Distinctiveness of Femoral and Acetabular Mesenchymal Stem and Progenitor Populations in Patients with Primary and Secondary Hip Osteoarthritis Due to Developmental Dysplasia
Abstract
:1. Introduction
2. Results
2.1. Patient Cohort
2.2. Morphological Characteristics of Femoral and Acetabular Samples
2.3. Composition of Femoral and Acetabular Populations
2.4. The Disease-Specific Phenotype of Femoral and Acetabular Single-Positive Mesenchymal Stem and Progenitor Cells between pOA and DDH-OA Groups
2.5. The Site-Specific Phenotype of Single-Positive Mesenchymal Stem and Progenitor Cells within pOA and DDH-OA Groups
2.6. Immunohistochemical Characterization of Cells Expressing Mesenchymal Stem and Progenitor Markers in pOA and DDH-OA
2.7. Subpopulations of Cells Defined by Multiple Mesenchymal Stem and Progenitor Markers in pOA and DDH-OA
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Sampling
4.3. Histology
4.4. Histomorphometry
4.5. Preparation of Single-Cell Suspension
4.6. Flow Cytometry
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abramoff, B.; Caldera, F.E. Osteoarthritis: Pathology, Diagnosis, and Treatment Options. Med. Clin. N. Am. 2020, 104, 293–311. [Google Scholar] [CrossRef]
- Chen, D.; Shen, J.; Zhao, W.; Wang, T.; Han, L.; Hamilton, J.L.; Im, H.J. Osteoarthritis: Toward a comprehensive understanding of pathological mechanism. Bone Res. 2017, 5, 16044. [Google Scholar] [CrossRef]
- Li, G.; Yin, J.; Gao, J.; Cheng, T.S.; Pavlos, N.J.; Zhang, C.; Zheng, M.H. Subchondral bone in osteoarthritis: Insight into risk factors and microstructural changes. Arthritis Res. Ther. 2013, 15, 223. [Google Scholar] [CrossRef]
- Loeser, R.F.; Goldring, S.R.; Scanzello, C.R.; Goldring, M.B. Osteoarthritis: A disease of the joint as an organ. Arthritis Rheum. 2012, 64, 1697–1707. [Google Scholar] [CrossRef]
- Felson, D.T.; Lawrence, R.C.; Dieppe, P.A.; Hirsch, R.; Helmick, C.G.; Jordan, J.M.; Kington, R.S.; Lane, N.E.; Nevitt, M.C.; Zhang, Y.; et al. Osteoarthritis: New insights. Part 1: The disease and its risk factors. Ann. Intern. Med. 2000, 133, 635–646. [Google Scholar] [CrossRef]
- Maqbool, M.; Fekadu, G.; Jiang, X.; Bekele, F.; Tolossa, T.; Turi, E.; Fetensa, G.; Fanta, K. An up to date on clinical prospects and management of osteoarthritis. Ann. Med. Surg. 2021, 72, 103077. [Google Scholar] [CrossRef]
- Hall, M.; van der Esch, M.; Hinman, R.S.; Peat, G.; de Zwart, A.; Quicke, J.G.; Runhaar, J.; Knoop, J.; van der Leeden, M.; de Rooij, M.; et al. How does hip osteoarthritis differ from knee osteoarthritis? Osteoarthr. Cartil. 2022, 30, 32–41. [Google Scholar] [CrossRef]
- Bicanic, G.; Barbaric, K.; Bohacek, I.; Aljinovic, A.; Delimar, D. Current concept in dysplastic hip arthroplasty: Techniques for acetabular and femoral reconstruction. World J. Orthop. 2014, 5, 412–424. [Google Scholar] [CrossRef]
- Bohaček, I.; Plečko, M.; Duvančić, T.; Smoljanović, T.; Vukasović Barišić, A.; Delimar, D. Current knowledge on the genetic background of developmental dysplasia of the hip and the histomorphological status of the cartilage. Croat. Med. J. 2020, 61, 260–270. [Google Scholar] [CrossRef]
- Radu, A.F.; Bungau, S.G.; Tit, D.M.; Behl, T.; Uivaraseanu, B.; Marcu, M.F. Highlighting the Benefits of Rehabilitation Treatments in Hip Osteoarthritis. Medicina 2022, 58, 494. [Google Scholar] [CrossRef]
- Culliford, D.J.; Maskell, J.; Kiran, A.; Judge, A.; Javaid, M.K.; Cooper, C.; Arden, N.K. The lifetime risk of total hip and knee arthroplasty: Results from the UK general practice research database. Osteoarthr. Cartil. 2012, 20, 519–524. [Google Scholar] [CrossRef]
- Crowe, J.F.; Mani, V.J.; Ranawat, C.S. Total hip replacement in congenital dislocation and dysplasia of the hip. J. Bone Jt. Surg. Am. 1979, 61, 15–23. [Google Scholar] [CrossRef]
- Plečko, M.; Bohaček, I.; Duvančić, T.; Delimar, D. The neoacetabulum in developmental dysplasia of the hip is covered with hyaline cartilage. Med. Hypotheses 2020, 142, 109820. [Google Scholar] [CrossRef]
- Zhen, P.; Liu, J.; Lu, H.; Chen, H.; Li, X.; Zhou, S. Developmental hip dysplasia treated by total hip arthroplasty using a cementless Wagner cone stem in young adult patients with a small physique. BMC Musculoskelet. Disord. 2017, 18, 192. [Google Scholar] [CrossRef]
- Learmonth, I.D.; Young, C.; Rorabeck, C. The operation of the century: Total hip replacement. Lancet 2007, 370, 1508–1519. [Google Scholar] [CrossRef]
- Evans, J.T.; Evans, J.P.; Walker, R.W.; Blom, A.W.; Whitehouse, M.R.; Sayers, A. How long does a hip replacement last? A systematic review and meta-analysis of case series and national registry reports with more than 15 years of follow-up. Lancet 2019, 393, 647–654. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Ageing 2017—Highlights. Available online: https://www.un.org/en/development/desa/population/publications/pdf/ageing/WPA2017_Highlights.pdf (accessed on 30 April 2024).
- Glyn-Jones, S.; Palmer, A.J.; Agricola, R.; Price, A.J.; Vincent, T.L.; Weinans, H.; Carr, A.J. Osteoarthritis. Lancet 2015, 386, 376–387. [Google Scholar] [CrossRef]
- Hudetz, D.; Jeleč, Ž.; Rod, E.; Borić, I.; Plečko, M.; Primorac, D. The future of cartilage repair. In Personalized Medicine in Healthcare Systems. Europeanization and Globalization; Bodiroga-Vukobrat, N., Rukavina, D., Pavelić, K., Sander, G.G., Eds.; Springer: Cham, Switzerland, 2019; Volume 5, pp. 375–411. [Google Scholar]
- Kong, L.; Zheng, L.Z.; Qin, L.; Ho, K.K.W. Role of mesenchymal stem cells in osteoarthritis treatment. J. Orthop. Transl. 2017, 9, 89–103. [Google Scholar] [CrossRef]
- Caplan, A.I. Mesenchymal Stem Cells: Time to Change the Name! Stem Cells Transl. Med. 2017, 6, 1445–1451. [Google Scholar] [CrossRef]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- Churchman, S.M.; Ponchel, F.; Boxall, S.A.; Cuthbert, R.; Kouroupis, D.; Roshdy, T.; Giannoudis, P.V.; Emery, P.; McGonagle, D.; Jones, E.A. Transcriptional profile of native CD271+ multipotential stromal cells: Evidence for multiple fates, with prominent osteogenic and Wnt pathway signaling activity. Arthritis Rheum. 2012, 64, 2632–2643. [Google Scholar] [CrossRef]
- Pérez-Silos, V.; Camacho-Morales, A.; Fuentes-Mera, L. Mesenchymal Stem Cells Subpopulations: Application for Orthopedic Regenerative Medicine. Stem Cells Int. 2016, 2016, 3187491. [Google Scholar] [CrossRef]
- Rasini, V.; Dominici, M.; Kluba, T.; Siegel, G.; Lusenti, G.; Northoff, H.; Horwitz, E.M.; Schäfer, R. Mesenchymal stromal/stem cells markers in the human bone marrow. Cytotherapy 2013, 15, 292–306. [Google Scholar] [CrossRef]
- Chan, C.K.F.; Gulati, G.S.; Sinha, R.; Tompkins, J.V.; Lopez, M.; Carter, A.C.; Ransom, R.C.; Reinisch, A.; Wearda, T.; Murphy, M.; et al. Identification of the Human Skeletal Stem Cell. Cell 2018, 175, 43–56.e21. [Google Scholar] [CrossRef]
- Wyler, A.; Bousson, V.; Bergot, C.; Polivka, M.; Leveque, E.; Vicaut, E.; Laredo, J.D. Comparison of MR-arthrography and CT-arthrography in hyaline cartilage-thickness measurement in radiographically normal cadaver hips with anatomy as gold standard. Osteoarthr. Cartil. 2009, 17, 19–25. [Google Scholar] [CrossRef]
- Nakanishi, K.; Tanaka, H.; Sugano, N.; Sato, Y.; Ueguchi, T.; Kubota, T.; Tamura, S.; Nakamura, H. MR-based three-dimensional presentation of cartilage thickness in the femoral head. Eur. Radiol. 2001, 11, 2178–2183. [Google Scholar] [CrossRef]
- Gala, L.; Clohisy, J.C.; Beaulé, P.E. Hip Dysplasia in the Young Adult. J. Bone Jt. Surg. Am. 2016, 98, 63–73. [Google Scholar] [CrossRef]
- Wiberg, G. Studies on dysplastic acetabula and congenital subluxation of the hip joint. With special reference to the complication of coxarthrosis. Acta Chir. Scand. Suppl. 1939, 83, 28–38. [Google Scholar]
- Trivanovic, D.; Harder, J.; Leucht, M.; Kreuzahler, T.; Schlierf, B.; Holzapfel, B.M.; Rudert, M.; Jakob, F.; Herrmann, M. Immune and stem cell compartments of acetabular and femoral bone marrow in hip osteoarthritis patients. Osteoarthr. Cartil. 2022, 30, 1116–1129. [Google Scholar] [CrossRef]
- Čamernik, K.; Mihelič, A.; Mihalič, R.; Marolt Presen, D.; Janež, A.; Trebše, R.; Marc, J.; Zupan, J. Increased Exhaustion of the Subchondral Bone-Derived Mesenchymal Stem/ Stromal Cells in Primary Versus Dysplastic Osteoarthritis. Stem Cell Rev. Rep. 2020, 16, 742–754. [Google Scholar] [CrossRef]
- McGuckin, C.P.; Forraz, N.; Baradez, M.O.; Lojo-Rial, C.; Wertheim, D.; Whiting, K.; Watt, S.M.; Pettengell, R. Colocalization analysis of sialomucins CD34 and CD164. Stem Cells 2003, 21, 162–170. [Google Scholar] [CrossRef]
- Jasenc, L.; Stražar, K.; Mihelič, A.; Mihalič, R.; Trebše, R.; Haring, G.; Jeras, M.; Zupan, J. In Vitro Characterization of the Human Skeletal Stem Cell-like Properties of Primary Bone-Derived Mesenchymal Stem/Stromal Cells in Patients with Late and Early Hip Osteoarthritis. Life 2022, 12, 899. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, Y.; Gomez-Salazar, M.A.; Hsu, G.C.; Negri, S.; Li, Z.; Hardy, W.; Ding, L.; Peault, B.; James, A.W. Bone-forming perivascular cells: Cellular heterogeneity and use for tissue repair. Stem Cells 2021, 39, 1427–1434. [Google Scholar] [CrossRef]
- Ding, L.; Vezzani, B.; Khan, N.; Su, J.; Xu, L.; Yan, G.; Liu, Y.; Li, R.; Gaur, A.; Diao, Z.; et al. CD10 expression identifies a subset of human perivascular progenitor cells with high proliferation and calcification potentials. Stem Cells 2020, 38, 261–275. [Google Scholar] [CrossRef] [PubMed]
- Granéli, C.; Thorfve, A.; Ruetschi, U.; Brisby, H.; Thomsen, P.; Lindahl, A.; Karlsson, C. Novel markers of osteogenic and adipogenic differentiation of human bone marrow stromal cells identified using a quantitative proteomics approach. Stem Cell Res. 2014, 12, 153–165. [Google Scholar] [CrossRef]
- Sasaki, E.; Hamamura, K.; Mishima, Y.; Furukawa, K.; Nagao, M.; Kato, H.; Hamajima, K.; Sato, T.; Miyazawa, K.; Goto, S.; et al. Attenuation of Bone Formation through a Decrease in Osteoblasts in Mutant Mice Lacking the GM2/GD2 Synthase Gene. Int. J. Mol. Sci. 2022, 23, 9044. [Google Scholar] [CrossRef]
- Xu, J.; Fan, W.; Tu, X.X.; Zhang, T.; Hou, Z.J.; Guo, T.; Shu, X.; Luo, X.; Liu, Y.; Peng, F.; et al. Neural ganglioside GD2+ cells define a subpopulation of mesenchymal stem cells in adult murine bone marrow. Cell Physiol. Biochem. 2013, 32, 889–898. [Google Scholar] [CrossRef]
- Martinez, C.; Hofmann, T.J.; Marino, R.; Dominici, M.; Horwitz, E.M. Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: A novel surface marker for the identification of MSCs. Blood 2007, 109, 4245–4248. [Google Scholar] [CrossRef]
- Barilani, M.; Banfi, F.; Sironi, S.; Ragni, E.; Guillaumin, S.; Polveraccio, F.; Rosso, L.; Moro, M.; Astori, G.; Pozzobon, M.; et al. Low-affinity Nerve Growth Factor Receptor (CD271) Heterogeneous Expression in Adult and Fetal Mesenchymal Stromal Cells. Sci. Rep. 2018, 8, 9321. [Google Scholar] [CrossRef]
- Jones, E.; English, A.; Churchman, S.M.; Kouroupis, D.; Boxall, S.A.; Kinsey, S.; Giannoudis, P.G.; Emery, P.; McGonagle, D. Large-scale extraction and characterization of CD271+ multipotential stromal cells from trabecular bone in health and osteoarthritis: Implications for bone regeneration strategies based on uncultured or minimally cultured multipotential stromal cells. Arthritis Rheum. 2010, 62, 1944–1954. [Google Scholar] [CrossRef]
- Ilas, D.C.; Churchman, S.M.; Baboolal, T.; Giannoudis, P.V.; Aderinto, J.; McGonagle, D.; Jones, E. The simultaneous analysis of mesenchymal stem cells and early osteocytes accumulation in osteoarthritic femoral head sclerotic bone. Rheumatology 2019, 58, 1777–1783. [Google Scholar] [CrossRef] [PubMed]
- Sivasubramaniyan, K.; Ilas, D.C.; Harichandan, A.; Bos, P.K.; Santos, D.L.; de Zwart, P.; Koevoet, W.; Owston, H.; Bühring, H.J.; Jones, E.; et al. Bone Marrow-Harvesting Technique Influences Functional Heterogeneity of Mesenchymal Stem/Stromal Cells and Cartilage Regeneration. Am. J. Sports Med. 2018, 46, 3521–3531. [Google Scholar] [CrossRef] [PubMed]
- Campbell, T.M.; Churchman, S.M.; Gomez, A.; McGonagle, D.; Conaghan, P.G.; Ponchel, F.; Jones, E. Mesenchymal Stem Cell Alterations in Bone Marrow Lesions in Patients With Hip Osteoarthritis. Arthritis Rheumatol. 2016, 68, 1648–1659. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.T.; Tessaro, I.; Marmotti, A.; Sirtori, C.; Peretti, G.M.; Mangiavini, L. Does the Harvesting Site Influence the Osteogenic Potential of Mesenchymal Stem Cells? Stem Cells Int. 2019, 2019, 9178436. [Google Scholar] [CrossRef] [PubMed]
- Kuçi, S.; Kuçi, Z.; Schäfer, R.; Spohn, G.; Winter, S.; Schwab, M.; Salzmann-Manrique, E.; Klingebiel, T.; Bader, P. Molecular signature of human bone marrow-derived mesenchymal stromal cell subsets. Sci. Rep. 2019, 9, 1774. [Google Scholar] [CrossRef] [PubMed]
- Kellgren, J.H.; Lawrence, J.S. Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis. 1957, 16, 494–502. [Google Scholar] [CrossRef]
- Huang, B.K.; Tan, W.; Scherer, K.F.; Rennie, W.; Chung, C.B.; Bancroft, L.W. Standard and Advanced Imaging of Hip Osteoarthritis. What the Radiologist Should Know. Semin. Musculoskelet. Radiol. 2019, 23, 289–303. [Google Scholar] [CrossRef]
- Wasielewski, R.C.; Cooperstein, L.A.; Kruger, M.P.; Rubash, H.E. Acetabular anatomy and the transacetabular fixation of screws in total hip arthroplasty. J. Bone Jt. Surg. Am. 1990, 72, 501–508. [Google Scholar] [CrossRef]
- Ilizaliturri, V.M., Jr.; Byrd, J.W.; Sampson, T.G.; Guanche, C.A.; Philippon, M.J.; Kelly, B.T.; Dienst, M.; Mardones, R.; Shonnard, P.; Larson, C.M. A geographic zone method to describe intra-articular pathology in hip arthroscopy: Cadaveric study and preliminary report. Arthroscopy 2008, 24, 534–539. [Google Scholar] [CrossRef]
- Egan, K.P.; Brennan, T.A.; Pignolo, R.J. Bone histomorphometry using free and commonly available software. Histopathology 2012, 61, 1168–1173. [Google Scholar] [CrossRef]
- Photoshop for the Scientist. Using Photoshop to Measure Areas in a Histological Section. Available online: https://www.youtube.com/watch?v=vdnd88baxV8 (accessed on 25 October 2023).
- Barbarić Starčević, K.; Lukač, N.; Jelić, M.; Šućur, A.; Grčević, D.; Kovačić, N. Reciprocal Alterations in Osteoprogenitor and Immune Cell Populations in Rheumatoid Synovia. Int. J. Mol. Sci. 2022, 23, 12379. [Google Scholar] [CrossRef] [PubMed]
- Belkina, A.C.; Ciccolella, C.O.; Anno, R.; Halpert, R.; Spidlen, J.; Snyder-Cappione, J.E. Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets. Nat. Commun. 2019, 10, 5415. [Google Scholar] [CrossRef] [PubMed]
pOA | DDH-OA | p | |
---|---|---|---|
Number of patients | 12 | 12 | n/a |
Male/Female | 4/8 | 1/11 | 0.1399 * |
Age [years] | 65.00 ± 7.87 | 50.58 ± 8.08 | 0.0002 ** |
BMI [kg/m2] | 31.38 ± 7.16 | 29.03 ± 5.68 | 0.3833 ** |
Duration of pain [years] | 3.0 [2.5–5.5] | 3.0 [2.0–7.5] | 0.9294 *** |
VAS pain while resting | 5.0 [3.0–7.0] | 6.0 [5.5–8.0] | 0.1766 *** |
VAS pain in activity | 8.5 [7.5–10.0] | 9.5 [8.0–10.0] | 0.3242 *** |
Total WOMAC [%] | 61.20 ± 10.40 | 58.25 ± 12.99 | 0.5457 ** |
mHHS | 40.00 ± 8.94 | 40.17 ± 11.20 | 0.9682 ** |
Group | Fh | Ac | p * | |
---|---|---|---|---|
pOA | BA/TA | 38 [27.2–48.7] | 47.4 [41.8–53.5] | 0.0342 |
Subchondral BA/TA | 50.4 [33.3–60.5] | 73.5 [63.4–78] | 0.0049 | |
Trabecular BA/TA | 38.4 [26.9–53.2] | 46.4 [30–56] | 0.9697 | |
DDH-OA | BA/TA | 37.6 [24.7–48.6] | 35.7 [22.3–44.9] | 0.4697 |
Subchondral BA/TA | 38.8 [28–70.7] | 56.4 [40.8–74.1] | 0.2036 | |
Trabecular BA/TA | 44.2 [24.8–53] | 33 [17.4–44.7] | 0.1294 |
Fh | Ac | p * | |
---|---|---|---|
CD10+ | 31.7 [23.2–37.8] | 39.1 [18.9–45.2] | 0.9097 |
CD140b+ | 27.4 [14.7–35.2] | 25.3 [16.1–38.3] | 0.6100 |
CD271+ | 51.5 [45.4–70.2] | 48.1 [31.7–76.4] | 0.4697 |
GD2+ | 8.1 [5.5–14.9] | 12.5 [8.1–31] | 0.0640 |
CD73+ | 21.9 [18.1–28.2] | 18.2 [12.4–33.8] | 0.9697 |
PDPN+ | 4.6 [1.9–8.6] | 6.8 [4.4–16.6] | 0.0771 |
CD146+ | 25 [14.1–37.9] | 12.5 [6.8–32.1] | 0.2036 |
CD164+ | 57.1 [36.5–62.3] | 39.5 [25.6–51.5] | 0.1466 |
Fh | Ac | p * | |
---|---|---|---|
CD10+ | 19.1 [16.7–43.8] | 18.1 [13.9–28.7] | 0.0923 |
CD140b+ | 28.2 [13.2–38.1] | 12.5 [7.3–34.7] | 0.1763 |
CD271+ | 53.6 [30–86.7] | 28.8 [18.8–41.9] | 0.0093 |
GD2+ | 4.8 [2.5–7.2] | 4.3 [1.2–19] | 0.9097 |
CD73+ | 16.5 [11.4–28.4] | 29.4 [12.6–40.4] | 0.4238 |
PDPN+ | 10 [2.3–27] | 5.3 [0.8–36.3] | 0.7334 |
CD146+ | 32.4 [22.6–36.3] | 22.5 [7.9–40.2] | 0.0771 |
CD164+ | 67.4 [51.4–78.5] | 65.5 [49.7–79.3] | 0.7910 |
Fh | Ac | p * | |
---|---|---|---|
CD10+CD271+ | 31.3 [29.3–42.8] | 25.2 [11.7–37] | 0.0771 |
CD10+GD2+ | 4.2 [1.3–7.9] | 8.8 [6.1–23.4] | 0.0122 |
CD271+GD2+ | 3.6 [2.7–6.6] | 9.1 [5.2–19.8] | 0.0342 |
CD271+GD2+CD10+ | 3.1 [1.2–5.3] | 7.9 [3.9–16.5] | 0.0269 |
CD164+CD146− | 27.8 [9.6–32.3] | 21.6 [10.3–28.8] | 0.5301 |
CD164+CD146−CD73+ | 18.2 [7.9–25.4] | 12.3 [7.6–20.8] | 0.4697 |
CD164+CD146−PDPN+ | 2 [0.7–3.9] | 3.4 [1.7–10.7] | 0.0469 |
CD164+CD146−PDPN+CD73+ | 1.9 [0.8–3.9] | 3.1 [1.6–10.7] | 0.0829 |
Fh | Ac | p * | |
---|---|---|---|
CD10+CD271+ | 15.9 [13.4–42.3] | 13.6 [10.1–18.2] | 0.0640 |
CD10+GD2+ | 2.9 [ 1.8–4.2] | 3.2 [1–12.6] | 0.5828 |
CD271+GD2+ | 3 [2–4.6] | 2.4 [0.7–5.8] | 0.9097 |
CD271+GD2+CD10+ | 2.2 [1.4–3.3] | 1.6 [0.7–5.4] | 0.7334 |
CD164+CD146− | 31.2 [19.8–51.3] | 40.4 [30.3–51.3] | 0.1820 |
CD164+CD146−CD73+ | 15.2 [8.7–20.3] | 26.2 [12–30.3] | 0.2036 |
CD164+CD146−PDPN+ | 5.3 [1.3–12.9] | 3.5 [0.8–20.7] | 0.1971 |
CD164+CD146−PDPN+CD73+ | 3.4 [0.9–10.8] | 3.1 [0.4–17.9] | 0.2477 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plečko, M.; Kovačić, N.; Grčević, D.; Šućur, A.; Vukasović Barišić, A.; Duvančić, T.; Bohaček, I.; Delimar, D. Distinctiveness of Femoral and Acetabular Mesenchymal Stem and Progenitor Populations in Patients with Primary and Secondary Hip Osteoarthritis Due to Developmental Dysplasia. Int. J. Mol. Sci. 2024, 25, 5173. https://doi.org/10.3390/ijms25105173
Plečko M, Kovačić N, Grčević D, Šućur A, Vukasović Barišić A, Duvančić T, Bohaček I, Delimar D. Distinctiveness of Femoral and Acetabular Mesenchymal Stem and Progenitor Populations in Patients with Primary and Secondary Hip Osteoarthritis Due to Developmental Dysplasia. International Journal of Molecular Sciences. 2024; 25(10):5173. https://doi.org/10.3390/ijms25105173
Chicago/Turabian StylePlečko, Mihovil, Nataša Kovačić, Danka Grčević, Alan Šućur, Andreja Vukasović Barišić, Tea Duvančić, Ivan Bohaček, and Domagoj Delimar. 2024. "Distinctiveness of Femoral and Acetabular Mesenchymal Stem and Progenitor Populations in Patients with Primary and Secondary Hip Osteoarthritis Due to Developmental Dysplasia" International Journal of Molecular Sciences 25, no. 10: 5173. https://doi.org/10.3390/ijms25105173
APA StylePlečko, M., Kovačić, N., Grčević, D., Šućur, A., Vukasović Barišić, A., Duvančić, T., Bohaček, I., & Delimar, D. (2024). Distinctiveness of Femoral and Acetabular Mesenchymal Stem and Progenitor Populations in Patients with Primary and Secondary Hip Osteoarthritis Due to Developmental Dysplasia. International Journal of Molecular Sciences, 25(10), 5173. https://doi.org/10.3390/ijms25105173