Puerarin—A Promising Flavonoid: Biosynthesis, Extraction Methods, Analytical Techniques, and Biological Effects
Abstract
:1. Introduction
2. Biosynthesis of Puerarin
3. Extraction Methods and Analytical Techniques
4. Biological Effects of Puerarin
5. Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Moses, T.; Goossens, A. Plants for Human Health: Greening Biotechnology and Synthetic Biology. J. Exp. Bot. 2017, 68, 4009–4011. [Google Scholar] [CrossRef] [PubMed]
- Schaal, B. Plants and People: Our Shared History and Future. Plants People Planet 2019, 1, 14–19. [Google Scholar] [CrossRef]
- Chaachouay, N.; Zidane, L. Plant-Derived Natural Products: A Source for Drug Discovery and Development. Drugs Drug Candidates 2024, 3, 184–207. [Google Scholar] [CrossRef]
- Pergola, M.; De Falco, E.; Belliggiano, A.; Ievoli, C. The Most Relevant Socio-Economic Aspects of Medicinal and Aromatic Plants through a Literature Review. Agriculture 2024, 14, 405. [Google Scholar] [CrossRef]
- Carrubba, A.; Marceddu, R.; Sarno, M. Bringing Spontaneous Plants to Cultivation: Issues and Constraints for Medicinal and Aromatic Plants. In Proceedings of the XXXI International Horticultural Congress (IHC2022): International Symposium on Medicinal and Aromatic Plants: Domestication, Breeding, Cultivation and New Perspectives, Angers, France, 14–20 August 2022; Volume 1358, pp. 43–48. [Google Scholar]
- Ansari, M.K.A.; Iqbal, M.; Chaachouay, N.; Ansari, A.A.; Owens, G. The Concept and Status of Medicinal and Aromatic Plants: History, Pharmacognosy, Ecology, and Conservation. In Plants as Medicine and Aromatics; CRC Press: Boca Raton, FL, USA, 2023; pp. 129–144. [Google Scholar]
- Azaizeh, H.; Saad, B.; Cooper, E.; Said, O. Traditional Arabic and Islamic Medicine, a Re-Emerging Health Aid. Evid.-Based Complement. Altern. Med. 2010, 7, 340679. [Google Scholar] [CrossRef]
- Hamilton, A.C. Medicinal Plants, Conservation and Livelihoods. Biodivers. Conserv. 2004, 13, 1477–1517. [Google Scholar] [CrossRef]
- Woo, S.; Marquez, L.; Crandall, W.J.; Risener, C.J.; Quave, C.L. Recent Advances in the Discovery of Plant-Derived Antimicrobial Natural Products to Combat Antimicrobial Resistant Pathogens: Insights from 2018–2022. Nat. Prod. Rep. 2023, 40, 1271–1290. [Google Scholar] [CrossRef]
- Yu, J.; Zheng, Y.; Song, C.; Chen, S. New Insights into the Roles of Fungi and Bacteria in the Development of Medicinal Plant. J. Adv. Res. 2024, in press. [CrossRef] [PubMed]
- Hui, Z.; Wen, H.; Zhu, J.; Deng, H.; Jiang, X.; Ye, X.Y.; Wang, L.; Xie, T.; Bai, R. Discovery of Plant-Derived Anti-Tumor Natural Products: Potential Leads for Anti-Tumor Drug Discovery. Bioorg Chem. 2024, 142, 106957. [Google Scholar] [CrossRef]
- Peterle, L.; Sanfilippo, S.; Borgia, F.; Li Pomi, F.; Vadalà, R.; Costa, R.; Cicero, N.; Gangemi, S. The Role of Nutraceuticals and Functional Foods in Skin Cancer: Mechanisms and Therapeutic Potential. Foods 2023, 12, 2629. [Google Scholar] [CrossRef]
- Phillipson, J.D. Phytochemistry and Pharmacognosy. Phytochemistry 2007, 68, 2960–2972. [Google Scholar] [CrossRef] [PubMed]
- Teoh, E.S. Secondary Metabolites of Plants. In Medicinal Orchids of Asia; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 59–73. [Google Scholar]
- Zhao, J.H.; Wang, Y.W.; Yang, J.; Tong, Z.J.; Wu, J.Z.; Wang, Y.B.; Wang, Q.X.; Li, Q.Q.; Yu, Y.C.; Leng, X.J.; et al. Natural Products as Potential Lead Compounds to Develop New Antiviral Drugs over the Past Decade. Eur. J. Med. Chem. 2023, 260, 115726. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lan, W.; Xie, J. Natural Phenolic Compounds: Antimicrobial Properties, Antimicrobial Mechanisms, and Potential Utilization in the Preservation of Aquatic Products. Food Chem. 2024, 440, 138198. [Google Scholar] [CrossRef] [PubMed]
- Liga, S.; Paul, C.; Péter, F. Flavonoids: Overview of Biosynthesis, Biological Activity, and Current Extraction Techniques. Plants 2023, 12, 2732. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Yang, S.; Zhou, W.; Liu, Z.; Tan, J.; Wei, M. Microbial Regulation of Plant Secondary Metabolites: Impact, Mechanisms and Prospects. Microbiol. Res. 2024, 283, 127688. [Google Scholar] [CrossRef]
- Su, Y.; Wang, J.; Gao, W.; Wang, R.; Yang, W.; Zhang, H.; Huang, L.; Guo, L. Dynamic Metabolites: A Bridge between Plants and Microbes. Sci. Total Environ. 2023, 899, 165612. [Google Scholar] [CrossRef]
- Wrońska, N.; Szlaur, M.; Zawadzka, K.; Lisowska, K. The Synergistic Effect of Triterpenoids and Flavonoids—New Approaches for Treating Bacterial Infections? Molecules 2022, 27, 847. [Google Scholar] [CrossRef] [PubMed]
- Pietta, P.; Minoggio, M.; Bramati, L. Plant Polyphenols: Structure, Occurrence and Bioactivity. In Studies in Natural Products Chemistry; Rahman, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 28, pp. 257–312. ISBN 1572-5995. [Google Scholar]
- Chen, S.; Wang, X.; Cheng, Y.; Gao, H.; Chen, X. A Review of Classification, Biosynthesis, Biological Activities and Potential Applications of Flavonoids. Molecules 2023, 28, 4982. [Google Scholar] [CrossRef]
- Alexander, V.S. Phytoestrogens and Their Effects. Eur. J. Pharmacol. 2014, 741, 230–236. [Google Scholar]
- Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Molecules 2019, 24, 1076. [Google Scholar] [CrossRef]
- Tan, S.T.; Tan, S.S.; Tan, C.X. Soy Protein, Bioactive Peptides, and Isoflavones: A Review of Their Safety and Health Benefits. PharmaNutrition 2023, 25, 100352. [Google Scholar] [CrossRef]
- Ren, Y.; Qu, S. Constituent Isoflavones of Puerariae radix as a Potential Neuroprotector in Cognitive Impairment: Evidence from Preclinical Studies. Ageing Res. Rev. 2023, 90, 102040. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Zorita, S.; González-Arceo, M.; Fernández-Quintela, A.; Eseberri, I.; Trepiana, J.; Portillo, M.P. Scientific Evidence Supporting the Beneficial Effects of Isoflavones on Human Health. Nutrients 2020, 12, 3853. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.-X.; Zhang, H.; Peng, C. Puerarin: A Review of Pharmacological Effects. Phytother. Res. 2014, 28, 961–975. [Google Scholar] [CrossRef] [PubMed]
- Esch, H.L.; Kleider, C.; Scheffler, A.; Lehmann, L. Chapter 34—Isoflavones: Toxicological Aspects and Efficacy. In Nutraceuticals; Gupta, R.C., Ed.; Academic Press: Boston, MA, USA, 2016; pp. 465–487. ISBN 978-0-12-802147-7. [Google Scholar]
- Bacanlı, M.; Aydın, S.; Başaran, A.A.; Başaran, N. Chapter 33—A Phytoestrogen Puerarin and Its Health Effects. In Polyphenols: Prevention and Treatment of Human Disease, 2nd ed.; Watson, R.R., Preedy, V.R., Zibadi, S., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 425–431. ISBN 978-0-12-813008-7. [Google Scholar]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef] [PubMed]
- Tariq, H.; Asif, S.; Andleeb, A.; Hano, C.; Abbasi, B.H. Flavonoid Production: Current Trends in Plant Metabolic Engineering and De Novo Microbial Production. Metabolites 2023, 13, 124. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Takahashi, H.; Nakamura, M.; Yoshimoto, N.; Suzuki, H.; Shibata, D.; Yamazaki, M.; Saito, K. Transcriptomic Landscape of Pueraria Lobata Demonstrates Potential for Phytochemical Study. Front. Plant Sci. 2015, 6, 426. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, C.; Zhou, C.; Li, J.; Zhang, Y. Molecular Characterization of the C-Glucosylation for Puerarin Biosynthesis in Pueraria Lobata. Plant J. 2017, 90, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Huang, X.; Wu, S.; Wang, S.; Rao, S.; Li, L.; Cheng, S.; Li, L. Chromosome-Level Genome Assembly and Multi-Omics Dataset Provide Insights into Isoflavone and Puerarin Biosynthesis in Pueraria Lobata (Wild.) Ohwi. Biomolecules 2022, 12, 1731. [Google Scholar] [CrossRef] [PubMed]
- Xi, H.; Zhu, Y.; Sun, W.; Tang, N.; Xu, Z.; Shang, X.; Zhang, Y.; Yan, H.; Li, C. Comparative Transcriptome Analysis of Pueraria Lobata Provides Candidate Genes Involved in Puerarin Biosynthesis and Its Regulation. Biomolecules 2023, 13, 170. [Google Scholar] [CrossRef]
- Hu, X.; Zhu, T.; Min, X.; He, J.; Hou, C.; Liu, X. Integrated Metabolomic and Transcriptomic Analysis of Puerarin Biosynthesis in Pueraria Montana Var. Thomsonii at Different Growth Stages. Genes 2023, 14, 2230. [Google Scholar] [CrossRef] [PubMed]
- Maciejewska-Turska, M.; Sieniawska, E. Puerarin: Advances on Resources, Biosynthesis Pathway, Bioavailability, Bioactivity, and Pharmacology. In Handbook of Dietary Flavonoids; Xiao, J., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–30. ISBN 978-3-030-94753-8. [Google Scholar]
- Li, C.; Zhang, Y. Glycosylation and Methylation in the Biosynthesis of Isoflavonoids in Pueraria Lobata. Front. Plant Sci. 2023, 14, 1330586. [Google Scholar] [CrossRef] [PubMed]
- Adolfo, L.M.; Burks, D.; Rao, X.; Alvarez-Hernandez, A.; Dixon, R.A. Evaluation of Pathways to the C-Glycosyl Isoflavone Puerarin in Roots of Kudzu (Pueraria Montana Lobata). Plant Direct 2022, 6, e442. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Intharuksa, A.; Sasaki, Y. A Promising View of Kudzu Plant, Pueraria Montana Var. Lobata (Willd.) Sanjappa & Pradeep: Flavonoid Phytochemical Compounds, Taxonomic Data, Traditional Uses and Potential Biological Activities for Future Cosmetic Application. Cosmetics 2020, 7, 12. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. The Impact and Invasive Mechanisms of Pueraria Montana Var. Lobata, One of the World’s Worst Alien Species. Plants 2023, 12, 3066. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Wei, P.; Jia, M.; Wang, L.; Li, Z.; Zhang, Z.; Liu, Y.; Shi, L. Research Progress in Modifications, Bioactivities, and Applications of Medicine and Food Homologous Plant Starch. Foods 2024, 13, 558. [Google Scholar] [CrossRef] [PubMed]
- Bharti, R.; Chopra, B.S.; Raut, S.; Khatri, N. Pueraria tuberosa: A Review on Traditional Uses, Pharmacology, and Phytochemistry. Front. Pharmacol. 2021, 11, 582506. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Jahan, M.S.; Tang, K.; Jiang, S.; Guo, J.; Luo, S.; Luo, W.; Li, G. Comparative Analysis of the Medicinal and Nutritional Components of Different Varieties of Pueraria Thomsonii and Pueraria Lobata. Front. Plant Sci. 2023, 14, 1115782. [Google Scholar] [CrossRef] [PubMed]
- Xuan, T.; Liu, Y.; Liu, R.; Liu, S.; Han, J.; Bai, X.; Wu, J.; Fan, R. Advances in Extraction, Purification, and Analysis Techniques of the Main Components of Kudzu Root: A Comprehensive Review. Molecules 2023, 28, 6577. [Google Scholar] [CrossRef]
- Tzanova, M.; Atanasov, V.; Yaneva, Z.; Ivanova, D.; Dinev, T. Selectivity of Current Extraction Techniques for Flavonoids from Plant Materials. Processes 2020, 8, 1222. [Google Scholar] [CrossRef]
- Chávez-González, M.L.; Sepúlveda, L.; Verma, D.K.; Luna-García, H.A.; Rodríguez-Durán, L.V.; Ilina, A.; Aguilar, C.N. Conventional and Emerging Extraction Processes of Flavonoids. Processes 2020, 8, 434. [Google Scholar] [CrossRef]
- Abhari, K.; Mousavi Khaneghah, A. Alternative Extraction Techniques to Obtain, Isolate and Purify Proteins and Bioactive from Aquaculture and by-Products. In Advances in Food and Nutrition Research; Academic Press Inc.: Cambridge, MA, USA, 2020; Volume 92, pp. 35–52. [Google Scholar]
- Bagade, S.B.; Patil, M. Recent Advances in Microwave Assisted Extraction of Bioactive Compounds from Complex Herbal Samples: A Review. Crit. Rev. Anal. Chem. 2021, 51, 138–149. [Google Scholar] [CrossRef]
- Zhu, H.; Xing, Y.; Akan, O.D.; Yang, T. Ultrafine Comminution-Assisted Ultrasonic-Microwave Synergistic Extraction of Pueraria Mirifica (Kudzu Flower and Root) Flavonoids. Heliyon 2023, 9, e21137. [Google Scholar] [CrossRef] [PubMed]
- Duru, K.C.; Slesarev, G.P.; Aboushanab, S.A.; Kovalev, I.S.; Zeidler, D.M.; Kovaleva, E.G.; Bhat, R. An Eco-Friendly Approach to Enhance the Extraction and Recovery Efficiency of Isoflavones from Kudzu Roots and Soy Molasses Wastes Using Ultrasound-Assisted Extraction with Natural Deep Eutectic Solvents (NADES). Ind. Crops Prod. 2022, 182, 114886. [Google Scholar] [CrossRef]
- Blicharski, T.; Oniszczuk, A. Extraction Methods for the Isolation of Isoflavonoids from Plant Material. Open Chem. 2017, 15, 34–45. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, L.; Zou, L.; Zhang, M.; Chi, R. Development of an SVR Model for Microwave-Assisted Aqueous Two-Phase Extraction of Isoflavonoids from Radix Puerariae. Chem. Eng. Commun. 2021, 208, 1005–1016. [Google Scholar] [CrossRef]
- Liu, Y.-K.; Yan, E.; Zhan, H.-Y.; Zhang, Z.-Q. Response Surface Optimization of Microwave-Assisted Extraction for HPLC-Fluorescence Determination of Puerarin and Daidzein in Radix Puerariae thomsonii. J. Pharm. Anal. 2011, 1, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Nour, A.H.; Oluwaseun, A.R.; Nour, A.H.; Omer, M.S.; Ahmed, N. Microwave-Assisted Extraction of Bioactive Compounds (Review). In Microwave Heating; Churyumov, G.I., Ed.; IntechOpen: Rijeka, Croatia, 2021; pp. 1–31. ISBN 978-1-83968-227-8. [Google Scholar]
- Zou, Y.; Tian, M.; Liu, C. Optimization of Ultrasound-Assisted Extraction of Puerarin from Pueraria Lobata Dried Root. J. Food Process Preserv. 2016, 40, 431–436. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, J.; Jiang, X.; Guo, Q. Ultrasonic-Assisted Extraction of Puerarin Optimized by Response Surface Methodology. In Proceedings of the 2015 Chinese Intelligent Automation Conference, Fuzhou, China, 30 March 2015; Deng, Z., Li, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 499–508. [Google Scholar]
- Aihua, S.; Xiaoyan, C.; Xiaoguang, Y.; Jiang, F.; Yanmin, L.; Zhou, J. Applications and Prospects of Ultrasound-Assisted Extraction in Chinese Herbal Medicine. Open Access J. Biomed. Sci. 2019, 1. [Google Scholar] [CrossRef]
- Zeng, X.; Tan, H.; Liu, B.; Wen, Y. Optimization of Ultrasonic-Assisted Extraction and Purification of Total Flavonoids with Biological Activities from Radix Puerariae. Biomass Convers. Biorefin 2023. [Google Scholar] [CrossRef]
- Vinitha, U.G.; Sathasivam, R.; Muthuraman, M.S.; Park, S.U. Intensification of Supercritical Fluid in the Extraction of Flavonoids: A Comprehensive Review. Physiol. Mol. Plant Pathol. 2022, 118, 101815. [Google Scholar] [CrossRef]
- Khaw, K.Y.; Parat, M.O.; Shaw, P.N.; Falconer, J.R. Solvent Supercritical Fluid Technologies to Extract Bioactive Compounds from Natural Sources: A Review. Molecules 2017, 22, 1186. [Google Scholar] [CrossRef] [PubMed]
- Majik, M.S.; Gawas, U.B. Chapter 2—Recent Advances in Extraction of Natural Compounds. In New Horizons in Natural Compound Research; Meena, S.N., Nandre, V., Kodam, K., Meena, R.S., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 17–33. ISBN 978-0-443-15232-0. [Google Scholar]
- Huang, Y.; Yang, J.; Zhao, Y.; Yu, L.; He, Y.; Wan, H.; Li, C. Screening, Optimization, and Bioavailability Research of Natural Deep Eutectic Solvent Extracts from Radix Pueraria. Molecules 2021, 26, 729. [Google Scholar] [CrossRef]
- Makkliang, F.; Siriwarin, B.; Yusakul, G.; Phaisan, S.; Sakdamas, A.; Chuphol, N.; Putalun, W.; Sakamoto, S. Biocompatible Natural Deep Eutectic Solvent-Based Extraction and Cellulolytic Enzyme-Mediated Transformation of Pueraria Mirifica Isoflavones: A Sustainable Approach for Increasing Health-Bioactive Constituents. Bioresour. Bioprocess. 2021, 8, 76. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Guo, Q.; Yang, H.; Gao, W.; Li, P. PH-Controlled Reversible Deep-Eutectic Solvent Based Enzyme System for Simultaneous Extraction and in-Situ Separation of Isoflavones from Pueraria Lobata. Sep. Purif. Technol. 2022, 292, 120992. [Google Scholar] [CrossRef]
- Kaoui, S.; Chebli, B.; Zaidouni, S.; Basaid, K.; Mir, Y. Deep Eutectic Solvents as Sustainable Extraction Media for Plants and Food Samples: A Review. Sustain. Chem. Pharm. 2023, 31, 100937. [Google Scholar] [CrossRef]
- Chaves, J.O.; de Souza, M.C.; da Silva, L.C.; Lachos-Perez, D.; Torres-Mayanga, P.C.; Machado, A.P.d.F.; Forster-Carneiro, T.; Vázquez-Espinosa, M.; González-de-Peredo, A.V.; Barbero, G.F.; et al. Extraction of Flavonoids From Natural Sources Using Modern Techniques. Front. Chem. 2020, 8, 507887. [Google Scholar] [CrossRef] [PubMed]
- Jurinjak Tušek, A.; Šamec, D.; Šalić, A. Modern Techniques for Flavonoid Extraction—To Optimize or Not to Optimize? Appl. Sci. 2022, 12, 11865. [Google Scholar] [CrossRef]
- Routray, W.; Orsat, V. Microwave-Assisted Extraction of Flavonoids: A Review. Food Bioprocess Technol. 2012, 5, 409–424. [Google Scholar] [CrossRef]
- Ameta, S.C.; Ameta, R. Green Chemistry: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2023; ISBN 1000932648. [Google Scholar]
- Medina Valderrama, C.J.; Morales Huamán, H.I.; Valencia-Arias, A.; Vasquez Coronado, M.H.; Cardona-Acevedo, S.; Delgado-Caramutti, J. Trends in Green Chemistry Research between 2012 and 2022: Current Trends and Research Agenda. Sustainability 2023, 15, 13946. [Google Scholar] [CrossRef]
- Singh, D.; Isharani, R. A Detailed Review on Analytical Methods to Manage the Impurities in Drug Substances. OAlib 2023, 10, 1–18. [Google Scholar] [CrossRef]
- Mattrey, F.T.; Makarov, A.A.; Regalado, E.L.; Bernardoni, F.; Figus, M.; Hicks, M.B.; Zheng, J.; Wang, L.; Schafer, W.; Antonucci, V.; et al. Current Challenges and Future Prospects in Chromatographic Method Development for Pharmaceutical Research. TrAC-Trends Anal. Chem. 2017, 95, 36–46. [Google Scholar] [CrossRef]
- Dispas, A.; Sacré, P.Y.; Ziemons, E.; Hubert, P. Emerging Analytical Techniques for Pharmaceutical Quality Control: Where Are We in 2022? J. Pharm. Biomed. Anal. 2022, 221, 115071. [Google Scholar] [CrossRef] [PubMed]
- Maji, A.K.; Banerjee, D.; Maity, N.; Banerji, P. A Validated RP-HPLC-UV Method for Quantitative Determination of Puerarin in Pueraria tuberosa DC Tuber Extract. Pharm. Methods 2012, 3, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-Y.; Yang, L.-L.; Liu-Qing, Y.; Zou, Y.-M.; Lu, J.-M. Simultaneous RP-HPLC Determination of Puerarin, Daidzin and Daidzein in Roots, Stems and Leaves of Pueraria Lobata (Wild) Ohwi. Food Sci. 2009, 30, 248–252. [Google Scholar]
- Chauhan, S.K.; Singh, B.; Agrawal, S. Determination of Puerarin from Pueraria tuberosa DC by Hplc. Anc. Sci. Life 2004, 23, 22–25. [Google Scholar] [PubMed]
- Chew, Y.L.; Khor, M.A.; Lim, Y.Y. Choices of Chromatographic Methods as Stability Indicating Assays for Pharmaceutical Products: A Review. Heliyon 2021, 7, e06553. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Adrjan, B.; Li, J.; Hu, B.; Roszak, S. NMR Studies of Daidzein and Puerarin: Active Anti-Oxidants in Traditional Chinese Medicine. J. Mol. Model. 2019, 25, 202. [Google Scholar] [CrossRef] [PubMed]
- Shockcor, J.P. HPLC–NMR, Pharmaceutical Applications☆. In Encyclopedia of Spectroscopy and Spectrometry, 3rd ed.; Lindon, J.C., Tranter, G.E., Koppenaal, D.W., Eds.; Academic Press: Oxford, UK, 2017; pp. 141–151. ISBN 978-0-12-803224-4. [Google Scholar]
- Gebretsadik, T.; Linert, W.; Thomas, M.; Berhanu, T.; Frew, R. LC–NMR for Natural Product Analysis: A Journey from an Academic Curiosity to a Robust Analytical Tool. Science 2021, 3, 6. [Google Scholar] [CrossRef]
- Seger, C.; Sturm, S. NMR-Based Chromatography Readouts: Indispensable Tools to “Translate” Analytical Features into Molecular Structures. Cells 2022, 11, 3526. [Google Scholar] [CrossRef]
- Gao, D.; Cho, C.W.; Kim, J.H.; Lee, E.J.; Kim, C.T.; Kang, J.S. A New HPLC Method for the Analysis of Puerarin for Quality Control of the Extract of Pueraria Lobate Stem and Puerarin Cream. J. Pharm. Sci. 2020, 35, 88–93. [Google Scholar]
- Gao, D.; Kim, J.H.; Kim, C.T.; Jeong, W.S.; Kim, H.M.; Sim, J.; Kang, J.S.; Attanzio, A. Molecular Sciences Evaluation of Anti-Melanogenesis Activity of Enriched Pueraria Lobata Stem Extracts and Characterization of Its Phytochemical Components Using HPLC-PDA-ESI-MS/MS. Int. J. Mol. Sci. 2021, 22, 8105. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Song, K.; Zhang, Q.; Guo, J.; Huang, J. Simultaneous Determination of Six Isoflavones from Puerariae Lobatae Radix by CPE-HPLC and Effect of Puerarin on Tyrosinase Activity. Molecules 2020, 25, 344. [Google Scholar] [CrossRef]
- Shang, X.; Huang, D.; Wang, Y.; Xiao, L.; Ming, R.; Zeng, W.; Cao, S.; Lu, L.; Wu, Z.; Yan, H. Identification of Nutritional Ingredients and Medicinal Components of Pueraria Lobata and Its Varieties Using Uplc-Ms/Ms-Based Metabolomics. Molecules 2021, 26, 6587. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Li, X.; Chen, X.; Chen, X.; Liu, Y.; Xu, H.; Wang, Q.; Tang, Z. A Study on Puerarin in Situ Gel Eye Drops: Formulation Optimization and Pharmacokinetics on Rabbits by Microdialysis. Int. J. Pharm. 2023, 642, 123176. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, X.; Liu, D.; Wen, S.; Wu, Y.; Li, T.; Tang, T.; Wang, Y.; Zou, T.; Zhao, C.; et al. Water Extracts of Pueraria Thomsonii Radix Ameliorates Alcoholic Liver Disease via PI3K/AKT and NOX4/ROS Pathways. J. Funct. Foods 2023, 110, 105830. [Google Scholar] [CrossRef]
- Baranyika, J.B.; Bakire, S.; Shoucheng, P.; Meihao, S.; Hirwa, H. Application of the Selected Macroporous Resin for the Separation and Identification of Flavonoids from Chinese Radix Pueraria Lobata by HPLC-Q-TOF-MS. Microchem. J. 2024, 196, 109662. [Google Scholar] [CrossRef]
- Zheng, Y.; Ren, W.; Zhang, L.; Zhang, Y.; Liu, D.; Liu, Y. A Review of the Pharmacological Action of Astragalus Polysaccharide. Front. Pharmacol. 2020, 11, 349. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Xu, Q.; Ma, J.; Li, X.; Tian, Y.; Wen, Y.; Chen, T. Ginseng and Health Outcomes: An Umbrella Review. Front. Pharmacol. 2023, 14, 1069268. [Google Scholar] [CrossRef]
- Akaberi, M.; Baharara, H.; Amiri, M.S.; Moghadam, A.T.; Sahebkar, A.; Emami, S.A. Ginkgo Biloba: An Updated Review on Pharmacological, Ethnobotanical, and Phytochemical Studies. Pharmacol. Res.-Mod. Chin. Med. 2023, 9, 100331. [Google Scholar] [CrossRef]
- Wang, L.; Liang, Q.; Lin, A.; Chen, X.; Wu, Y.; Zhang, B.; Zhang, Y.; Min, H.; Wen, Y.; Song, S.; et al. Puerarin Increases Survival and Protects Against Organ Injury by Suppressing NF-ΚB/JNK Signaling in Experimental Sepsis. Front. Pharmacol. 2020, 11, 560. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.P.; Zeng, J.H.; Lin, X.; Ni, Y.H.; Jiang, C.S.; Li, D.Z.; He, X.J.; Wang, R.; Wang, W. Puerarin Ameliorates Caerulein-Induced Chronic Pancreatitis via Inhibition of MAPK Signaling Pathway. Front. Pharmacol. 2021, 12, 686992. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Bu, T.; Li, Y.; He, Y.; Yang, F.; Zou, L. Pharmacological Activity, Pharmacokinetics, and Clinical Research Progress of Puerarin. Antioxidants 2022, 11, 2121. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.L.; Han, L.L.; Qian, J.H.; Wang, H.Z. Molecular Mechanism of Puerarin Against Diabetes and Its Complications. Front. Pharmacol. 2022, 12, 780419. [Google Scholar] [CrossRef] [PubMed]
- Shao, M.; Ye, C.; Bayliss, G.; Zhuang, S. New Insights Into the Effects of Individual Chinese Herbal Medicines on Chronic Kidney Disease. Front. Pharmacol. 2021, 12, 774414. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.; Yan, H.L.; Wang, L.X.; Xu, J.F.; Peng, C.; Ao, H.; Tan, Y.Z. Review of Natural Resources with Vasodilation: Traditional Medicinal Plants, Natural Products, and Their Mechanism and Clinical Efficacy. Front. Pharmacol. 2021, 12, 627458. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.X.; Zhang, H.; Peng, C. Effects of Puerarin on the Prevention and Treatment of Cardiovascular Diseases. Front. Pharmacol. 2021, 12, 771793. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Fan, Y.; Huang, C.; Liu, Q.; Huang, M.; Chen, B.; Peng, Z.; Zhu, W.; Ding, B. Efficacy and Safety of Puerarin Injection on Acute Heart Failure: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2022, 9, 934598. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Yu, S.; Lin, C.; Dong, D.; Xiao, J.; Ye, Y.; Wang, M. Roles of Flavonoids in Ischemic Heart Disease: Cardioprotective Effects and Mechanisms against Myocardial Ischemia and Reperfusion Injury. Phytomedicine 2024, 126, 155409. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Liang, T.; He, Q.; Guo, C.; Xu, L.; Zhang, K.; Duan, X. Puerarin, Isolated from Kudzu Root (Willd.), Attenuates Hepatocellular Cytotoxicity and Regulates the GSK-3β/NF-ΚB Pathway for Exerting the Hepatoprotection against Chronic Alcohol-Induced Liver Injury in Rats. Int. Immunopharmacol. 2013, 17, 71–78. [Google Scholar] [CrossRef]
- Liu, Y.S.; Yuan, M.H.; Zhang, C.Y.; Liu, H.M.; Liu, J.R.; Wei, A.L.; Ye, Q.; Zeng, B.; Li, M.F.; Guo, Y.P.; et al. Puerariae Lobatae Radix Flavonoids and Puerarin Alleviate Alcoholic Liver Injury in Zebrafish by Regulating Alcohol and Lipid Metabolism. Biomed. Pharmacother. 2021, 134, 111121. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Xia, L.; Song, J.; Hu, H.; Zang, N.; Yang, J.; Zou, Y.; Wang, L.; Zheng, X.; He, Q.; et al. Puerarin Ameliorates Metabolic Dysfunction-Associated Fatty Liver Disease by Inhibiting Ferroptosis and Inflammation. Lipids Health Dis. 2023, 22, 202. [Google Scholar] [CrossRef] [PubMed]
- Xiao, B.; Sun, Z.; Cao, F.; Wang, L.; Liao, Y.; Liu, X.; Pan, R.; Chang, Q. Brain Pharmacokinetics and the Pharmacological Effects on Striatal Neurotransmitter Levels of Pueraria Lobata Isoflavonoids in Rat. Front. Pharmacol. 2017, 8, 599. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Zhang, Z.; Lai, K.; Deng, Y.; Zhao, C.; Lu, Z.; Geng, Q. Puerarin: A Protective Drug against Ischemia-Reperfusion Injury. Front. Pharmacol. 2022, 13, 927611. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Li, X.; Wang, H.; Nie, K.; Meng, Q.; He, J.; Zheng, C. Puerarin: A Potential Therapeutic for SARS-CoV-2 and Hantavirus Co-Infection. Front. Immunol. 2022, 13, 892350. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Shi, S.; Zhang, B.; Xu, X.; Zheng, H.; Li, Y.; Cui, X.; Wu, H.; Song, Q. Role of Puerarin in Pathological Cardiac Remodeling: A Review. Pharmacol. Res. 2022, 178, 106152. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Cui, X.; Qu, P.; Shang, C.; Xiang, M.; Wang, J. Roles and Mechanisms of Puerarin on Cardiovascular Disease: A Review. Biomed. Pharmacother. 2022, 147, 112655. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Honglei, Y.; Yun, W.; Sheng, D.; Yun, H.; Anhua, Z.; Na, F.; Min, L.; Dandan, S.; Jing, W.; et al. Puerarin Ameliorates Myocardial Remodeling of Spontaneously Hypertensive Rats through Inhibiting TRPC6-CaN-NFATc3 Pathway. Eur. J. Pharmacol. 2022, 933, 175254. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Guo, J.; Gou, W.; Wu, S.; Guo, N.; Zhao, Y.; Hou, W. Molecular Mechanisms of Isoflavone Puerarin against Cardiovascular Diseases: What We Know and Where We Go. Chin. Herb. Med. 2022, 14, 234–243. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, L.; Zhao, X.; Lai, S.; He, X.; Fan, Q.; He, H.; He, M. Puerarin Attenuates Lipopolysaccharide-Induced Myocardial Injury via the 14-3-3γ/PKCε Pathway Activating Adaptive Autophagy. Int. Immunopharmacol. 2022, 108, 108905. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, L.; Zhang, Z.; He, X.; Fan, Q.; Cheng, X.; Qiao, Y.; Huang, H.; Lai, S.; Wan, Q.; et al. Puerarin Activates Adaptive Autophagy and Protects the Myocardium against Doxorubicin-Induced Cardiotoxicity via the 14–3-3γ/PKCε Pathway. Biomed. Pharmacother. 2022, 153, 113403. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Tian, Z.; Li, Z.; Du, X.; Cui, Y.; Wang, J.; Gao, M.; Hou, Y. Puerarin-Tanshinone IIA Suppresses Atherosclerosis Inflammatory Plaque via Targeting Succinate/HIF-1α/IL-1β Axis. J. Ethnopharmacol. 2023, 317, 116675. [Google Scholar] [CrossRef] [PubMed]
- Hao, R.; Ge, J.; Li, F.; Jiang, Y.; Sun-Waterhouse, D.; Li, D. MiR-34a-5p/Sirt1 Axis: A Novel Pathway for Puerarin-Mediated Hepatoprotection against Benzo(a)Pyrene. Free Radic. Biol. Med. 2022, 186, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Keskin Alkaç, Z.; Ahmet Korkak, F.; Dağoğlu, G.; Akdeniz İncili, C.; Dağoğlu Hark, B.; Tanyıldızı, S. Puerarin Mitigates Oxidative Injuries, Opening of Mitochondrial Permeability Transition Pores and Pathological Damage Associated with Liver and Kidney in Xanthium Strumarium-Intoxicated Rats. Toxicon 2022, 213, 13–22. [Google Scholar] [CrossRef] [PubMed]
- HU, Y.; WANG, S.; WU, L.; YANG, K.; YANG, F.; YANG, J.; HU, S.; YAO, Y.; XIA, X.; LIU, Y.; et al. Puerarin Inhibits Inflammation and Lipid Accumulation in Alcoholic Liver Disease through Regulating MMP8. Chin. J. Nat. Med. 2023, 21, 670–681. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Wang, H.; Chen, Z. Puerarin Inhibits Ferroptosis and Inflammation of Lung Injury Caused by Sepsis in LPS Induced Lung Epithelial Cells. Front. Pediatr. 2021, 9, 706327. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhang, Y.; Wang, L.; Wang, X.; Xu, S.; Zhai, Z.; Wang, C.; Cai, H. Reversal of NADPH Oxidase-Dependent Early Oxidative and Inflammatory Responses in Chronic Obstructive Pulmonary Disease by Puerarin. Oxid. Med. Cell Longev. 2022, 2022, 5595781. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.T.; Liu, H. Puerarin Attenuates LPS-Induced Inflammatory Injury in Gastric Epithelial Cells by Repressing NLRP3 Inflammasome-Mediated Apoptosis. Toxicol. In Vitro 2022, 81, 105350. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, J.; Yan, J.; He, J.C.; Li, Y.; Zhong, Y. Additive Renal Protective Effects between Arctigenin and Puerarin in Diabetic Kidney Disease. Biomed. Pharmacother. 2024, 171, 116107. [Google Scholar] [CrossRef]
- Hou, B.; Ma, P.; Yang, X.; Zhao, X.; Zhang, L.; Zhao, Y.; He, P.; Du, G.; Qiang, G. In Silico Prediction and Experimental Validation to Reveal the Protective Mechanism of Puerarin against Excessive Extracellular Matrix Accumulation through Inhibiting Ferroptosis in Diabetic Nephropathy. J. Ethnopharmacol. 2024, 319, 117281. [Google Scholar] [CrossRef]
- Zeng, X.; Chen, B.; Wang, L.; Sun, Y.; Jin, Z.; Liu, X.; Ouyang, L.; Liao, Y. Chitosan@Puerarin Hydrogel for Accelerated Wound Healing in Diabetic Subjects by MiR-29ab1 Mediated Inflammatory Axis Suppression. Bioact. Mater. 2023, 19, 653–665. [Google Scholar] [CrossRef]
- Song, X.; Wang, W.; Ding, S.; Wang, Y.; Ye, L.; Chen, X.; Ma, H. Exploring the Potential Antidepressant Mechanisms of Puerarin: Anti-Inflammatory Response via the Gut-Brain Axis. J. Affect. Disord. 2022, 310, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Sui, X.; Zhang, Y.; Yue, R.; Yin, S. Efficacy of Puerarin in Rats with Focal Cerebral Ischemia through Modulation of the SIRT1/HIF-1α/VEGF Signaling Pathway and Its Effect on Synaptic Plasticity. Heliyon 2023, 9, e15872. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Huang, R.; Wan, J. Puerarin: A Potential Natural Neuroprotective Agent for Neurological Disorders. Biomed. Pharmacother. 2023, 162, 114581. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.P.; Zhu, L.; Shi, H.; Ye, S.; Li, Q.; Yin, X.; Xie, Q.; Xu, Q.; Wei, J.X.; Mei, F.; et al. Puerarin Prevents Sepsis-Associated Encephalopathy by Regulating the AKT1 Pathway in Microglia. Phytomedicine 2023, 121, 155119. [Google Scholar] [CrossRef]
- Zhou, S.; Li, Y.; Hong, Y.; Zhong, Z.; Zhao, M. Puerarin Protects against Sepsis-Associated Encephalopathy by Inhibiting NLRP3/Caspase-1/GSDMD Pyroptosis Pathway and Reducing Blood-Brain Barrier Damage. Eur. J. Pharmacol. 2023, 945, 175616. [Google Scholar] [CrossRef]
- Liu, T.; Su, K.; Cai, W.; Ao, H.; Li, M. Therapeutic Potential of Puerarin against Cerebral Diseases: From Bench to Bedside. Eur. J. Pharmacol. 2023, 953, 175695. [Google Scholar] [CrossRef]
- Chen, H.; Hu, X.; Lan, Y.; Chen, S.; Xiang, X.; Tan, Y.; Zeng, G.; Guo, Z.; Li, K.; Zhang, J. Puerarin Promotes Apoptosis and Senescence of Bladder Cancer Cells. J. Funct. Foods 2022, 91, 105032. [Google Scholar] [CrossRef]
- Ma, R.; Zhao, L.; Zhao, Y.; Li, Y. Puerarin Action on Stem Cell Proliferation, Differentiation and Apoptosis: Therapeutic Implications for Geriatric Diseases. Phytomedicine 2022, 96, 153915. [Google Scholar] [CrossRef]
- Li, T.; Shi, C.; Mi, Z.; Xu, H.; Xu, J.; Wang, L.; Zhang, X. Biocompatible Puerarin Injectable-Hydrogel Using Self-Assembly Tetrapeptide for Local Treatment of Osteoarthritis in Rats. J. Drug Deliv. Sci. Technol. 2022, 78, 103909. [Google Scholar] [CrossRef]
- Qiu, Z.; Li, L.; Huang, Y.; Shi, K.; Zhang, L.; Huang, C.; Liang, J.; Zeng, Q.; Wang, J.; He, X.; et al. Puerarin Specifically Disrupts Osteoclast Activation via Blocking Integrin-Β3 Pyk2/Src/Cbl Signaling Pathway. J. Orthop. Translat 2022, 33, 55–69. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wang, Y.; Gong, S.; Yao, W.; Gao, H.; Liu, M.; Wei, M. Puerarin Improves OVX-Induced Osteoporosis by Regulating Phospholipid Metabolism and Biosynthesis of Unsaturated Fatty Acids Based on Serum Metabolomics. Phytomedicine 2022, 102, 154198. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Guo, Y.; Han, X.; Xie, X. Effect and Mechanisms of Puerarin on the Treatment of Postmenopausal Osteoporosis: A Preliminary Pre-Clinical Study. Asian J. Surg. 2023, 46, 1332–1333. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Guo, B.; Ma, Y.-q.; Li, K.-w.; Niu, F.-j. Puerarin: A Review of Its Mechanisms of Action and Clinical Studies in Ophthalmology. Phytomedicine 2022, 107, 154465. [Google Scholar]
- Dong, Y.; Ding, Y.Y.; Gao, W.P. Puerarin Alleviates Hyperosmotic Stress-Induced Oxidative Stress, Inflammation, Apoptosis and Barrier Damage of Human Corneal Epithelial Cells by Targeting SIRT1/NLRP3 Signaling. Toxicol. In Vitro 2024, 94, 105722. [Google Scholar] [CrossRef]
- Xu, B.; Li, J.; Chen, X.; Kou, M. Puerarin Attenuates Cisplatin-Induced Apoptosis of Hair Cells through the Mitochondrial Apoptotic Pathway. Biochim. Biophys. Acta Mol. Cell Res. 2022, 1869, 119208. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Wu, X.; Zhang, X.; Li, X.; Lin, X.; Huang, Y.; Wu, J. Puerarin Protects against H2O2-Induced Apoptosis of HTR-8/SVneo Cells by Regulating the MiR-20a-5p/VEGFA/Akt Axis. Placenta 2022, 126, 202–208. [Google Scholar] [CrossRef]
- Wu, S.; Snajdrova, R.; Moore, J.C.; Baldenius, K.; Bornscheuer, U.T. Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angew. Chem. Int. Ed. 2021, 60, 88–119. [Google Scholar] [CrossRef]
- Scherer, M.; Fleishman, S.J.; Jones, P.R.; Dandekar, T.; Bencurova, E. Computational Enzyme Engineering Pipelines for Optimized Production of Renewable Chemicals. Front. Bioeng. Biotechnol. 2021, 9, 673005. [Google Scholar] [CrossRef]
- Nam, K.; Shao, Y.; Major, D.T.; Wolf-Watz, M. Perspectives on Computational Enzyme Modeling: From Mechanisms to Design and Drug Development. ACS Omega 2024, 9, 7393–7412. [Google Scholar] [CrossRef]
- Dobrzynska, M.; Napierala, M.; Florek, E. Flavonoid Nanoparticles: A Promising Approach for Cancer Therapy. Biomolecules 2020, 10, 1268. [Google Scholar] [CrossRef] [PubMed]
- Liga, S.; Paul, C.; Moacă, E.A.; Péter, F. Niosomes: Composition, Formulation Techniques, and Recent Progress as Delivery Systems in Cancer Therapy. Pharmaceutics 2024, 16, 223. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar, S.; Emamjomeh, A.; Sharifi, F.; Zarepour, A.; Aghaabbasi, K.; Dehshahri, A.; Sepahvand, A.M.; Zarrabi, A.; Beyzaei, H.; Zahedi, M.M.; et al. Lipid-Based Delivery Systems for Flavonoids and Flavonolignans: Liposomes, Nanoemulsions, and Solid Lipid Nanoparticles. Pharmaceutics 2023, 15, 1944. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Liu, W.; Xiong, S.; Li, D.; Fang, S.; Wu, Z.; Wang, Q.; Chen, X. Nanoparticles Mediating the Sustained Puerarin Release Facilitate Improved Brain Delivery to Treat Parkinson’s Disease. ACS Appl. Mater. Interfaces 2019, 11, 45276–45289. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Guan, Z.Y.; Zhu, W.F.; Zhong, L.Y.; Qiu, Z.Q.; Yue, P.F.; Wu, W.T.; Liu, J.; Huang, X. Preparation of Puerarin Chitosan Oral Nanoparticles by Ionic Gelation Method and Its Related Kinetics. Pharmaceutics 2020, 12, 216. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Chen, K.; Su, C.; Liu, X.; Luo, X. Puerarin Loaded PLGA Nanoparticles: Optimization Processes of Preparation and Anti-Alcohol Intoxication Effects in Mice. AAPS PharmSciTech 2021, 22, 217. [Google Scholar] [CrossRef]
- Qiang, S.; Gu, L.; Kuang, Y.; Zhao, M.; You, Y.; Han, Q. Changes in the Content of Puerarin-PLGA Nanoparticles in Mice under the Influence of Alcohol and Analysis of Their Antialcoholism. J. Appl. Biomater. Funct. Mater. 2023, 21, 22808000221148100. [Google Scholar] [CrossRef]
Extraction Techniques | Advantages | Disadvantages | References |
---|---|---|---|
Traditional (e.g., Maceration, Percolation, Decoction, Soxhlet) |
|
| [47,48,53] |
Microwave-Assisted Extraction |
|
| [46,47,48,53,54,55,56] |
Ultrasound-Assisted Extraction |
|
| [47,48,53,57,58,59,60] |
Supercritical Fluid Extraction |
|
| [46,47,48,61,62] |
Enzyme-Assisted Extraction |
|
| [46,47,48,63] |
Deep Eutectic Solvents Extraction |
|
| [64,65,66,67] |
Analyte | Column; Mobile Phase | Flow Rate; Temperature; Detection Wavelength | Combined Technique Parameters | Results | References |
---|---|---|---|---|---|
Puerarin (Pueraria lobata stem extract, puerarin cream) | Optimapark C18 column (250 × 4.6 mm, 5 μm); A: 0.5% aqueous acetic acid; B: methanol (77:23, v/v) | 1 mL/min; 30 °C; 250 nm | - |
| [84] |
Puerarin (Pueraria lobata) | Optimapark C18 column (4.6 mm × 250 mm, 5 μm); A: 0.1% formic acid/aqueous solution; B: acetonitrile | 1 mL/min | PDA–ESI–MS/MS:
|
| [85] |
Puerarin (Pueraria lobata radix) | ZORBAX SB C18 reversed-phase column (4.6 mm × 250 mm, 5 μm); A: 0.2% phosphoric acid/ water; B: methanol | 1 mL/min; 35 °C; 475 nm | - |
| [86] |
Puerarin (Pueraria lobata) | Agilent SB-C18 (2.1 mm × 100 mm, 1.8 μm); A: water/0.1% formic acid; B: acetonitrile/0.1% formic acid | 40 °C | ESI–(QTRAP)–MS:
|
| [87] |
Puerarin (gel eye drops) | Agilent Zorbax SB-C18 column (3.0 × 150 mm, 3.5 μm); A: acetonitrile gradient; B: 0.1% formic acid (15:85, v:v) | 0.6 mL/min; 35 °C; 250 nm | MS:
|
| [88] |
Puerarin (Pueraria thomsonii radix) | Waters BEH C18 column (2.1 mm × 100 mm, 1.7 μm); A: 0.1% formic acid/water; B: 0.1% formic acid/acetonitrile | 0.3 mL/min; 30 °C | Q-TOF-MS:
|
| [89] |
Puerarin (Pueraria tuberosa) | C18 (250 mm × 4.6 mm); A: methanol; B: water (25:27 ratio) | 1 mL/min; 25 °C; 250 nm | Q-TOF-MS |
| [90] |
Type of Disease/Disorder | Biological Effects of Puerarin | References |
---|---|---|
Cardiovascular disease |
| [109] |
| [110] | |
| [111] | |
| [112] | |
| [113] | |
| [114] | |
| [115] | |
Liver disease |
| [116] |
| [117] | |
| [118] | |
Respiratory disease |
| [119] |
| [120] | |
Gastric disease |
| [121] |
Kidney disease |
| [122] |
| [123] | |
Metabolic disease |
| [124] |
Neurological disorders |
| [125] |
| [126] | |
| [127] | |
| [128] | |
| [129] | |
| [130] | |
Urologic disease |
| [131] |
Geriatric disease |
| [132] |
| [133] | |
Bone disease |
| [134] |
| [135] | |
| [136] | |
Ophthalmology disease |
| [137] |
| [138] | |
Sensorial disorders |
| [139] |
Pregnancy-specific disorder |
| [140] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liga, S.; Paul, C. Puerarin—A Promising Flavonoid: Biosynthesis, Extraction Methods, Analytical Techniques, and Biological Effects. Int. J. Mol. Sci. 2024, 25, 5222. https://doi.org/10.3390/ijms25105222
Liga S, Paul C. Puerarin—A Promising Flavonoid: Biosynthesis, Extraction Methods, Analytical Techniques, and Biological Effects. International Journal of Molecular Sciences. 2024; 25(10):5222. https://doi.org/10.3390/ijms25105222
Chicago/Turabian StyleLiga, Sergio, and Cristina Paul. 2024. "Puerarin—A Promising Flavonoid: Biosynthesis, Extraction Methods, Analytical Techniques, and Biological Effects" International Journal of Molecular Sciences 25, no. 10: 5222. https://doi.org/10.3390/ijms25105222
APA StyleLiga, S., & Paul, C. (2024). Puerarin—A Promising Flavonoid: Biosynthesis, Extraction Methods, Analytical Techniques, and Biological Effects. International Journal of Molecular Sciences, 25(10), 5222. https://doi.org/10.3390/ijms25105222