Correlations of the CNR1 Gene with Personality Traits in Women with Alcohol Use Disorder
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Cannabinoid System
3.2. Personality Traits
3.3. Short Tandem Repeat
3.4. Summary
4. Materials and Methods
4.1. Participants
4.2. Psychometric Tests
4.3. Genotyping
- 5′-6FAM-ACTCCGTCTCAAAAACAACAAAA-3′ (forward) and
- 5′-CTGCCATTAAGGGAAAGAGGT-3′ (reverse)
- 5′-GCTACTCGGGAGGCTGAACC-3′ (forward) and
- 5′-CACCCCTGGGCTGTAAAATAACCT-3′ (reverse) to validate the identification of polymorphisms with capillary electrophoresis (PCR conditions: Th65 °C, 38 cycles). Due to the discrepancies found in the literature regarding the number of AAT repetitions in this microsatellite, homozygous individuals for the different alleles were sequenced. Sequencing was performed with the ABI PRISM® 3130 Genetic Analyzer, and data were analysed with the Sequencing Analysis v5.1 software (Applied Biosystems, Waltham, MA, USA). All primers were designed based on the sequence NC_000006.12 (Homo sapiens chromosome 6, GRCh38.p14 Primary Assembly) from the database of the National Center for Biotechnology Information.
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nixon, S.J.; Garcia, C.C.; Lewis, B. Women’s Use of Alcohol: Neurobiobehavioral Concomitants and Consequences. Front. Neuroendocrinol. 2023, 70, 101079. [Google Scholar] [CrossRef]
- Wittenberg, E.; Barbosa, C.; Hein, R.; Hudson, E.; Thornburg, B.; Bray, J.W. Health-Related Quality of Life of Alcohol Use Disorder with Co-Occurring Conditions in the US Population. Drug Alcohol Depend. 2021, 221, 108558. [Google Scholar] [CrossRef]
- Roerecke, M.; Vafaei, A.; Hasan, O.S.M.; Chrystoja, B.R.; Cruz, M.; Lee, R.; Neuman, M.G.; Rehm, J. Alcohol Consumption and Risk of Liver Cirrhosis: A Systematic Review and Meta-Analysis. Off. J. Am. Coll. Gastroenterol. ACG 2019, 114, 1574. [Google Scholar] [CrossRef] [PubMed]
- Lam, B.Q.; Srivastava, R.; Morvant, J.; Shankar, S.; Srivastava, R.K. Association of Diabetes Mellitus and Alcohol Abuse with Cancer: Molecular Mechanisms and Clinical Significance. Cells 2021, 10, 3077. [Google Scholar] [CrossRef] [PubMed]
- McCaul, M.E.; Roach, D.; Hasin, D.S.; Weisner, C.; Chang, G.; Sinha, R. Alcohol and Women: A Brief Overview. Alcohol Clin. Exp. Res. 2019, 43, 774–779. [Google Scholar] [CrossRef]
- Mattson, S.N.; Bernes, G.A.; Doyle, L.R. Fetal Alcohol Spectrum Disorders: A Review of the Neurobehavioral Deficits Associated With Prenatal Alcohol Exposure. Alcohol Clin. Exp. Res. 2019, 43, 1046–1062. [Google Scholar] [CrossRef]
- McHugh, R.K.; Weiss, R.D. Alcohol Use Disorder and Depressive Disorders. Alcohol Res. Curr. Rev. 2019, 40, e1–e8. [Google Scholar] [CrossRef]
- Sacher, J.; Neumann, J.; Okon-Singer, H.; Gotowiec, S.; Villringer, A. Sexual Dimorphism in the Human Brain: Evidence from Neuroimaging. Magn. Reson. Imaging 2013, 31, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Costa, P.T., Jr.; Terracciano, A.; McCrae, R.R. Gender Differences in Personality Traits across Cultures: Robust and Surprising Findings. J. Personal. Soc. Psychol. 2001, 81, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Chapman, B.P.; Duberstein, P.R.; Sörensen, S.; Lyness, J.M. Gender Differences in Five Factor Model Personality Traits in an Elderly Cohort. Personal. Individ. Differ. 2007, 43, 1594–1603. [Google Scholar] [CrossRef] [PubMed]
- Feingold, A. Gender Differences in Personality: A Meta-Analysis. Psychol. Bull. 1994, 116, 429–456. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, J.G.; Grippo, A.J.; Johnson, A.K.; Watson, D. A Comparative Developmental Study of Impulsivity in Rats and Humans: The Role of Reward Sensitivity. Ann. N. Y. Acad. Sci. 2004, 1021, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Cloninger, C.R.; Sigvardsson, S.; Bohman, M. Type I and Type II Alcoholism: An Update. Alcohol Health Res. World 1996, 20, 18–23. [Google Scholar] [PubMed]
- Soundararajan, S.; Kazmi, N.; Brooks, A.T.; Krumlauf, M.; Schwandt, M.L.; George, D.T.; Hodgkinson, C.A.; Wallen, G.R.; Ramchandani, V.A. FAAH and CNR1 Polymorphisms in the Endocannabinoid System and Alcohol-Related Sleep Quality. Front. Psychiatry 2021, 12, 712178. [Google Scholar] [CrossRef]
- Elkrief, L.; Spinney, S.; Vosberg, D.E.; Banaschewski, T.; Bokde, A.L.W.; Quinlan, E.B.; Desrivières, S.; Flor, H.; Garavan, H.; Gowland, P.; et al. Endocannabinoid Gene × Gene Interaction Association to Alcohol Use Disorder in Two Adolescent Cohorts. Front. Psychiatry 2021, 12, 645746. [Google Scholar] [CrossRef] [PubMed]
- Basavarajappa, B.S. Endocannabinoid System and Alcohol Abuse Disorders. In Recent Advances in Cannabinoid Physiology and Pathology; Bukiya, A.N., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 89–127. ISBN 978-3-030-21737-2. [Google Scholar]
- Howlett, A.C.; Barth, F.; Bonner, T.I.; Cabral, G.; Casellas, P.; Devane, W.A.; Felder, C.C.; Herkenham, M.; Mackie, K.; Martin, B.R.; et al. International Union of Pharmacology. XXVII. Classification of Cannabinoid Receptors. Pharmacol. Rev. 2002, 54, 161–202. [Google Scholar] [CrossRef] [PubMed]
- Herkenham, M.; Lynn, A.B.; Little, M.D.; Johnson, M.R.; Melvin, L.S.; de Costa, B.R.; Rice, K.C. Cannabinoid Receptor Localization in Brain. Proc. Natl. Acad. Sci. USA 1990, 87, 1932–1936. [Google Scholar] [CrossRef] [PubMed]
- Devane, W.A.; Hanus, L.; Breuer, A.; Pertwee, R.G.; Stevenson, L.A.; Griffin, G.; Gibson, D.; Mandelbaum, A.; Etinger, A.; Mechoulam, R. Isolation and Structure of a Brain Constituent That Binds to the Cannabinoid Receptor. Science 1992, 258, 1946–1949. [Google Scholar] [CrossRef] [PubMed]
- Basavarajappa, B.S.; Saito, M.; Cooper, T.B.; Hungund, B.L. Stimulation of Cannabinoid Receptor Agonist 2-Arachidonylglycerol by Chronic Ethanol and Its Modulation by Specific Neuromodulators in Cerebellar Granule Neurons. Biochim. Biophys. Acta 2000, 1535, 78–86. [Google Scholar] [CrossRef] [PubMed]
- PubChem CNR1—Cannabinoid Receptor 1 (Human). Available online: https://pubchem.ncbi.nlm.nih.gov/gene/CNR1/human (accessed on 24 March 2024).
- CNR1—Cannabinoid Receptor 1—Homo Sapiens (Human)|UniProtKB|UniProt. Available online: https://www.uniprot.org/uniprotkb/P21554/entry (accessed on 24 March 2024).
- Laprairie, R.B.; Kelly, M.E.M.; Denovan-Wright, E.M. The Dynamic Nature of Type 1 Cannabinoid Receptor (CB(1)) Gene Transcription. Br. J. Pharmacol. 2012, 167, 1583–1595. [Google Scholar] [CrossRef]
- Zhang, P.-W.; Ishiguro, H.; Ohtsuki, T.; Hess, J.; Carillo, F.; Walther, D.; Onaivi, E.S.; Arinami, T.; Uhl, G.R. Human Cannabinoid Receptor 1: 5’ Exons, Candidate Regulatory Regions, Polymorphisms, Haplotypes and Association with Polysubstance Abuse. Mol. Psychiatry 2004, 9, 916–931. [Google Scholar] [CrossRef] [PubMed]
- Herman, A.I.; Kranzler, H.R.; Cubells, J.F.; Gelernter, J.; Covault, J. Association Study of the CNR1 Gene Exon 3 Alternative Promoter Region Polymorphisms and Substance Dependence. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2006, 141B, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.J.; Wang, Y.C.; Hong, C.J. Association Study of a Cannabinoid Receptor Gene (CNR1) Polymorphism and Schizophrenia. Psychiatr. Genet. 2000, 10, 149–151. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Buttari, F.; Studer, V.; Motta, C.; Gravina, P.; Castelli, M.; Mantovani, V.; De Chiara, V.; Musella, A.; Fiore, S.; et al. The (AAT)n Repeat of the Cannabinoid CB1 Receptor Gene Influences Disease Progression in Relapsing Multiple Sclerosis. Mult. Scler. 2011, 17, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Kloster, E.; Saft, C.; Epplen, J.T.; Arning, L. CNR1 Variation Is Associated with the Age at Onset in Huntington Disease. Eur. J. Med. Genet. 2013, 56, 416–419. [Google Scholar] [CrossRef] [PubMed]
- Barrero, F.J.; Ampuero, I.; Morales, B.; Vives, F.; de Dios Luna del Castillo, J.; Hoenicka, J.; García Yébenes, J. Depression in Parkinson’s Disease Is Related to a Genetic Polymorphism of the Cannabinoid Receptor Gene (CNR1). Pharmacogenomics J. 2005, 5, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Benyamina, A.; Kebir, O.; Blecha, L.; Reynaud, M.; Krebs, M.-O. CNR1 Gene Polymorphisms in Addictive Disorders: A Systematic Review and a Meta-Analysis. Addict. Biol. 2011, 16, 1–6. [Google Scholar] [CrossRef]
- Rossi, S.; Bozzali, M.; Bari, M.; Mori, F.; Studer, V.; Motta, C.; Buttari, F.; Cercignani, M.; Gravina, P.; Mastrangelo, N.; et al. Association between a Genetic Variant of Type-1 Cannabinoid Receptor and Inflammatory Neurodegeneration in Multiple Sclerosis. PLoS ONE 2013, 8, e82848. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Miao, Q.; Lu, X.; Zhang, Z.; Chen, M.; Zhang, J.; Zhai, J. The Association of Endocannabinoid Receptor Genes (CNR1 and CNR2) Polymorphisms with Depression: A Meta-Analysis. Medicine 2019, 98, e17403. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Hill, M.N.; Cheer, J.F.; Wotjak, C.T.; Holmes, A. The Endocannabinoid System as a Target for Novel Anxiolytic Drugs. Neurosci. Biobehav. Rev. 2017, 76, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Gore, A.C.; Martien, K.M.; Gagnidze, K.; Pfaff, D. Implications of Prenatal Steroid Perturbations for Neurodevelopment, Behavior, and Autism. Endocr. Rev. 2014, 35, 961–991. [Google Scholar] [CrossRef] [PubMed]
- Cahill, L. His Brain, Her Brain. Sci. Am. 2005, 292, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, H.B.; Rimmerman, N.; Krey, J.F.; Walker, J.M. Sex and Hormonal Cycle Differences in Rat Brain Levels of Pain-Related Cannabimimetic Lipid Mediators. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 291, R349–R358. [Google Scholar] [CrossRef] [PubMed]
- Krebs-Kraft, D.L.; Hill, M.N.; Hillard, C.J.; McCarthy, M.M. Sex Difference in Cell Proliferation in Developing Rat Amygdala Mediated by Endocannabinoids Has Implications for Social Behavior. Proc. Natl. Acad. Sci. USA 2010, 107, 20535–20540. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez de Fonseca, F.; Cebeira, M.; Ramos, J.A.; Martín, M.; Fernández-Ruiz, J.J. Cannabinoid Receptors in Rat Brain Areas: Sexual Differences, Fluctuations during Estrous Cycle and Changes after Gonadectomy and Sex Steroid Replacement. Life Sci. 1994, 54, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Zamberletti, E.; Prini, P.; Speziali, S.; Gabaglio, M.; Solinas, M.; Parolaro, D.; Rubino, T. Gender-Dependent Behavioral and Biochemical Effects of Adolescent Delta-9-Tetrahydrocannabinol in Adult Maternally Deprived Rats. Neuroscience 2012, 204, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Llorente-Berzal, A.; Assis, M.A.; Rubino, T.; Zamberletti, E.; Marco, E.M.; Parolaro, D.; Ambrosio, E.; Viveros, M.-P. Sex-Dependent Changes in Brain CB1R Expression and Functionality and Immune CB2R Expression as a Consequence of Maternal Deprivation and Adolescent Cocaine Exposure. Pharmacol. Res. 2013, 74, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Tsou, K.; Brown, S.; Sañudo-Peña, M.C.; Mackie, K.; Walker, J.M. Immunohistochemical Distribution of Cannabinoid CB1 Receptors in the Rat Central Nervous System. Neuroscience 1998, 83, 393–411. [Google Scholar] [CrossRef] [PubMed]
- McPartland, J.M.; Glass, M.; Pertwee, R.G. Meta-Analysis of Cannabinoid Ligand Binding Affinity and Receptor Distribution: Interspecies Differences. Br. J. Pharmacol. 2007, 152, 583–593. [Google Scholar] [CrossRef]
- Marco, E.M.; Echeverry-Alzate, V.; López-Moreno, J.A.; Giné, E.; Peñasco, S.; Viveros, M.P. Consequences of Early Life Stress on the Expression of Endocannabinoid-Related Genes in the Rat Brain. Behav. Pharmacol. 2014, 25, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Van Laere, K.; Goffin, K.; Casteels, C.; Dupont, P.; Mortelmans, L.; de Hoon, J.; Bormans, G. Gender-Dependent Increases with Healthy Aging of the Human Cerebral Cannabinoid-Type 1 Receptor Binding Using [(18)F]MK-9470 PET. Neuroimage 2008, 39, 1533–1541. [Google Scholar] [CrossRef]
- Lee, T.T.-Y.; Wainwright, S.R.; Hill, M.N.; Galea, L.A.M.; Gorzalka, B.B. Sex, Drugs, and Adult Neurogenesis: Sex-Dependent Effects of Escalating Adolescent Cannabinoid Exposure on Adult Hippocampal Neurogenesis, Stress Reactivity, and Amphetamine Sensitization. Hippocampus 2014, 24, 280–292. [Google Scholar] [CrossRef] [PubMed]
- Craft, R.M.; Marusich, J.A.; Wiley, J.L. Sex Differences in Cannabinoid Pharmacology: A Reflection of Differences in the Endocannabinoid System? Life Sci. 2013, 92, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Wagner, E.J. Sex Differences in Cannabinoid-Regulated Biology: A Focus on Energy Homeostasis. Front. Neuroendocr. 2016, 40, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Diaz, S.; Farhang, B.; Hoien, J.; Stahlman, M.; Adatia, N.; Cox, J.M.; Wagner, E.J. Sex Differences in the Cannabinoid Modulation of Appetite, Body Temperature and Neurotransmission at POMC Synapses. Neuroendocrinology 2009, 89, 424–440. [Google Scholar] [CrossRef]
- Fattore, L.; Spano, M.; Altea, S.; Fadda, P.; Fratta, W. Drug- and Cue-Induced Reinstatement of Cannabinoid-Seeking Behaviour in Male and Female Rats: Influence of Ovarian Hormones. Br. J. Pharmacol. 2010, 160, 724–735. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.W.; Holmgren, A.; Kugelberg, F.C. Driving under the Influence of Cannabis: A 10-Year Study of Age and Gender Differences in the Concentrations of Tetrahydrocannabinol in Blood. Addiction 2008, 103, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Leatherdale, S.T.; Hammond, D.G.; Kaiserman, M.; Ahmed, R. Marijuana and Tobacco Use among Young Adults in Canada: Are They Smoking What We Think They Are Smoking? Cancer Causes Control 2007, 18, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Haney, M. Opioid Antagonism of Cannabinoid Effects: Differences between Marijuana Smokers and Nonmarijuana Smokers. Neuropsychopharmacology 2007, 32, 1391–1403. [Google Scholar] [CrossRef] [PubMed]
- Mathew, R.J.; Wilson, W.H.; Davis, R. Postural Syncope after Marijuana: A Transcranial Doppler Study of the Hemodynamics. Pharmacol. Biochem. Behav. 2003, 75, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Tseng, A.H.; Craft, R.M. CB(1) Receptor Mediation of Cannabinoid Behavioral Effects in Male and Female Rats. Psychopharmacology 2004, 172, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Biscaia, M.; Marín, S.; Fernández, B.; Marco, E.M.; Rubio, M.; Guaza, C.; Ambrosio, E.; Viveros, M.P. Chronic Treatment with CP 55,940 during the Peri-Adolescent Period Differentially Affects the Behavioural Responses of Male and Female Rats in Adulthood. Psychopharmacology 2003, 170, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Fattore, L.; Melis, M. Sex Differences in Impulsive and Compulsive Behaviors: A Focus on Drug Addiction. Addict. Biol. 2016, 21, 1043–1051. [Google Scholar] [CrossRef]
- Fattore, L.; Melis, M. Editorial: Exploring Gender and Sex Differences in Behavioral Dyscontrol: From Drug Addiction to Impulse Control Disorders. Front. Psychiatry 2016, 7, 19. [Google Scholar] [CrossRef]
- Cooke, B.M. Steroid-Dependent Plasticity in the Medial Amygdala. Neuroscience 2006, 138, 997–1005. [Google Scholar] [CrossRef]
- Cooper, Z.D.; Craft, R.M. Sex-Dependent Effects of Cannabis and Cannabinoids: A Translational Perspective. Neuropsychopharmacology 2018, 43, 34–51. [Google Scholar] [CrossRef] [PubMed]
- Bowers, M.E.; Ressler, K.J. Sex-Dependence of Anxiety-like Behavior in Cannabinoid Receptor 1 (Cnr1) Knockout Mice. Behav. Brain Res. 2016, 300, 65–69. [Google Scholar] [CrossRef] [PubMed]
- El-Talatini, M.R.; Taylor, A.H.; Konje, J.C. The Relationship between Plasma Levels of the Endocannabinoid, Anandamide, Sex Steroids, and Gonadotrophins during the Menstrual Cycle. Fertil. Steril. 2010, 93, 1989–1996. [Google Scholar] [CrossRef]
- Ponce, G.; Hoenicka, J.; Rubio, G.; Ampuero, I.; Jiménez-Arriero, M.A.; Rodríguez-Jiménez, R.; Palomo, T.; Ramos, J.A. Association between Cannabinoid Receptor Gene (CNR1) and Childhood Attention Deficit/Hyperactivity Disorder in Spanish Male Alcoholic Patients. Mol. Psychiatry 2003, 8, 466–467. [Google Scholar] [CrossRef] [PubMed]
- Comings, D.E.; Muhleman, D.; Gade, R.; Johnson, P.; Verde, R.; Saucier, G.; MacMurray, J. Cannabinoid Receptor Gene (CNR1): Association with IV Drug Use. Mol. Psychiatry 1997, 2, 161–168. [Google Scholar] [CrossRef]
- Li, T.; Liu, X.; Zhu, Z.-H.; Zhao, J.; Hu, X.; Ball, D.M.; Sham, P.C.; Collier, D.A. No Association between (AAT)n Repeats in the Cannabinoid Receptor Gene (CNR1) and Heroin Abuse in a Chinese Population. Mol. Psychiatry 2000, 5, 128–130. [Google Scholar] [CrossRef] [PubMed]
- Ballon, N.; Leroy, S.; Roy, C.; Bourdel, M.C.; Charles-Nicolas, A.; Krebs, M.O.; Poirier, M.F. (AAT)n Repeat in the Cannabinoid Receptor Gene (CNR1): Association with Cocaine Addiction in an African-Caribbean Population. Pharmacogenomics J. 2006, 6, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Covault, J.; Gelernter, J.; Kranzler, H. Association Study of Cannabinoid Receptor Gene (CNR1) Alleles and Drug Dependence. Mol. Psychiatry 2001, 6, 501–502. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, K.P.; Mazure, C.M.; Staley, J.K. Evolving Knowledge of Sex Differences in Brain Structure, Function and Chemistry. Biol. Psychiatry 2007, 62, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Khusnutdinova, E.K.; Bermisheva, M.A.; Kutuev, I.A.; Yunusbayev, B.B.; Villems, R. Genetic Landscape of the Central Asia and Volga–Ural Region. In Biosphere Origin and Evolution; Dobretsov, N., Kolchanov, N., Rozanov, A., Zavarzin, G., Eds.; Springer: Boston, MA, USA, 2008; pp. 373–381. ISBN 978-0-387-68656-1. [Google Scholar]
- Manolio, T.A.; Collins, F.S.; Cox, N.J.; Goldstein, D.B.; Hindorff, L.A.; Hunter, D.J.; McCarthy, M.I.; Ramos, E.M.; Cardon, L.R.; Chakravarti, A.; et al. Finding the Missing Heritability of Complex Diseases. Nature 2009, 461, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Matthews, L.J.; Turkheimer, E. Three Legs of the Missing Heritability Problem. Stud. Hist. Philos. Sci. 2022, 93, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Gymrek, M.; Goren, A. Missing Heritability May Be Hiding in Repeats. Science 2021, 373, 1440–1441. [Google Scholar] [CrossRef]
- Ehlers, C.L.; Slutske, W.S.; Lind, P.A.; Wilhelmsen, K.C. Association Between Single Nucleotide Polymorphisms in the Cannabinoid Receptor Gene (CNR1) and Impulsivity in Southwest California Indians. Twin Res. Hum. Genet. 2007, 10, 805–811. [Google Scholar] [CrossRef]
- Heller, D.; Schneider, U.; Seifert, J.; Cimander, K.F.; Stuhrmann, M. The Cannabinoid Receptor Gene (CNR1) Is Not Affected in German i.v. Drug Users. Addict. Biol. 2001, 6, 183–187. [Google Scholar] [CrossRef]
- Bornscheuer, L.; Lundin, A.; Forsell, Y.; Lavebratt, C.; Melas, P.A. The Cannabinoid Receptor-1 Gene Interacts with Stressful Life Events to Increase the Risk for Problematic Alcohol Use. Sci. Rep. 2022, 12, 4963. [Google Scholar] [CrossRef] [PubMed]
- Juhasz, G.; Chase, D.; Pegg, E.; Downey, D.; Toth, Z.G.; Stones, K.; Platt, H.; Mekli, K.; Payton, A.; Elliott, R.; et al. CNR1 Gene Is Associated with High Neuroticism and Low Agreeableness and Interacts with Recent Negative Life Events to Predict Current Depressive Symptoms. Neuropsychopharmacology 2009, 34, 2019–2027. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrova, L.R.; Souza, R.P.; Bagby, R.M. Genetic Underpinnings of Neuroticism: A Replication Study. J. Addict. Res. Ther. 2012, 3, 1000119. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, Y.; Zhao, J.; Ma, Y.; Su, K.; Yuan, W.; Ma, J.Z.; Payne, T.J.; Li, M.D. Detection of Significant Association Between Variants in Cannabinoid Receptor 1 Gene (CNR1) and Personality in African–American Population. Front. Genet. 2018, 9, 199. [Google Scholar] [CrossRef]
- Tanudisastro, H.A.; Deveson, I.W.; Dashnow, H.; MacArthur, D.G. Sequencing and Characterizing Short Tandem Repeats in the Human Genome. Nat. Rev. Genet. 2024, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Sobczak, K.; Michlewski, G.; de Mezer, M.; Kierzek, E.; Krol, J.; Olejniczak, M.; Kierzek, R.; Krzyzosiak, W.J. Structural Diversity of Triplet Repeat RNAs. J. Biol. Chem. 2010, 285, 12755–12764. [Google Scholar] [CrossRef] [PubMed]
- Mukamel, R.E.; Handsaker, R.E.; Sherman, M.A.; Barton, A.R.; Zheng, Y.; McCarroll, S.A.; Loh, P.-R. Protein-Coding Repeat Polymorphisms Strongly Shape Diverse Human Phenotypes. Science 2021, 373, 1499–1505. [Google Scholar] [CrossRef]
- Margoliash, J.; Fuchs, S.; Li, Y.; Zhang, X.; Massarat, A.; Goren, A.; Gymrek, M. Polymorphic Short Tandem Repeats Make Widespread Contributions to Blood and Serum Traits. Cell Genom. 2023, 3, 100458. [Google Scholar] [CrossRef] [PubMed]
- Capra, J.A.; Paeschke, K.; Singh, M.; Zakian, V.A. G-Quadruplex DNA Sequences Are Evolutionarily Conserved and Associated with Distinct Genomic Features in Saccharomyces Cerevisiae. PLOS Comput. Biol. 2010, 6, e1000861. [Google Scholar] [CrossRef]
- Lago, S.; Nadai, M.; Cernilogar, F.M.; Kazerani, M.; Domíniguez Moreno, H.; Schotta, G.; Richter, S.N. Promoter G-Quadruplexes and Transcription Factors Cooperate to Shape the Cell Type-Specific Transcriptome. Nat. Commun. 2021, 12, 3885. [Google Scholar] [CrossRef] [PubMed]
- Horton, C.A.; Alexandari, A.M.; Hayes, M.G.B.; Marklund, E.; Schaepe, J.M.; Aditham, A.K.; Shah, N.; Suzuki, P.H.; Shrikumar, A.; Afek, A.; et al. Short Tandem Repeats Bind Transcription Factors to Tune Eukaryotic Gene Expression. Science 2023, 381, eadd1250. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The Mutational Constraint Spectrum Quantified from Variation in 141,456 Humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef]
- Lek, M.; Karczewski, K.J.; Minikel, E.V.; Samocha, K.E.; Banks, E.; Fennell, T.; O’Donnell-Luria, A.H.; Ware, J.S.; Hill, A.J.; Cummings, B.B.; et al. Analysis of Protein-Coding Genetic Variation in 60,706 Humans. Nature 2016, 536, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Fotsing, S.F.; Margoliash, J.; Wang, C.; Saini, S.; Yanicky, R.; Shleizer-Burko, S.; Goren, A.; Gymrek, M. The Impact of Short Tandem Repeat Variation on Gene Expression. Nat. Genet. 2019, 51, 1652–1659. [Google Scholar] [CrossRef] [PubMed]
- Jakubosky, D.; D’Antonio, M.; Bonder, M.J.; Smail, C.; Donovan, M.K.R.; Young Greenwald, W.W.; Matsui, H.; D’Antonio-Chronowska, A.; Stegle, O.; Smith, E.N.; et al. Properties of Structural Variants and Short Tandem Repeats Associated with Gene Expression and Complex Traits. Nat. Commun. 2020, 11, 2927. [Google Scholar] [CrossRef] [PubMed]
- Martin-Trujillo, A.; Garg, P.; Patel, N.; Jadhav, B.; Sharp, A.J. Genome-Wide Evaluation of the Effect of Short Tandem Repeat Variation on Local DNA Methylation. Genome Res. 2023, 33, 184–196. [Google Scholar] [CrossRef]
- Costa, P.T.; McCrae, R.R. The Revised NEO Personality Inventory (NEO-PI-R). In The SAGE Handbook of Personality Theory and Assessment: Volume 2—Personality Measurement and Testing; SAGE Publications Inc.: Thousand Oaks, CA, USA, 2008; pp. 179–198. [Google Scholar]
- Spielberger, C.; Gorsuch, R.; Lushene, R.; Vagg, P.; Jacobs, G. Manual for the State-Trait Anxiety Inventory; Consulting Psychologists Press: Palo Alto, CA, USA, 1983. [Google Scholar]
- Sosnowski, T.; Wrześniewski, K.; Jaworowska, A.; Fecenec, D. Inwentarz Stanu i Cechy Lęku; Pracownia Testów Psychologicznych Polskiego Towarzystwa Psychologicznego: Warszawa, Poland, 2011. [Google Scholar]
- Zawadzki, B.; Strelau, J.; Szczepaniak, P.; Śliwińska, M. Inwentarz Osobowości Paula T. Costy Jr i Roberta R. McCrea; Pracownia Testów Psychologicznych Polskiego Towarzystwa Psychologicznego: Warszawa, Poland, 1998. [Google Scholar]
Number of AAT Repeats | Amplicon Size (bp) | AUD Number of Alleles | Control Subjects Number of Alleles |
---|---|---|---|
7 | 248 | 3 (1.61%) | - |
10 | 257 | 53 (28.49%) | 46 (24.47% |
11 | 260 | 9 (4.84%) | 12 (6.38%) |
12 | 263 | 25 (13.44%) | 30 (15.96%) |
13 | 266 | 43 (23.12%) | 34 (18.09%) |
14 | 269 | 48 (25.81%) | 64 (34.04%) |
15 | 272 | 4 (2.15%) | 2 (1.06%) |
16 | 275 | 1 (0.54%) | - |
(AAT)n Alleles | M | SD | Z | p |
---|---|---|---|---|
AUD n = 93 (alleles = 186) | 12.04 | 1.74 | −2.080 | 0.0380 * |
Control n = 94 (alleles = 188) | 12.40 | 1.58 |
STAI NEO-FFI | AUD n = 93 | Controls n = 94 | Z (p-Value) |
---|---|---|---|
STAI trait scale | 7.34 ± 2.21 | 4.92 ± 2.37 | 6.560 (<0.00001 *) |
STAI state scale | 5.87 ± 2.51 | 4.43 ± 2.22 | 3.964 (0.0001 *#) |
Neuroticism scale | 7.11 ± 1.84 | 4.46 ± 2.16 | 7.556 (<0.00001 *#) |
Extraversion scale | 5.14 ± 2.24 | 6.72 ± 1.93 | −4.689 (0.00003 *#) |
Openness scale | 5.16 ± 2.14 | 4.42 ± 1.65 | 2.262 (0.0237 *) |
Agreeability scale | 3.83 ± 1.83 | 5.52 ± 2.22 | −5.173 (<0.00001 *#) |
Conscientiousness scale | 4.88 ± 2.31 | 7.05 ± 1.99 | −6.185 (<0.00001 *#) |
STAI Trait Scale | STAI State Scale | Neuroticism Scale | Extraversion Scale | Openness Scale | Agreeability Scale | Conscientiousness Scale | |
---|---|---|---|---|---|---|---|
Number of (AAT)n repeats in the CNR1 gene in AUD subjects | r = 0.012 (p = 0.875) | r= 0.000 (p = 1.00) | r= −0.064 (p = 0.385) | r = 0.051 (p = 0.488) | r= 0.106 (p = 0.149) | r = 0. 019 (p = 0.793) | r = 0.028 (p = 0.701) |
Number of (AAT)n repeats in the CNR1 gene in Controls | r = 0.184 (p = 0.011 *) | r= 0.057 (p = 0. 431) | r = 0.127 (p = 0.082) | r = −0.100 (p = 0.171) | r = −0.241 (p < 0.0001 *#) | r = −0.038 (p = 0.609) | r = 0.048 (p = 0.514) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maciocha, F.; Suchanecka, A.; Chmielowiec, K.; Chmielowiec, J.; Ciechanowicz, A.; Boroń, A. Correlations of the CNR1 Gene with Personality Traits in Women with Alcohol Use Disorder. Int. J. Mol. Sci. 2024, 25, 5174. https://doi.org/10.3390/ijms25105174
Maciocha F, Suchanecka A, Chmielowiec K, Chmielowiec J, Ciechanowicz A, Boroń A. Correlations of the CNR1 Gene with Personality Traits in Women with Alcohol Use Disorder. International Journal of Molecular Sciences. 2024; 25(10):5174. https://doi.org/10.3390/ijms25105174
Chicago/Turabian StyleMaciocha, Filip, Aleksandra Suchanecka, Krzysztof Chmielowiec, Jolanta Chmielowiec, Andrzej Ciechanowicz, and Agnieszka Boroń. 2024. "Correlations of the CNR1 Gene with Personality Traits in Women with Alcohol Use Disorder" International Journal of Molecular Sciences 25, no. 10: 5174. https://doi.org/10.3390/ijms25105174
APA StyleMaciocha, F., Suchanecka, A., Chmielowiec, K., Chmielowiec, J., Ciechanowicz, A., & Boroń, A. (2024). Correlations of the CNR1 Gene with Personality Traits in Women with Alcohol Use Disorder. International Journal of Molecular Sciences, 25(10), 5174. https://doi.org/10.3390/ijms25105174