Assessment of Untargeted Metabolomics by Hydrophilic Interaction Liquid Chromatography−Mass Spectrometry to Define Breast Cancer Liquid Biopsy-Based Biomarkers in Plasma Samples
Abstract
:1. Introduction
2. Results
2.1. LC−HRMS Metabolomic Analysis
Chemometric Analysis
2.2. Selection of Potential Biomarkers
2.2.1. Identification of Potential Biomarkers
2.2.2. Biomarkers’ Evaluation
2.2.3. Model Creation
3. Discussion
4. Materials and Methods
4.1. Sample Collection and Preparation
4.2. Metabolomic Analysis
4.2.1. Metabolite Extraction
4.2.2. LC−HRMS Conditions
4.2.3. Data Set Creation
4.2.4. Data Pre-Treatment
4.2.5. Analytical Validation and Outliers’ Detection
4.2.6. Data Treatment
4.2.7. Biomarkers’ Evaluation and Model Creation
4.2.8. Molecular Identification
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Y.; Gong, M.; Wang, Y.; Yang, Y.; Liu, S.; Zeng, Q. Global Trends and Forecasts of Breast Cancer Incidence and Deaths. Sci. Data 2023, 10, 334. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Chen, H.D.; Yu, Y.W.; Li, N.; Chen, W.Q. Changing Profiles of Cancer Burden Worldwide and in China: A Secondary Analysis of the Global Cancer Statistics 2020. Chin. Med. J. 2021, 134, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Sarhangi, N.; Hajjari, S.; Heydari, S.F.; Ganjizadeh, M.; Rouhollah, F.; Hasanzad, M. Breast Cancer in the Era of Precision Medicine. Mol. Biol. Rep. 2022, 49, 10023–10037. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Amato, O.; Guarneri, V.; Girardi, F. Epidemiology Trends and Progress in Breast Cancer Survival: Earlier Diagnosis, New Therapeutics. Curr. Opin. Oncol. 2023, 35, 612–619. [Google Scholar] [CrossRef] [PubMed]
- El Cáncer En Cifras|SEOM: Sociedad Española de Oncología Médica. Available online: https://seom.org/prensa/el-cancer-en-cifras (accessed on 25 March 2024).
- Ginsburg, O.; Yip, C.H.; Brooks, A.; Cabanes, A.; Caleffi, M.; Yataco, J.A.D.; Gyawali, B.; McCormack, V.; de Anderson, M.M.L.; Mehrotra, R. Breast Cancer Early Detection: A Phased Approach to Implementation. Cancer 2020, 126, 2379–2393. [Google Scholar] [CrossRef] [PubMed]
- Turan, M.; Sozen, F.; Eminsoy, M.G.; Sencelikel, T.; Kut, A.; Yildirim, S.; Oksuz, E. Practical Utility of Diagnostic Clinical Breast Examination in the Diagnosis of Breast Cancer. Cureus 2021, 13, e17662. [Google Scholar] [CrossRef] [PubMed]
- Rahman, W.T.; Helvie, M.A. Breast Cancer Screening in Average and High-Risk Women. Best Pr. Res. Clin. Obstet. Gynaecol. 2022, 83, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Tsang, J.Y.S.; Tse, G.M. Molecular Classification of Breast Cancer. Adv. Anat. Pathol. 2020, 27, 27–35. [Google Scholar] [CrossRef]
- García-Redondo, M.; Pareja López, Á.; López Ruiz, N.; Rodríguez Alonso, J.M. Breast Cancer: New Molecular Classification. Rev. Senol. Patol. Mamar. 2023, 36. [Google Scholar] [CrossRef]
- Al-thoubaity, F.K. Molecular Classification of Breast Cancer: A Retrospective Cohort Study. Ann. Med. Surg. 2019, 49, 44–48. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, Z.; Fan, J.; Xu, J.; Xiong, J.; Tang, L.; Jiang, Y.; Zhang, S.; Zhang, G.; Luo, W. Comprehensively Analysis of Immunophenotyping Signature in Triple-Negative Breast Cancer Patients Based on Machine Learning. Front. Pharmacol. 2023, 14. [Google Scholar] [CrossRef]
- Díaz, C.; González-Olmedo, C.; Díaz-Beltrán, L.; Camacho, J.; Mena García, P.; Martín-Blázquez, A.; Fer-nández-Navarro, M.; Ortega-Granados, A.L.; Gálvez-Montosa, F.; Marchal, J.A. Predicting Dynamic Response to Neoadjuvant Chemotherapy in Breast Cancer: A Novel Metabolomics Approach. Mol. Oncol. 2022, 16, 2658–2671. [Google Scholar] [CrossRef]
- Zapater-Moros, A.; Díaz-Beltrán, L.; Gámez-Pozo, A.; Trilla-Fuertes, L.; Lumbreras-Herrera, M.I.; López-Camacho, E.; González-Olmedo, C.; Espinosa, E.; Zamora, P.; Sánchez-Rovira, P. Metabolomics Un-ravels Subtype-Specific Characteristics Related to Neoadjuvant Therapy Response in Breast Cancer Patients. Metabolomics 2023, 19, 60. [Google Scholar] [CrossRef]
- Díaz-Beltrán, L.; González-Olmedo, C.; Luque-Caro, N.; Díaz, C.; Martín-Blázquez, A.; Fernández-Navarro, M.; Ortega-Granados, A.L.; Gálvez-Montosa, F.; Vicente, F.; Del Palacio, J.P. Human Plasma Metabolomics for Biomarker Discovery: Targeting the Molecular Subtypes in Breast Cancer. Cancers 2021, 13, 147. [Google Scholar] [CrossRef]
- Issaq, H.J.; Van, Q.N.; Waybright, T.J.; Muschik, G.M.; Veenstra, T.D. Analytical and Statistical Approaches to Metabolomics Research. J. Sep. Sci. 2009, 32, 2183–2199. [Google Scholar] [CrossRef]
- Utpott, M.; Rodrigues, E.; Rios, A.d.O.; Mercali, G.D.; Flôres, S.H. Metabolomics: An Analytical Technique for Food Processing Evaluation. Food Chem. 2022, 366, 130685. [Google Scholar] [CrossRef]
- Letertre, M.P.M.; Dervilly, G.; Giraudeau, P. Combined Nuclear Magnetic Resonance Spectroscopy and Mass Spectrometry Approaches for Metabolomics. Anal. Chem. 2021, 93, 500–518. [Google Scholar] [CrossRef]
- Hydrophilic Interaction Chromatography Hydrophilic Interaction Chromatography (HILIC) for Small Molecules (HILIC) for Small Molecules. Available online: https://www.waters.com/webassets/cms/library/docs/wa20753.pdf (accessed on 24 April 2024).
- Development of a Metabolomic Assay for the Analysis of Polar Metabolites Using HILIC UPLC/QTof MS. Available online: https://www.waters.com/webassets/cms/library/docs/720004612en.pdf (accessed on 24 April 2024).
- Virgiliou, C.; Gika, H.G.; Theodoridis, G.A. HILIC-MS-MS Multi-Targeted Method for Metabolomics. Metab. Profiling Methods Protoc. 2018, 1738, 133–147. [Google Scholar] [CrossRef]
- Cajka, T.; Fiehn, O. Toward Merging Untargeted and Targeted Methods in Mass Spectrometry-Based Metabolomics and Lipidomics. Anal. Chem. 2016, 88, 524–545. [Google Scholar] [CrossRef] [PubMed]
- Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [Google Scholar] [CrossRef]
- González-Olmedo, C.; García-Verdejo, F.J.; Reguera-Teba, A.; Rosa-Garrido, C.; López-López, J.A.; Díaz-Beltrán, L.; García, P.M.; Luque-Caro, N.; Gálvez-Montosa, F.; Ortega-Granados, A.L.; et al. Metabolomics signature as a survival predictor in patients with resectable colorectal liver metastasis. Clin. Transl. Med. 2024, 14, e1541. [Google Scholar] [CrossRef]
- Martín-Blázquez, A.; Díaz, C.; González-Flores, E.; Franco-Rivas, D.; Jiménez-Luna, C.; Melguizo, C.; Prados, J.; Genilloud, O.; Vicente, F.; Caba, O.; et al. Untargeted LC-HRMS-Based Metabolomics to Identify Novel Biomarkers of Metastatic Colorectal Cancer. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Cao, Y.; Zhao, R.; Guo, K.; Ren, S.; Zhang, Y.; Lu, Z.; Tian, L.; Li, T.; Chen, X.; Wang, Z. Potential Metabolite Biomarkers for Early Detection of Stage-I Pancreatic Ductal Adenocarcinoma. Front. Oncol. 2022, 11, 744667. [Google Scholar] [CrossRef]
- Savva, K.V.; Das, B.; Antonowicz, S.; Hanna, G.B.; Peters, C.J. Progress with Metabolomic Blood Tests for Gastrointestinal Cancer Diagnosis—An Assessment of Biomarker Translation. Cancer Epidemiol. Biomarkers Prev. 2022, 31, 2095–2105. [Google Scholar] [CrossRef]
- Jové, M.; Collado, R.; Quiles, J.L.; Ramírez-Tortosa, M.C.; Sol, J.; Ruiz-Sanjuan, M.; Fernandez, M.; Cabrera, C.d.l.T.; Ramírez-Tortosa, C.; Granados-Principal, S.; et al. A Plasma Metabolomic Signature Discloses Human Breast Cancer. Oncotarget 2017, 8, 19522–19533. [Google Scholar] [CrossRef]
- Ruan, X.; Wang, Y.; Zhou, L.; Zheng, Q.; Hao, H.; He, D. Evaluation of Untargeted Metabolomic Strategy for the Discovery of Biomarker of Breast Cancer. Front. Pharmacol. 2022, 13, 894099. [Google Scholar] [CrossRef]
- Wei, Y.; Jasbi, P.; Shi, X.; Turner, C.; Hrovat, J.; Liu, L.; Rabena, Y.; Porter, P.; Gu, H. Early Breast Cancer Detection Using Untargeted and Targeted Metabolomics. J. Proteome. Res. 2021, 20, 3124–3133. [Google Scholar] [CrossRef]
- Farshidfar, F.; Weljie, A.M.; Kopciuk, K.A.; Hilsden, R.; McGregor, S.E.; Buie, W.D.; MacLean, A.; Vogel, H.J.; Bathe, O.F. A Validated Metabolomic Signature for Colorectal Cancer: Exploration of the Clinical Value of Metabolomics. Br. J. Cancer 2016, 115, 848–857. [Google Scholar] [CrossRef]
- Zengru, W.; Wnqing, G.; Mitch, A.P.; Di, W.; Duane, D.M.; James, T.D. Favorable Effects of Weak Acids on Negative-Ion Electrospray Ionization Mass Spectrometry. Anal. Chem. 2004, 76, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
- Zipinotti dos Santos, D.; de Souza, J.C.; Pimenta, T.M.; da Silva Martins, B.; Junior, R.S.R.; Butzene, S.M.S.; Tessarolo, N.G.; Cilas, P.M.L.; Silva, I.V.; Rangel, L.B.A. The Impact of Lipid Metabolism on Breast Cancer: A Review about Its Role in Tumorigenesis and Immune Escape. Cell Commun. Signal. 2023, 21, 161. [Google Scholar] [CrossRef]
- Kwon, Y.S.; Lee, M.G.; Baek, J.; Kim, N.Y.; Jang, H.; Kim, S. Acyl-CoA synthetase-4 mediates radioresistance of breast cancer cells by regulating FOXM1. Biochem. Pharmacol. 2021, 192, 114718. [Google Scholar] [CrossRef]
- Carracedo, A.; Cantley, L.C.; Pandolfi, P.P. Cancer Metabolism: Fatty Acid Oxidation in the Limelight. Nat. Rev. Cancer 2013, 13, 227–232. [Google Scholar] [CrossRef]
- Huang, M.; Pu, Y.; Peng, Y.; Fu, Q.; Guo, L.; Wu, Y.; Zheng, Y. Biotin and Glucose Dual-Targeting, Ligand-Modified Liposomes Promote Breast Tumor-Specific Drug Delivery. Bioorganic Med. Chem. Lett. 2020, 30, 127151. [Google Scholar] [CrossRef]
- His, M.; Viallon, V.; Dossus, L.; Gicquiau, A.; Achaintre, D.; Scalbert, A.; Ferrari, P.; Romieu, I.; Onland-Moret, N.C.; Weiderpass, E. Prospective Analysis of Circulating Metabolites and Breast Cancer in EPIC. BMC Med. 2019, 17, 1–13. [Google Scholar] [CrossRef]
- Stäubert, C.; Broom, O.J.; Nordström, A. Hydroxycarboxylic Acid Receptors Are Essential for Breast Cancer Cells to Control Their Lipid/Fatty Acid Metabolism. Oncotarget 2015, 6, 19706–19720. [Google Scholar] [CrossRef] [PubMed]
- Breiding, M.J. Promises and Pitfalls of Untargeted Metabolomics. Physiol. Behav. 2014, 63, 1–18. [Google Scholar] [CrossRef]
- Smith, R.; Ventura, D.; Prince, J.T. LC-MS alignment in theory and practice: A comprehensive algorithmic review. Brief Bioinform. 2013, 16, 104–117. [Google Scholar] [CrossRef]
- van den Berg, R.A.; Hoefsloot, H.C.J.; Westerhuis, J.A.; Smilde, A.K.; van der Werf, M.J. Centering, Scaling, and Transformations: Improving the Biological Information Content of Metabolomics Data. BMC Genomics 2006, 7, 142. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Zhou, G.; Ewald, J.; Chang, L.; Hacariz, O.; Basu, N.; Xia, J. Using MetaboAnalyst 5.0 for LC–HRMS Spectra Processing, Multi-Omics Integration and Covariate Adjustment of Global Metabolomics Data. Nat. Protoc. 2022, 17, 1735–1761. [Google Scholar] [CrossRef]
- Szymańska, E.; Saccenti, E.; Smilde, A.K.; Westerhuis, J.A. Double-Check: Validation of Diagnostic Statistics for PLS-DA Models in Metabolomics Studies. Metabolomics. 2012, 8, 3–16. [Google Scholar] [CrossRef]
PLS-DA Comparison | Explained Variation (%) | # Components | Accuracy | R2 | Q2 |
---|---|---|---|---|---|
BC-HC | 64.3 | 5 | 0.973 | 0.890 | 0.842 |
m/z | R.T (min) | p-Value (FDR) | Fold Change (BC/HC) | VIP | AUC |
---|---|---|---|---|---|
391.1514 | 1.03 | 2.24 × 10−59 | 0.06 | 1.67 | 0.97 |
970.1298 | 3.19 | 1.29 × 10−49 | 0.13 | 2.05 | 0.93 |
1012.111 | 3.16 | 8.67 × 10−56 | 0.14 | 2.41 | 0.94 |
948.2027 | 3.16 | 3.53 × 10−49 | 0.15 | 2.07 | 0.93 |
529.0881 | 2.82 | 3.73 × 10−22 | 0.17 | 1.15 | 0.83 |
780.9692 | 2.82 | 9.43 × 10−23 | 0.18 | 1.14 | 0.84 |
445.1282 | 2.81 | 2.16 × 10−22 | 0.19 | 1.19 | 0.83 |
948.8976 | 2.82 | 4.53 × 10−23 | 0.19 | 1.14 | 0.84 |
958.3061 | 3.29 | 6.52 × 10−42 | 0.2 | 1.79 | 0.91 |
890.3257 | 3.26 | 1.82 × 10−39 | 0.22 | 1.91 | 0.91 |
818.3999 | 3.15 | 3.25 × 10−34 | 0.26 | 2.13 | 0.90 |
822.3952 | 3.14 | 8.79 × 10−31 | 0.27 | 2.1 | 0.89 |
744.4759 | 3.14 | 6.02 × 10−30 | 0.29 | 2.26 | 0.90 |
508.8292 | 2.56 | 1.93 × 10−20 | 0.31 | 1.31 | 0.85 |
431.1842 | 1.09 | 6.84 × 10−16 | 2.15 | 1.16 | 0.75 |
448.1705 | 1.08 | 2.99 × 10−16 | 2.64 | 1.06 | 0.77 |
914.2331 | 3.96 | 1.71 × 10−18 | 5.58 | 1.2 | 0.86 |
969.2408 | 3.98 | 7.03 × 10−18 | 6.26 | 1.1 | 0.87 |
674.7234 | 3.23 | 1.74 × 10−19 | 6.59 | 1.01 | 0.84 |
395.0961 | 4 | 3.86 × 10−22 | 6.92 | 1.05 | 0.88 |
303.923 | 3.9 | 1.92 × 10−22 | 8.44 | 1.25 | 0.86 |
674.726 | 3.51 | 8.03 × 10−39 | 15.02 | 1.01 | 0.92 |
684.7542 | 3.21 | 6.63 × 10−42 | 28.11 | 1.37 | 0.93 |
754.7421 | 3.34 | 1.03 × 10−48 | 88.94 | 1.62 | 0.93 |
516.8156 | 3.14 | 7.53 × 10−37 | 112.86 | 1.37 | 0.92 |
752.7279 | 3.14 | 3.28 × 10−48 | 123.83 | 1.58 | 0.94 |
500.8534 | 3.24 | 4.12 × 10−45 | 246.87 | 1.7 | 0.94 |
m/z | R.T (min) | Molecular Formulae | Adduct | Tentative ID | Mass Error (ppm) |
---|---|---|---|---|---|
948.2027 | C31H50N7O19P3S | [M-H] | 3-isopropenylpimeloyl-CoA | 1.6 | |
3.2 | C30H48N7O17P3S | [M+HCOO]− | 2,6-Dimethylheptanoyl-CoA | ||
914.2331 | 4.0 | C41H43NO20 | [M+HCOO]− | 6-{[2-(4-{[3-({3,4-dihydroxy-4-[(1H-indole-3-carbonyloxy)methyl]oxolan-2-yl}oxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-4-oxo-3,4-dihydro-2H-1-benzopyran-7-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid | 3 |
Study Group | BC | HC |
---|---|---|
n | 134 | 136 |
Age (y.o) | ||
Median | 49 (25–84) | 46 (18–63) |
Mean | 52.05 | 43.75 |
S.D | 11.62 | 11.2 |
BMI (kg/m2) | ||
Mean | 26.84 | 24.40 |
S.D | 5.54 | 2.67 |
Medication | ||
Yes | 68 | 6 |
No | 66 | 130 |
Stage | ||
IA | 2 | |
IIA | 54 | |
IIB | 48 | |
IIIA | 15 | |
IIIB | 6 | |
IV | 4 | |
Not Available | 5 | |
Phenotype | ||
LA | 21 | |
LB | 64 | |
HER2 | 35 | |
TN | 14 | |
Climacteric | ||
Premenopause | 69 | |
Perimenopause | 60 | |
Postmenopause | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González Olmedo, C.; Díaz Beltrán, L.; Madrid García, V.; Palacios Ferrer, J.L.; Cano Jiménez, A.; Urbano Cubero, R.; Pérez del Palacio, J.; Díaz, C.; Vicente, F.; Sánchez Rovira, P. Assessment of Untargeted Metabolomics by Hydrophilic Interaction Liquid Chromatography−Mass Spectrometry to Define Breast Cancer Liquid Biopsy-Based Biomarkers in Plasma Samples. Int. J. Mol. Sci. 2024, 25, 5098. https://doi.org/10.3390/ijms25105098
González Olmedo C, Díaz Beltrán L, Madrid García V, Palacios Ferrer JL, Cano Jiménez A, Urbano Cubero R, Pérez del Palacio J, Díaz C, Vicente F, Sánchez Rovira P. Assessment of Untargeted Metabolomics by Hydrophilic Interaction Liquid Chromatography−Mass Spectrometry to Define Breast Cancer Liquid Biopsy-Based Biomarkers in Plasma Samples. International Journal of Molecular Sciences. 2024; 25(10):5098. https://doi.org/10.3390/ijms25105098
Chicago/Turabian StyleGonzález Olmedo, Carmen, Leticia Díaz Beltrán, Verónica Madrid García, José Luis Palacios Ferrer, Alicia Cano Jiménez, Rocío Urbano Cubero, José Pérez del Palacio, Caridad Díaz, Francisca Vicente, and Pedro Sánchez Rovira. 2024. "Assessment of Untargeted Metabolomics by Hydrophilic Interaction Liquid Chromatography−Mass Spectrometry to Define Breast Cancer Liquid Biopsy-Based Biomarkers in Plasma Samples" International Journal of Molecular Sciences 25, no. 10: 5098. https://doi.org/10.3390/ijms25105098
APA StyleGonzález Olmedo, C., Díaz Beltrán, L., Madrid García, V., Palacios Ferrer, J. L., Cano Jiménez, A., Urbano Cubero, R., Pérez del Palacio, J., Díaz, C., Vicente, F., & Sánchez Rovira, P. (2024). Assessment of Untargeted Metabolomics by Hydrophilic Interaction Liquid Chromatography−Mass Spectrometry to Define Breast Cancer Liquid Biopsy-Based Biomarkers in Plasma Samples. International Journal of Molecular Sciences, 25(10), 5098. https://doi.org/10.3390/ijms25105098