; Marti, F.; Morel, C.; Fernandez, S.P.; Lanteri, C.; Godeheu, G.; Tassin, J.-P.; Mombereau, C.; Faure, P.; Tronche, F. Chronic Stress Triggers Social Aversion via Glucocorticoid Receptor in Dopaminoceptive Neurons. Science 2013, 339, 332–335. [Google Scholar] [CrossRef]
- Bessa, J.M.; Morais, M.; Marques, F.; Pinto, L.; Palha, J.A.; Almeida, O.F.X.; Sousa, N. Stress-Induced Anhedonia Is Associated with Hypertrophy of Medium Spiny Neurons of the Nucleus Accumbens. Transl. Psychiatry 2013, 3, e266. [Google Scholar] [CrossRef]
- West, C.H.K.; Weiss, J.M. Effects of chronic antidepressant drug administration and electroconvulsive shock on activity of dopaminergic neurons in the ventral tegmentum. Int. J. Neuropsychopharmacol. 2011, 14, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Wikipedia Contributors. Medium Spiny Neuron. Wikipedia, The Free Encyclopedia. 3 September 2023, 04:11 UTC. Available online: https://en.wikipedia.org/w/index.php?title=Medium_spiny_neuron&oldid=1173546753 (accessed on 19 April 2024).
- Duvarci, S.; Paré, D. Glucocorticoids Enhance the Excitability of Principal Basolateral Amygdala Neurons. J. Neurosci. 2007, 27, 4482–4491. [Google Scholar] [CrossRef] [PubMed]
- Scharnholz, B.; Weber-Hamann, B.; Lederbogen, F.; Schilling, C.; Gilles, M.; Onken, V.; Frankhauser, P.; Kopf, D.; Deuschle, M. Antidepressant Treatment with Mirtazapine, but Not Venlafaxine, Lowers Cortisol Concentrations in Saliva: A Randomised Open Trial. Psychiatry Res. 2010, 177, 109–113. [Google Scholar] [CrossRef]
- Kaufling, J. Alterations and Adaptation of Ventral Tegmental Area Dopaminergic Neurons in Animal Models of Depression. Cell Tissue Res. 2019, 377, 59–71. [Google Scholar] [CrossRef]
- Neto, F.L.; Borges, G.; Torres-Sanchez, S.; Mico, J.A.; Berrocoso, E. Neurotrophins Role in Depression Neurobiology: A Review of Basic and Clinical Evidence. Curr. Neuropharmacol. 2011, 9, 530–552. [Google Scholar] [CrossRef]
- Rădulescu, I.; Drăgoi, A.M.; Trifu, S.C.; Cristea, M.B. Neuroplasticity and Depression: Rewiring the Brain’s Networks through Pharmacological Therapy (Review). Exp. Ther. Med. 2021, 22, 1131. [Google Scholar] [CrossRef] [PubMed]
- Roddy, D.W.; Farrell, C.; Doolin, K.; Roman, E.; Tozzi, L.; Frodl, T.; O’Keane, V.; O’Hanlon, E. The Hippocampus in Depression: More Than the Sum of Its Parts? Advanced Hippocampal Substructure Segmentation in Depression. Biol. Psychiatry 2019, 85, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Sapolsky, R.M. Depression, Antidepressants, and the Shrinking Hippocampus. Proc. Natl. Acad. Sci. USA 2001, 98, 12320–12322. [Google Scholar] [CrossRef] [PubMed]
- Drevets, W.C.; Savitz, J.; Trimble, M. The Subgenual Anterior Cingulate Cortex in Mood Disorders. CNS Spectr. 2008, 13, 663–681. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.P.; Müller, V.I.; Eickhoff, S.B.; Fox, P.T. Multimodal Abnormalities of Brain Structure and Function in Major Depressive Disorder: A Meta-Analysis of Neuroimaging Studies. Am. J. Psychiatry 2020, 177, 422–434. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Li, M.; Cao, W.; Xu, Y.; Luo, Y.; Zhong, X.; Zhang, J.; Dai, R.; Zhou, X.-F.; Li, Z.; et al. Anterior Cingulate Cortical Lesion Attenuates Food Foraging in Rats. Brain Res. Bull. 2012, 88, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Dagytė, G.; Den Boer, J.A.; Trentani, A. The Cholinergic System and Depression. Behav. Brain Res. 2011, 221, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Henry, M.S.; Gendron, L.; Tremblay, M.-E.; Drolet, G. Enkephalins: Endogenous Analgesics with an Emerging Role in Stress Resilience. Neural Plast. 2017, 2017, 1546125. [Google Scholar] [CrossRef] [PubMed]
- Gałecki, P.; Talarowska, M. Inflammatory Theory of Depression. Psychiatr. Pol. 2018, 52, 437–447. [Google Scholar] [CrossRef]
- Raison, C.L.; Capuron, L.; Miller, A.H. Cytokines Sing the Blues: Inflammation and the Pathogenesis of Depression. Trends Immunol. 2006, 27, 24–31. [Google Scholar] [CrossRef]
- Fu, X.; Wang, Y.; Zhao, F.; Cui, R.; Xie, W.; Liu, Q.; Yang, W. Shared Biological Mechanisms of Depression and Obesity: Focus on Adipokines and Lipokines. Aging 2023, 15, 5917–5950. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Paz-Filho, G.; Mastronardi, C.; Licinio, J.; Wong, M.-L. Is Increased Antidepressant Exposure a Contributory Factor to the Obesity Pandemic? Transl. Psychiatry 2016, 6, e759. [Google Scholar] [CrossRef]
- Serretti, A.; Artioli, P.; De Ronchi, D. The 5-HT2C Receptor as a Target for Mood Disorders. Expert Opin. Ther. Targets 2004, 8, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Vandenberghe, F.; Gholam-Rezaee, M.; Saigí -Morgui, N.; Delacrétaz, A.; Choong, E.; Solida-Tozzi, A.; Kolly, S.; Thonney, J.; Gallo, S.F.; Hedjal, A.; et al. Importance of Early Weight Changes to Predict Long-Term Weight Gain during Psychotropic Drug Treatment. J. Clin. Psychiatry 2015, 76, 8736. [Google Scholar] [CrossRef] [PubMed]
- Su, J.-A.; Tsang, H.-Y. Comparison of Weight Changes in Patients Treated with Different Antidepressants: Clinical Experiences in Taiwanese Patients. Chang Gung Med. J. 2006, 29, 154–161. [Google Scholar] [PubMed]
- Yoshimura, R.; Ikenouchi-Sugita, A.; Hori, H.; Umene-Nakano, W.; Katsuki, A.; Hayashi, K.; Ueda, N.; Nakamura, J. Adding a Low Dose Atypical Antipsychotic Drug to an Antidepressant Induced a Rapid Increase of Plasma Brain-Derived Neurotrophic Factor Levels in Patients with Treatment-Resistant Depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2010, 34, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Bath, K.G.; Schilit, A.; Lee, F.S. Stress Effects on BDNF Expression: Effects of Age, Sex, and Form of Stress. Neuroscience 2013, 239, 149–156. [Google Scholar] [CrossRef]
- Radjabzadeh, D.; Bosch, J.A.; Uitterlinden, A.G.; Zwinderman, A.H.; Ikram, M.A.; van Meurs, J.B.J.; Luik, A.I.; Nieuwdorp, M.; Lok, A.; van Duijn, C.M.; et al. Gut Microbiome-Wide Association Study of Depressive Symptoms. Nat. Commun. 2022, 13, 7128. [Google Scholar] [CrossRef]
- Xu, F.; Xie, Q.; Kuang, W.; Dong, Z. Interactions between Antidepressants and Intestinal Microbiota. Neurotherapeutics 2023, 20, 359–371. [Google Scholar] [CrossRef]
- Stahl, S.M. Stahl’s Essential Psychopharmacology, 4th ed.; Cambridge University Press: New York, NY, USA, 2013; ISBN 978-1-107-68646-5. [Google Scholar]
- Changes in Weight during a 1-Year Trial of Fluoxetine|American Journal of Psychiatry. Available online: https://ajp.psychiatryonline.org/doi/full/10.1176/ajp.156.8.1170 (accessed on 24 September 2023).
- Browne, C.J.; Fletcher, P.J. Decreased Incentive Motivation Following Knockout or Acute Blockade of the Serotonin Transporter: Role of the 5-HT2C Receptor. Neuropsychopharmacology 2016, 41, 2566–2576. [Google Scholar] [CrossRef]
- Higgins, G.A.; Fletcher, P.J. Therapeutic Potential of 5-HT2C Receptor Agonists for Addictive Disorders. ACS Chem. Neurosci. 2015, 6, 1071–1088. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.B.; Epstein, M.; Lopez, B.; Brown, A.K.; Lutfy, K.; Friedman, T.C. The Role of Neurochemicals, Stress Hormones and Immune System in the Positive Feedback Loops between Diabetes, Obesity and Depression. Front. Endocrinol. 2023, 14, 1224612. [Google Scholar] [CrossRef] [PubMed]
- Van Oekelen, D.; Luyten, W.H.M.L.; Leysen, J.E. 5-HT2A and 5-HT2C Receptors and Their Atypical Regulation Properties. Life Sci. 2003, 72, 2429–2449. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.; Devadoss, T.; Manjula, S.N.; Rajangam, J. 5-HT3 Receptor Antagonism: A Potential Therapeutic Approach for the Treatment of Depression and Other Disorders. Curr. Neuropharmacol. 2021, 19, 1545–1559. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Lummis, S.C.R. 5-HT3 Receptors. Curr. Pharm. Des. 2006, 12, 3615–3630. [Google Scholar] [CrossRef] [PubMed]
- van Gestel, M.A.; Kostrzewa, E.; Adan, R.A.H.; Janhunen, S.K. Pharmacological Manipulations in Animal Models of Anorexia and Binge Eating in Relation to Humans. Br. J. Pharmacol. 2014, 171, 4767–4784. [Google Scholar] [CrossRef] [PubMed]
- Roerig, J.L.; Steffen, K.J.; Mitchell, J.E. Atypical Antipsychotic-Induced Weight Gain. CNS Drugs 2011, 25, 1035–1059. [Google Scholar] [CrossRef] [PubMed]
- de Lartigue, G.; Dimaline, R.; Varro, A.; Dockray, G.J. Cocaine- and Amphetamine-Regulated Transcript: Stimulation of Expression in Rat Vagal Afferent Neurons by Cholecystokinin and Suppression by Ghrelin. J. Neurosci. 2007, 27, 2876–2882. [Google Scholar] [CrossRef] [PubMed]
- Fava, M.; Judge, R.; Hoog, S.L.; Nilsson, M.E.; Koke, S.C. Fluoxetine versus Sertraline and Paroxetine in Major Depressive Disorder: Changes in Weight with Long-Term Treatment. J. Clin. Psychiatry 2000, 61, 863–867. [Google Scholar] [CrossRef]
- Ranjbar, S.; Pai, N.B.; Deng, C. The Association of Antidepressant Medication and Body Weight Gain. Online J. Health Allied Sci. 2013, 12, 1–9. [Google Scholar]
- Provensi, G.; Coccurello, R.; Umehara, H.; Munari, L.; Giacovazzo, G.; Galeotti, N.; Nosi, D.; Gaetani, S.; Romano, A.; Moles, A.; et al. Satiety Factor Oleoylethanolamide Recruits the Brain Histaminergic System to Inhibit Food Intake. Proc. Natl. Acad. Sci. USA 2014, 111, 11527–11532. [Google Scholar] [CrossRef] [PubMed]
- Provensi, G.; Blandina, P.; Passani, M.B. The Histaminergic System as a Target for the Prevention of Obesity and Metabolic Syndrome. Neuropharmacology 2016, 106, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.H.; Lee, D.K.; Jo, Y.-H. Cholinergic Neurons in the Dorsomedial Hypothalamus Regulate Food Intake. Mol. Metab. 2017, 6, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Larabee, C.M.; Neely, O.C.; Domingos, A.I. Obesity: A Neuroimmunometabolic Perspective. Nat. Rev. Endocrinol. 2020, 16, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Anagha, K.; Shihabudheen, P.; Uvais, N.A. Side Effect Profiles of Selective Serotonin Reuptake Inhibitors: A Cross-Sectional Study in a Naturalistic Setting. Prim. Care Companion CNS Disord. 2021, 23, 35561. [Google Scholar] [CrossRef] [PubMed]
- Mansoor, B.; Rengasamy, M.; Hilton, R.; Porta, G.; He, J.; Spirito, A.; Emslie, G.J.; Mayes, T.L.; Clarke, G.; Wagner, K.D.; et al. The Bidirectional Relationship between Body Mass Index and Treatment Outcome in Adolescents with Treatment-Resistant Depression. J. Child Adolesc. Psychopharmacol. 2013, 23, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Shahsavand Ananloo, E.; Ghaeli, P.; Kamkar, M.-Z.; Sadeghi, M. Comparing the Effects of Fluoxetine and Imipramine on Total Cholesterol, Triglyceride, and Weight in Patients with Major Depression. DARU J. Pharm. Sci. 2013, 21, 4. [Google Scholar] [CrossRef] [PubMed]
- Calarge, C.A.; Mills, J.A.; Janz, K.F.; Burns, T.L.; Coryell, W.H.; Zemel, B.S. Body Composition in Adolescents During Treatment with Selective Serotonin Reuptake Inhibitors. Pediatrics 2017, 140, e20163943. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, S.M.; Mâsse, L.C.; Pawluski, J.L.; Oberlander, T.F. Perinatal Selective Serotonin Reuptake Inhibitor (SSRI) Effects on Body Weight at Birth and beyond: A Review of Animal and Human Studies. Reprod. Toxicol. 2018, 77, 109–121. [Google Scholar] [CrossRef]
- Scabia, G.; Barone, I.; Mainardi, M.; Ceccarini, G.; Scali, M.; Buzzigoli, E.; Dattilo, A.; Vitti, P.; Gastaldelli, A.; Santini, F.; et al. The Antidepressant Fluoxetine Acts on Energy Balance and Leptin Sensitivity via BDNF. Sci. Rep. 2018, 8, 1781. [Google Scholar] [CrossRef]
- Dhikav, V.; Anand, K.S. Is Hippocampal Atrophy a Future Drug Target? Med. Hypotheses 2007, 68, 1300–1306. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, N.; Al-Dossari, D.; Salem, S.; Alharbi, F.; Alkhamees, O.; Alsanad, S. Clinical and Biological Perspectives of Non-Antipsychotic Psychotropic Medications and Weight Gain. Int. Neuropsychiatr. Dis. J. 2018, 11, 1–20. [Google Scholar] [CrossRef]
- Chudasama, H.P.; Bhatt, P.A. Evaluation of Anti-Obesity Activity of Duloxetine in Comparison with Sibutramine along with Its Anti-Depressant Activity: An Experimental Study in Obese Rats. Can. J. Physiol. Pharmacol. 2009, 87, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.; Oliveira, N.G.; Dinis-Oliveira, R.J. Pharmacokinetic and Pharmacodynamic of Bupropion: Integrative Overview of Relevant Clinical and Forensic Aspects. Drug Metab. Rev. 2019, 51, 293–313. [Google Scholar] [CrossRef] [PubMed]
- Kalyanasundar, B.; Perez, C.I.; Luna, A.; Solorio, J.; Moreno, M.G.; Elias, D.; Simon, S.A.; Gutierrez, R. D1 and D2 Antagonists Reverse the Effects of Appetite Suppressants on Weight Loss, Food Intake, Locomotion, and Rebalance Spiking Inhibition in the Rat NAc Shell. J. Neurophysiol. 2015, 114, 585–607. [Google Scholar] [CrossRef]
- Croom, K.F.; Perry, C.M.; Plosker, G.L. Mirtazapine. CNS Drugs 2009, 23, 427–452. [Google Scholar] [CrossRef]
- Talas, A.; Cerit, C.; Akpınar Aslan, E. Comparison of the Effects of Sertraline and Agomelatine on Sleep Quality, Sexual Functioning and Metabolic Parameters in Patients with Major Depressive Disorder. Psychiatry Clin. Psychopharmacol. 2019, 29, 257–263. [Google Scholar] [CrossRef]
- Keks, N.A.; Hope, J.; Culhane, C. Vortioxetine: A Multimodal Antidepressant or Another Selective Serotonin Reuptake Inhibitor? Australas. Psychiatry 2015, 23, 210–213. [Google Scholar] [CrossRef]
- Vortioxetine: A Comprehensive Update on a Newgeneration Antidepressant—ProQuest. Available online: https://www.proquest.com/openview/e45bf4d8eedc7c42cf8128241f59f147/1?pq-origsite=gscholar&cbl=237750 (accessed on 26 March 2024).
- Dubovsky, S.L. Pharmacokinetic Evaluation of Vortioxetine for the Treatment of Major Depressive Disorder. Expert Opin. Drug Metab. Toxicol. 2014, 10, 759–766. [Google Scholar] [CrossRef]
- McDaniel, B.T.; Cornet, V.; Carroll, J.; Chrones, L.; Chudzik, J.; Cochran, J.; Guha, S.; Lawrence, D.F.; McCue, M.; Sarkey, S.; et al. Real-World Clinical Outcomes and Treatment Patterns in Patients with MDD Treated with Vortioxetine: A Retrospective Study. BMC Psychiatry 2023, 23, 938. [Google Scholar] [CrossRef]
- Pyle, E. A Review on the Side Effect of Weight Gain in Response to Selective Serotonin Reuptake Inhibitors, Monoamine Oxidase Inhibitors, and Benzodiazepines 2020. Available online: https://webs.wofford.edu/pittmandw/psy451/fall20ep.pdf (accessed on 19 April 2024).
- Chiche, F.; Guillou, M.L.; Chétrite, G.; Lasnier, F.; Dugail, I.; Carpéné, C.; Moldes, M.; Fève, B. Antidepressant Phenelzine Alters Differentiation of Cultured Human and Mouse Preadipocytes. Mol. Pharmacol. 2009, 75, 1052–1061. [Google Scholar] [CrossRef] [PubMed]
- Stahl, S.M. Stahl’s Essential Psychopharmacology: The Prescriber’s Guide: Antidepressants, 4th ed.; Cambridge University Press: New York, NY, USA, 2011; ISBN 978-1-107-66796-9. [Google Scholar]
Class | Drug | Effect on Weight | Mechanisms Involved | Data Sources |
SSRI | Fluoxetine | -, o | 5-HT +, 5-HT2C -, leptin +, cortisol - | [17,18,19,95,108] |
Sertraline | -, o | 5-HT +, D + | [17,19,108,113] | |
Paroxetine | + | 5-HT +, M3 - | [17,18,19,102,108] | |
Citalopram | + | 5-HT +, H1 - | [17,19,102,108] | |
SNRI | Venlafaxine | - | 5-HT +, α1 + | [17,19,108] |
Duloxetine | o | 5-HT +, α1 + | [17,19,108] | |
NDRI | Bupropion | -- | α +, D + | [17,18,19,108,110] |
Atypical | Mirtazapine | ++ | H1 -, α2 -, 5-HT - | [17,18,19,96,108] |
Vortioxetine | o | 5-HT +/- | [17,115,116,117] | |
Agomelatine | o | 5-HT +, MT1/2 + | [113] | |
MAOI | Moclobemide | o | monoamines + | [17,19,118] |
Selegiline | + | monoamines +, glucose - | [84,118,120] | |
Phenelzine | + | monoamines +, glucose - | [17,19,118] | |
TCA | Clomipramine | + | H1 -, M3 -, α1 - | [19,96] |
Imipramine | + | H1 -, M3 -, α1 - | [17,19,108] | |
Amitriptyline | ++ | H1 -, M3 -, α1 - | [17,18,19,96,108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kukucka, T.; Ferencova, N.; Visnovcova, Z.; Ondrejka, I.; Hrtanek, I.; Kovacova, V.; Macejova, A.; Mlyncekova, Z.; Tonhajzerova, I. Mechanisms Involved in the Link between Depression, Antidepressant Treatment, and Associated Weight Change. Int. J. Mol. Sci. 2024, 25, 4511. https://doi.org/10.3390/ijms25084511
Kukucka T, Ferencova N, Visnovcova Z, Ondrejka I, Hrtanek I, Kovacova V, Macejova A, Mlyncekova Z, Tonhajzerova I. Mechanisms Involved in the Link between Depression, Antidepressant Treatment, and Associated Weight Change. International Journal of Molecular Sciences. 2024; 25(8):4511. https://doi.org/10.3390/ijms25084511
Chicago/Turabian StyleKukucka, Tomas, Nikola Ferencova, Zuzana Visnovcova, Igor Ondrejka, Igor Hrtanek, Veronika Kovacova, Andrea Macejova, Zuzana Mlyncekova, and Ingrid Tonhajzerova. 2024. "Mechanisms Involved in the Link between Depression, Antidepressant Treatment, and Associated Weight Change" International Journal of Molecular Sciences 25, no. 8: 4511. https://doi.org/10.3390/ijms25084511
APA StyleKukucka, T., Ferencova, N., Visnovcova, Z., Ondrejka, I., Hrtanek, I., Kovacova, V., Macejova, A., Mlyncekova, Z., & Tonhajzerova, I. (2024). Mechanisms Involved in the Link between Depression, Antidepressant Treatment, and Associated Weight Change. International Journal of Molecular Sciences, 25(8), 4511. https://doi.org/10.3390/ijms25084511