The Usefulness of Vitamin K-Dependent Proteins in the Diagnosis of Colorectal Carcinoma
Abstract
:1. Introduction
Vitamin K and Extrahepatic Vitamin K-Dependent Proteins
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Z.; Zhang, Y.; Niu, Y.; Li, K.; Liu, X.; Chen, H.; Gao, C. A systematic review and meta-analysis of diagnostic and prognostic serum biomarkers of colorectal cancer. PLoS ONE 2014, 9, e103910. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wei, R.; Wang, M.; Ma, L.; Zhang, Z.; Chen, L.; Gou, Q.; Guo, S.; Zhu, S.; Zhang, S.; et al. MGP Promotes Colon Cancer Proliferation by Activating the NF-κB Pathway through Upregulation of the Calcium Signaling Pathway. Mol. Ther. Oncolytics 2020, 17, 371–383. [Google Scholar] [CrossRef] [PubMed]
- Rong, D.; Sun, G.; Zheng, Z.; Liu, L.; Chen, X.; Wu, F.; Gu, Y.; Dai, Y.; Zhong, W.; Hao, X.; et al. MGP promotes CD8+ T cell exhaustion by activating the NF-κB pathway leading to liver metastasis of colorectal cancer. Int. J. Biol. Sci. 2022, 18, 2345–2361. [Google Scholar] [CrossRef] [PubMed]
- Hadjipetrou, A.; Anyfantakis, D.; Galanakis, C.G.; Kastanakis, M.; Kastanakis, S. Colorectal cancer, screening and primary care: A mini literature review. World J. Gastroenterol. 2017, 23, 6049–6058. [Google Scholar] [CrossRef] [PubMed]
- Global Cancer Observatory. International Agency for Research on Cancer. * World Health Organization. Available online: https://gco.iarc.fr/ (accessed on 15 January 2024).
- Siegel, R.L.; Wagle, N.S.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 233–254. [Google Scholar] [CrossRef] [PubMed]
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global Cancer Statistics: 2011. CA Cancer J. Clin. 2011, 61, 69–90. [Google Scholar] [CrossRef] [PubMed]
- Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz. Gastroenterol. 2019, 14, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Cancer Council Victoria. Cancer in Victoria: Statistics and Trends 2014; Thursfield, V., Farrugia, H., Eds.; Cancer Council Victoria: Melbourne, Australia, 2015. [Google Scholar]
- Abualkhair, W.H.; Zhou, M.; Ahnen, D.; Yu, Q.; Wu, X.C.; Karlitz, J.J. Trends in Incidence of Early-Onset Colorectal Cancer in the United States among Those Approaching Screening Age. JAMA Netw. Open 2020, 3, e1920407. [Google Scholar] [CrossRef] [PubMed]
- Brenner, D.R.; Heer, E.; Sutherland, R.L.; Ruan, Y.; Tinmouth, J.; Heitman, S.J.; Hilsden, R. National Trends in Colorectal Cancer Incidence among Older and Younger Adults in Canada. JAMA Netw. Open 2019, 2, e198090. [Google Scholar] [CrossRef]
- Meester, R.G.S.; Mannalithara, A.; Lansdorp-Vogelaar, I.; Ladabaum, U. Trends in Incidence and Stage at Diagnosis of Colorectal Cancer in Adults Aged 40 through 49 Years, 1975–2015. JAMA 2019, 321, 1933–1934. [Google Scholar] [CrossRef]
- Ward, E.M.; Sherman, R.L.; Henley, S.J.; Jemal, A.; Siegel, D.A.; Feuer, E.J.; Albert, U.F.; Betsy, A.K.; Susan, S.; Jiemin, M.; et al. Annual Report to the Nation on the Status of Cancer, Featuring Cancer in Men and Women Age 20–49 Years. J. Natl. Cancer Inst. 2019, 111, 1279–1297. [Google Scholar] [CrossRef] [PubMed]
- Montminy, E.M.; Zhou, M.; Maniscalco, L.; Abualkhair, W.; Kim, M.K.; Siegel, R.L.; Xiao-Cheng, W.; Steven, H.I.; Jordan, J.K. Contributions of adenocarcinoma and carcinoid tumors to early-onset colorectal cancer incidence rates in the United States. Ann. Intern. Med. 2021, 174, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Howren, A.; Sayre, E.C.; Loree, J.M.; Gill, S.; Brown, C.J.; Farooq, A.; De Vera, A.M. Trends in the Incidence of Young-Onset Colorectal Cancer with a Focus on Years Approaching Screening Age: A Population-Based Longitudinal Study. J. Natl. Cancer Inst. 2021, 113, 863–868. [Google Scholar] [CrossRef]
- Bailey, C.E.; Hu, C.Y.; You, Y.N.; Bednarski, B.K.; Rodriguez-Bigas, M.A.; Skibber, J.M.; Cantor, S.B.; Chang, G.J. Increasing disparities in the age-related incidences of colon and rectal cancers in the United States, 1975–2010. JAMA Surg. 2015, 150, 17–22. [Google Scholar] [CrossRef]
- Gupta, S.; Bharti, B.; Ahnen, D.J.; Buchanan, D.D.; Cheng, I.C.; Cotterchio, M.; Figueiredo, J.C.; Gallinger, S.J.; Haile, R.W.; Mark, A.J.; et al. Potential impact of family history–based screening guidelines on the detection of early-onset colorectal cancer. Cancer. 2020, 126, 3013–3020. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.W.; Byeon, J.-S. Endoscopic diagnosis and treatment of early colorectal cancer. Intest. Res. 2022, 20, 281–290. [Google Scholar] [CrossRef]
- Passman, M.A.; Pommier, R.F.; Vetto, J.T. Synchronous colon primaries have the same prognosis as solitary colon cancers. Dis. Colon. Rectum. 1996, 39, 329–334. [Google Scholar] [CrossRef]
- Mulder, S.A.; Kranse, R.; Damhuis, R.A.; de Wilt, J.H.W.; Ouwendijk, R.J.T.; Kuipers, E.J.; Leerdam, M.E. Prevalence and prognosis of synchronous colorectal cancer: A Dutch population-based study. Cancer Epidemiol. 2011, 35, 442–447. [Google Scholar] [CrossRef]
- Fante, R.; Roncucci, L.D.G.C.; Tamassia, M.G.; Losi, L.; Benatti, P.; Pedroni, M.; Percesepe, A.; Pietri, S.; Leon, M.P. Frequency and clinical features of multiple tumors of the large bowel in the general population and in patients with hereditary colorectal carcinoma. Cancer 1996, 77, 2013–2021. [Google Scholar] [CrossRef]
- Morak, M.; Laner, A.; Bacher, U.; Keiling, C.; Holinski-Feder, E. MUTYH-associated polyposis—Variability of the clinical phenotype in patients with biallelic and monoallelic MUTYH mutations and report on novel mutations. Clin. Genet. 2010, 78, 353–363. [Google Scholar] [CrossRef]
- Palmqvist, R.; Engarås, B.; Lindmark, G.; Hallmans, G.; Tavelin, B.; Nilsson, O.; Hammarstrom, S.; Hafstrom, L. Prediagnostic Levels of Carcinoembryonic Antigen and CA 242 in Colorectal Cancer: A Matched Case-Control Study. Dis. Colon. Rectum. 2003, 46, 1538–1544. [Google Scholar] [CrossRef]
- Van Der Schouw, Y.T.; Verbeek, A.L.; Wobbes, T.; Segers, M.F.; Thomas, C.M. Comparison of four serum tumor markers in the diagnosis of colorectal carcinoma. Br. J. Cancer 1992, 66, 148–154. [Google Scholar] [CrossRef]
- Macdonald, J. Carcinoembryonic antigen screening: Pros and cons. Semin. Oncol. 1999, 26, 556. [Google Scholar]
- Kankanala, V.L.; Mukkamalla, S.K.R. Carcinoembryonic Antigen. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Alexander, J.C.; Silverman, N.A.; Chretien, P.B. Effect of Age and Cigarette Smoking on Carcinoembryonic Antigen Levels. JAMA 1976, 235, 1975–1979. [Google Scholar] [CrossRef]
- Sajid, K.M.; Parveen, R.; Sabih, D.E.; Chaouachi, K.; Naeem, A.; Mahmood, R.; Shamin, R. Carcinoembryonic antigen (CEA) levels in hookah smokers, cigarette smokers and non-smokers. J. Pak. Med. Assoc. 2007, 57, 595–599. [Google Scholar]
- Halilovic, E.; Rasic, I.; Sofic, A.; Mujic, A.; Rovcanin, A.; Hodzic, E.; Kulovic, E. The Importance of Determining Preoperative Serum Concentration of Carbohydrate Antigen 19-9 and Carcinoembryonic Antigen in Assessing the Progression of Colorectal Cancer. Med. Arch. 2020, 74, 346–349. [Google Scholar] [CrossRef]
- Konishi, T.; Shimada, Y.; Hsu, M.; Tufts, L.; Jimenez-Rodriguez, R.; Cercek, A.; Yaeger, R.; Saltz, L.; Smith, J.J.; Nash, G.M.; et al. Association of preoperative and postoperative serum carcinoembryonic antigen and colon cancer outcome. JAMA Oncol. 2018, 4, 309–315. [Google Scholar] [CrossRef]
- Lai, Y.; Masatoshi, H.; Ma, Y.; Guo, Y.; Zhang, B. Role of Vitamin K in Intestinal Health. Front. Immunol. 2022, 12, 791565. [Google Scholar] [CrossRef]
- Akbari, S.; Rasouli-Ghahroudi, A.A. Vitamin K, and Bone Metabolism: A Review of the Latest Evidence in Preclinical Studies. Biomed Res. Int. 2018, 2018, 4629383. [Google Scholar] [CrossRef]
- Welsh, J.; Bak, M.J.; Narvaez, C.J. New insights into vitamin K biology with relevance to cancer. Trends Mol. Med. 2022, 28, 864–881. [Google Scholar] [CrossRef]
- Chen, A.; Li, J.; Shen, N.; Huang, H.; Hang, Q. Vitamin K: New insights related to senescence and cancer metastasis. Biochim. Biophys. Acta Rev. Cancer 2024, 1879, 189057. [Google Scholar] [CrossRef]
- Dasari, S.; Ali, S.M.; Zheng, G.; Chen, A.; Dontaraju, V.S.; Bosland, M.C.; Kajdacsy-Balla, A.; Munirathinam, G. Vitamin K and its analogs: Potential avenues for prostate cancer management. Oncotarget 2017, 8, 57782–57799. [Google Scholar] [CrossRef]
- Ivanova, D.; Zhelev, Z.; Getsov, P.; Nikolova, B.; Aoki, I.; Higashi, T.; Babalova, R. Vitamin K: Redox-modulation, prevention of mitochondrial dysfunction and anticancer effect. Redox. Biol. 2018, 16, 352–358. [Google Scholar] [CrossRef]
- Willems, B.; Vermeer, C.; Reutelingsperger, C.; Schurgers, L. The realm of vitamin K-dependent proteins: Shifting from coagulation toward calcification. Mol. Nutr. Food Res. 2014, 58, 1620–1635. [Google Scholar] [CrossRef]
- Gheorghe, S.R.; Craciun, A.M. Matrix Gla protein in tumoral pathology. Clujul. Med. 2016, 89, 319–321. [Google Scholar] [CrossRef]
- Hoyt, M.; Reger, M.; Marley, A.; Fan, H.; Liu, Z.; Zhang, J. Vitamin K intake and prostate cancer risk in the prostate, lung, colorectal, and Ovarian cancer (PLCO) screening trial. Am. J. Clin. Nutr. 2019, 109, 392–401. [Google Scholar] [CrossRef]
- Jinghe, X.; Mizuta, T.; Ozaki, I. Vitamin K and hepatocellular carcinoma: The basic and clinic. World J. Clin. Cases 2015, 3, 757. [Google Scholar] [CrossRef]
- Pop, D.; Sitar-Taut, A.; Gligor, E.; Bodizs, G.; Cebanu, M.; Buduru, S.; Zdrenghea, D. The relationship between matrix GLA protein (MGP) and carotid stenosis Relaţia între proteina GLA matriceală (MGP) şi stenoza carotidiană. Rev. Română Med. Lab. 2011, 19, 169–173. [Google Scholar]
- Weston, B.W.; Monahan, P.E. Familial deficiency of vitamin K-dependent clotting factors. Haemophilia 2008, 14, 1209–1213. [Google Scholar] [CrossRef]
- Dahlberg, S.; Ede, J.; Schött, U. Vitamin K and cancer. Scand. J. Clin. Lab. Invest. 2017, 77, 555–567. Available online: https://pubmed.ncbi.nlm.nih.gov/28933567/ (accessed on 15 January 2024). [CrossRef]
- Thomas, O.; Rein, H.; Strandberg, K.; Schött, U. Coagulative safety of epidural catheters after major upper gastrointestinal surgery: Advanced and routine coagulation analysis in 38 patients. Perioper. Med. 2016, 5, 28. [Google Scholar] [CrossRef]
- Perne, M.G.; Sitar-Tăut, A.V.; Alexescu, T.G.; Ciumărnean, L.; Milaciu, M.V.; Coste, S.C.; Vlad, C.V.; Cozma, A.; Star-Taut, D.A.; Orasan, O.H.; et al. Diagnostic Performance of Extrahepatic Protein Induced by Vitamin K Absence in the Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Diagnostics 2023, 13, 816. [Google Scholar] [CrossRef]
- Shirabe, K.; Itoh, S.; Yoshizumi, T.; Soejima, Y.; Taketomi, A.; Aishima, S.I.; Maehara, Y. The predictors of microvascular invasion in candidates for liver transplantation with hepatocellular carcinoma—With special reference to the serum levels of des-gamma-carboxy prothrombin. J. Surg. Oncol. 2007, 95, 235–240. [Google Scholar] [CrossRef]
- Inagaki, Y.; Tang, W.; Xu, H.; Wang, F.; Nakata, M.; Sugawara, Y.; Kokudo, N. Des-gamma-carboxyprothrombin: Clinical effectiveness and biochemical importance. Biosci. Trends 2008, 2, 53–60. [Google Scholar]
- Yu, R.; Tan, Z.; Xiang, X.; Dan, Y.; Deng, G. Effectiveness of PIVKA-II in the detection of hepatocellular carcinoma based on real-world clinical data. BMC Cancer 2017, 17, 608. [Google Scholar] [CrossRef] [PubMed]
- Caiado, H.; Conceição, N.; Tiago, D.; Marreiros, A.; Vicente, S.; Enriquez, J.L.; Vaz, A.M.; Antunes, A.; Guerreiro, H.; Caldeira, P.; et al. Evaluation of MGP gene expression in colorectal cancer. Gene 2020, 723, 144120. [Google Scholar] [CrossRef]
- Shiraki, M.; Tsugawa, N.; Okano, T. Recent advances in vitamin K-dependent Gla-containing proteins and vitamin K nutrition. Osteoporos Sarcopenia. 2015, 1, 22–38. [Google Scholar] [CrossRef]
- Nieddu, V.; Melocchi, V.; Battistini, C.; Franciosa, G.; Lupia, M.; Stellato, C.; Bertalot, G.; Olsen, J.V.; Colombo, N.; Bianchi, F.; et al. Matrix Gla Protein drives stemness and tumor initiation in ovarian cancer. Cell Death Dis. 2023, 14, 220. [Google Scholar] [CrossRef]
- Fan, C.; Sheu, D.; Fan, H.; Hsu, K.; Chang, C.A.; Chan, E. Down-regulation of matrix Gla protein messenger RNA in human colorectal adenocarcinomas. Cancer Lett. 2001, 165, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, M.; Wang, J.; Wu, D.; Gao, Y.; Huang, K.; Yao, X. Suppression MGP inhibits tumor proliferation and reverses oxaliplatin resistance in colorectal cancer. Biochem. Pharmacol. 2021, 189, 114390. [Google Scholar] [CrossRef]
- Kekelidze, M.; D’Errico, L.; Pansini, M.; Tyndall, A.; Hohmann, J. Colorectal cancer: Current imaging methods and future perspectives for the diagnosis, staging and therapeutic response evaluation. World J. Gastroenterol. 2013, 19, 8502–8514. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Iwasaki, Y.; Taniguchi, M.; Onodera, K.; Matsuda, M.; Kawakami, T.; Higuchi, M.; Kato, K.; Kato, Y.; Furukawa, H. Primary colon cancer with a high serum PIVKA-II level. Int. J. Surg. Case Rep. 2015, 6C, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Sumida, Y.; Yoneda, M.; Seko, Y.; Ishiba, H.; Hara, T.; Toyoda, H.; Yasuda, S.; Kumada, T.; Hayashi, H.; Kobayashi, T.; et al. Surveillance of Hepatocellular Carcinoma in Nonalcoholic Fatty Liver Disease. Diagnostics 2020, 10, 579. [Google Scholar] [CrossRef]
Global | Control Group | CRC without Metastasis (Group 1) | CRC with Metastasis (Group 2) | p | ||
---|---|---|---|---|---|---|
No (%) | No (%) | No (%) | No (%) | |||
Number | 200 | 80 | 80 | 40 | ||
Gender | F | 69 (34.5%) | 33 (41.25) | 23(28.75) | 13 (32.5) | p = 0.2400 |
M | 131 (65.5%) | 47 (58.75) | 57 (71.25) | 27 (67.5) | ||
Age * | 55.36 ± 6.02 (56) | 55.76 ± 5.56 (56) | 55.27 ± 6.36 (56) | 54.75 ± 6.31 (57) | p = 0.7432 | |
Blood in stools | YES | 62 (31.0%) | 0 (0) | 44 (55) | 18 (45) | p < 0.0001 |
NO | 138 (69.0%) | 80 (100) | 36 (45) | 22 (55) | ||
Losing weight | YES | 24 (12.0%) | 0 (0) | 15 (18.75) | 9 (22.5) | p = 0.0001 |
NO | 176 (88.0%) | 80 (100) | 65 (81.25) | 31 (77.5) | ||
Constipation | YES | 34 (17.0%) | 0 (0) | 21 (26.25) | 13 (32.5) | p < 0.0001 |
NO | 166 (83.0%) | 80 (100) | 59 (73.75) | 27 (67.5) |
Global | Control Group (Group 0) | CRC without Metastasis (Group 1) | CRC with Metastasis (Group 2) | p-Value | ||
---|---|---|---|---|---|---|
n (%) | n (%) | n (%) | n (%) | |||
Localization | Ascending | 13 (10.8%) | - | 9 (11.25) | 4 (10) | p = 0.9854 |
Transverse | 8 (6.7%) | - | 6 (7.5) | 2 (5) | ||
Descending | 15 (12.5%) | - | 10 (12.5) | 5 (12.5) | ||
Sigma | 24 (20.0%) | - | 16 (20) | 8 (20) | ||
Rectum | 60 (50.0%) | - | 39 (48.75) | 21 (52.5) | ||
Histology | G1 | 6 (5.0%) | - | 6 (7.5) | 0 (0) | p = 0.0761 |
G2 | 73 (60.8%) | - | 47 (58.75) | 26 (65) | ||
G3 | 35 (29.2%) | - | 21 (26.25) | 14 (35) | ||
G4 | 6 (5.0%) | - | 6 (7.5) | 0 (0) | ||
CEA * | 126.89 ± 202.55 (18.90) | 1.04 ± 0.9 (0.75) | 55.04 ± 45.64 (26.50) | 522.32 ± 40.78 (530.40) | p < 0.0001 significant differences between
| |
CA 19-9 | 137.85 ± 181.56 (47.65) | 19.63 ± 9.94 (19.35) | 83.70 ± 45.40 (68.55) | 482.57 ± 85.31 (454.90) | p < 0.0001 significant differences between
| |
PIVKA II * | 242.15 ± 202.94 (277.90) | 20.23 ± 10.90 (19.95) | 430.13 ± 122.13 (451.75) | 310.05 ± 38.22 (316.70) | p < 0.0001 significant differences between
| |
ucMGP * | 8936.33 ± 6150.42 (11,395.50) | 1780.31 ± 864.70 (1653.00) | 13410.52 ± 2243.16 (12,780.00) | 14300.00 ± 2387.02 (14,031.00) | p < 0.0001 significant differences between
|
CEA * | CRC without Metastasis (Group 1) | CRC with Metastasis (Group 2) | p | |
Mean ± SD (median) | Mean ± SD (median) | |||
Histology | G1 | 19.93 ± 1.92 (19.30) | - | |
G2 | 53.07 ± 47.00 (23.70) | 525.31 ± 39.68 (528.60) | p < 0.0001 | |
G3 | 62.70 ± 41.44 (48.10) | 516.77 ± 43.70 (530.40) | p < 0.0001 | |
G4 | 78.68 ± 57.31 (77.30) | - | ||
p | p = 0.2084 | p = 0.4784 | ||
CA 19-9 * | CRC without Metastasis (Group 1) | CRC with Metastasis (Group 2) | p | |
Mean ± SD (median) | Mean ± SD (median) | |||
Histology | G1 | 78.95 ± 21.55 (77.00) | - | |
G2 | 77.15 ± 45.07 (64.10) | 485.69 ± 82.48 (468.60) | p < 0.0001 | |
G3 | 94.64 ± 50.16 (97) | 476.79 ± 93.24 (452.80) | p < 0.0001 | |
G4 | 101.50 ± 45.03 (103.55) | - | ||
p | p = 0.4299 | p = 0.7337 | ||
PIVKA II * | CRC without Metastasis (Group 1) | CRC with Metastasis (Group 2) | p | |
Mean ± SD (median) | Mean ± SD (median) | |||
Histology | G1 | 443.16 ± 123.57 (501.85) | - | |
G2 | 445.84 ± 122.69 (491.30) | 310.23 ± 44.36 (322.35) | p < 0.0001 | |
G3 | 380.96 ± 121.05 (367.80) | 309.70 ± 24.45 (314.60) | p = 0.0251 | |
G4 | 466.23 ± 95.13 (476.40) | - | ||
p | p = 0.1963 | p = 0.7124 | ||
ucMGP * | CRC without Metastasis (Group 1) | CRC with Metastasis (Group 2) | p | |
Mean ± SD (median) | Mean ± SD (median) | |||
Histology | G1 | 10,351.83 ± 198.91(10,326.00) | - | |
G2 | 12,541.31 ± 1238.21 (12,280.00) | 14,484.07 ± 2607.69 (14,238.50) | p = 0.0022 | |
G3 | 16,440.28 ± 1108.19 (16,198.00) | 13,958.14 ± 1955.25 (13,686.50) | p = 0.0005 | |
G4 | 12,673.83 ± 1706.30 (12,065.50) | - | ||
p | p < 0.0001 Differences between G1 vs. G2, G1 vs. G3, G1 vs. G4, G2 vs. G3, G3 vs. G4 | p = 0.6098 | ||
CEA, CA 19-9, PIVKA II, and ucMGP capacity to identify colorectal cancer—without taking into consideration metastasis presence | ||||||
GLOBALLY | AUROC | 95% Confidence Interval (lower-upper limit) | Cut off | Se | Sp | p |
CEA | 1 | 0.982–1.000 | >3.9 | 100% | 100% | <0.001 |
CA 19-9 | 0.976 | 0.945 to 0.993 | >36.5 | 94.2% | 100% | 0.0001 |
PIVKA II | 1 | 0.982 to 1.000 | >42.9 | 100% | 100% | <0.001 |
ucMGP | 1 | 0.982 to 1.000 | >3415 | 100% | 100% | <0.001 |
CEA, CA 19-9, PIVKA II, and ucMGP capacity to identify metastasis presence in colorectal cancer patients | ||||||
AUROC | 95% Confidence Interval (lower-upper limit) | Cut off | Se | Sp | p | |
CEA | 1.000 | 0.969 to 1.000 | >157.3 | 100% | 100% | <0.001 |
CA 19-9 | 1.000 | 0.969 to 1.000 | >181.6 | 100% | 100% | <0.001 |
PIVKA II | 0.789 | 0.705 to 0.858 | 373.8 | 100% | 65% | 0.0001 |
ucMGP | 0.608 | 0.515 to 0.696 | >12,543 | 72.5% | 48.7% | 0.0521 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perné, M.-G.; Sitar-Tăut, A.-V.; Orășan, O.H.; Negrean, V.; Vlad, C.V.; Alexescu, T.-G.; Milaciu, M.V.; Ciumărnean, L.; Togănel, R.D.; Petre, G.E.; et al. The Usefulness of Vitamin K-Dependent Proteins in the Diagnosis of Colorectal Carcinoma. Int. J. Mol. Sci. 2024, 25, 4997. https://doi.org/10.3390/ijms25094997
Perné M-G, Sitar-Tăut A-V, Orășan OH, Negrean V, Vlad CV, Alexescu T-G, Milaciu MV, Ciumărnean L, Togănel RD, Petre GE, et al. The Usefulness of Vitamin K-Dependent Proteins in the Diagnosis of Colorectal Carcinoma. International Journal of Molecular Sciences. 2024; 25(9):4997. https://doi.org/10.3390/ijms25094997
Chicago/Turabian StylePerné, Mirela-Georgiana, Adela-Viviana Sitar-Tăut, Olga Hilda Orășan, Vasile Negrean, Călin Vasile Vlad, Teodora-Gabriela Alexescu, Mircea Vasile Milaciu, Lorena Ciumărnean, Răzvan Dan Togănel, Gabriel Emil Petre, and et al. 2024. "The Usefulness of Vitamin K-Dependent Proteins in the Diagnosis of Colorectal Carcinoma" International Journal of Molecular Sciences 25, no. 9: 4997. https://doi.org/10.3390/ijms25094997
APA StylePerné, M. -G., Sitar-Tăut, A. -V., Orășan, O. H., Negrean, V., Vlad, C. V., Alexescu, T. -G., Milaciu, M. V., Ciumărnean, L., Togănel, R. D., Petre, G. E., Șimon, I., & Crăciun, A. (2024). The Usefulness of Vitamin K-Dependent Proteins in the Diagnosis of Colorectal Carcinoma. International Journal of Molecular Sciences, 25(9), 4997. https://doi.org/10.3390/ijms25094997