Hesperidin as a Species-Specific Modifier of Aphid Behavior
Abstract
:1. Introduction
2. Results
2.1. Acyrthosiphon Pisum
2.1.1. Aphid Probing Behavior (EPG No-Choice Experiment)
2.1.2. Aphid Settling (Choice Experiment)
2.2. Rhopalosiphum Padi
2.2.1. Aphid Probing Behavior (EPG No-Choice Experiment)
2.2.2. Aphid Settling (Choice Experiment)
2.3. Myzus Persicae
2.3.1. Aphid Probing Behavior (EPG No-Choice Experiment)
2.3.2. Aphid Settling (Choice Experiment)
3. Discussion
4. Materials and Methods
4.1. Cultures of Plants and Aphids
4.2. Application of Hesperidin
4.3. Aphid Probing Behavior (No-Choice Experiment)
4.4. Aphid Settling Success (Choice-Experiment)
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Simmonds, M.S.J. Importance of flavonoids in insect-plant interactions: Feeding and oviposition. Phytochemistry 2001, 56, 245–252. [Google Scholar] [CrossRef]
- Peer, W.A.; Murphy, A.S. Flavonoids as Signal Molecules: Targets of Flavonoid Action. In The Science of Flavonoids; Grotewold, E., Ed.; Springer: New York, NY, USA, 2006; pp. 239–268. [Google Scholar]
- Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as oxidants in plants: Location and functional significance. Plant Sci. 2012, 196, 67–76. [Google Scholar] [CrossRef]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef]
- Pucker, B.; Selmar, D. Biochemistry and Molecular Basis of Intracellular Flavonoid Transport in Plants. Plants 2022, 11, 963. [Google Scholar] [CrossRef]
- Falcone Ferreyra, M.L.; Rius, S.P.; Casati, P. Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci. 2012, 3, 222. [Google Scholar] [CrossRef]
- Harborne, J.B.; Grayer, R.J. Flavonoids and insects. In The Flavonoids Advances in Research Since 1986; Harborne, J.B., Ed.; Chapman and Hall: London, UK, 1994; pp. 589–618. [Google Scholar]
- Mierziak, J.; Kostyn, K.; Kulma, A. Flavonoids as important molecules of plant interactions with the environment. Molecules 2014, 19, 16240–16265. [Google Scholar] [CrossRef]
- Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry 2000, 55, 481–504. [Google Scholar] [CrossRef]
- Mathesius, U. Flavonoid Functions in Plants and Their Interactions with Other Organisms. Plants 2018, 7, 30. [Google Scholar] [CrossRef]
- Treutter, D. Significance of Flavonoids in Plant Resistance and Enhancement of Their Biosynthesis. Plant. Biol. 2005, 7, 581–591. [Google Scholar] [CrossRef]
- Goławska, S.; Łukasik, I. Antifeedant Activity of Luteolin and Genistein against the Pea Aphid, Acyrthosiphon pisum. J. Pest. Sci. 2012, 85, 443–450. [Google Scholar] [CrossRef]
- Stec, K.; Kordan, B.; Gabryś, B. Effect of Soy Leaf Flavonoids on Pea Aphid Probing Behavior. Insects 2021, 12, 756. [Google Scholar] [CrossRef]
- Ramaroson, M.-L.; Koutouan, C.; Helesbeux, J.-J.; Le Clerc, V.; Hamama, L.; Geoffriau, E.; Briard, M. Role of Phenylpropanoids and Flavonoids in Plant Resistance to Pests and Diseases. Molecules 2022, 27, 8371. [Google Scholar] [CrossRef]
- Pereira, V.; Figueira, O.; Castilho, P.C. Flavonoids as Insecticides in Crop Protection—A Review of Current Research and Future Prospects. Plants 2024, 13, 776. [Google Scholar] [CrossRef]
- Schnarr, L.; Segatto, M.L.; Olsson, O.; Zuin, V.G.; Kummerer, K. Flavonoids as biopesticides—Systematic assessment of sources, structures, activities and environmental fate. Sci. Total Environ. 2022, 824, 153781. [Google Scholar] [CrossRef]
- Wang, S.; Tu, H.; Wan, J.; Chen, W.; Liu, X.; Luo, J.; Xu, J.; Zhang, H. Spatio-temporal distribution and natural variation of metabolites in citrus fruits. Food. Chem. 2016, 199, 8–17. [Google Scholar] [CrossRef]
- Al-Safadi, B.; Nakar, M. Ultrastructural changes in potato (Solanum tuberosum) under NaCl mediated salinity stress in vitro. Adv. Hortic. Sci. 2016, 30, 95–102. [Google Scholar] [CrossRef]
- Li, C.; Schluesener, H. Health-promoting effects of the citrus flavanone hesperidin. Crit. Rev. Food Sci. Nutr. 2017, 57, 613–631. [Google Scholar] [CrossRef]
- Pyrzynska, K. Hesperidin: A Review on Extraction Methods, Stability and Biological Activities. Nutrients 2022, 14, 2387. [Google Scholar] [CrossRef]
- Garg, A.; Garg, S.; Zaneveld, L.J.; Singla, A.K. Chemistry and pharmacology of the Citrus bioflavonoid hesperidin. Phytother. Res. 2001, 15, 655–669. [Google Scholar] [CrossRef]
- Wilmsen, P.K.; Spada, D.S.; Salvador, M. Antioxidant activity of the flavonoid hesperidin in chemical and biological systems. J. Agric. Food Chem. 2005, 53, 4757–4761. [Google Scholar] [CrossRef]
- Meneguzzo, F.; Ciriminna, R.; Zabini, F.; Pagliaro, M. Review of Evidence Available on Hesperidin-Rich Products as Potential Tools against COVID-19 and Hydrodynamic Cavitation-Based Extraction as a Method of Increasing Their Production. Processes 2020, 8, 549. [Google Scholar] [CrossRef]
- Abolaji, A.O.; Babalola, O.V.; Adegoke, A.K.; Farombi, E.O. Hesperidin, a citrus bioflavonoid, alleviates trichloroethylene-induced oxidative stress in Drosophila melanogaster. Environ. Toxicol. Phar. 2017, 55, 202–207. [Google Scholar] [CrossRef]
- Honda, K. Flavanone glycosides as oviposition stimulants in a papilionid butterfly, Papilio protenor. J. Chem. Ecol. 1986, 12, 1999–2010. [Google Scholar] [CrossRef]
- Soares, M.S.; da Silva, D.F.; Forim, M.R.; da Silva, M.F.; Fernandes, J.B.; Vieira, P.C.; Silva, D.B.; Lopes, N.P.; de Carvalho, S.A.; de Souza, A.A.; et al. Quantification and localization of hesperidin and rutin in Citrus sinensis grafted on C. limonia after Xylella fastidiosa infection by HPLC-UV and MALDI imaging mass spectrometry. Phytochemistry 2015, 115, 161–170. [Google Scholar] [CrossRef]
- del Rio, J.A.; Gómez, P.; Baidez, A.G.; Arcas, M.C.; Botía, J.M.; Ortuño, A. Changes in the Levels of Polymethoxyflavones and Flavanones as Part of the Defense Mechanism of Citrus sinensis (Cv. Valencia Late) Fruits against Phytophthora citrophthora. J. Agric. Food. Chem. 2004, 52, 1913–1917. [Google Scholar] [CrossRef]
- Arbona, V.; Gómez-Cadenas, A. Metabolomics of Disease Resistance in Crops. Curr. Issues Mol. Biol. 2016, 19, 13–30. [Google Scholar] [CrossRef]
- Elimem, M.; Jaouadi, R.; Bouslema, T.; Kalboussi, M.; Lahfef, C.; Rouz, S.; Kharroubi, H.; Boulila, A.; Kouki, S.; Ragnoni, G.; et al. Assessing the insecticidal effect of Citrus aurantium and Nerium oleander extracts and basalt “Farina di Basalto®” as biological alternatives to control Aphis punicae and Planococcus citri in an organic pomegranate orchard. Plant Protect. Sci. 2023, 59, 356–368. [Google Scholar] [CrossRef]
- Silva, D.F.; Bomfim, J.P.A.; Marchi, R.C.; Amaral, J.C.; Pinto, L.S.; Carlos, R.M.; Ferreira, A.G.; Forim, M.R.; Fernandes, J.B.; da Silva, M.F.G.F.; et al. Valorization of hesperidin from Citrus residues: Evaluation of microwave-assisted synthesis of hesperidin-mg complex and their insecticidal activity. J. Braz. Chem. Soc. 2022, 33, 772–782. [Google Scholar]
- Franceschini Sarria, A.L.; Matos, A.P.; Volante, A.C.; Bernardo, A.R.; Sabbag Cunha, G.O.; Fernandes, J.B.; Rossi Forim, M.; Vieira, P.C.; da Silva, M.F.D.G.F. Insecticidal Activity of Copper (II) Complexes with Flavanone Derivatives. Nat. Prod. Res. 2022, 36, 1342–1345. [Google Scholar] [CrossRef]
- Dreyer, D.L.; Jones, K.C. Feeding deterrency of feeding deterrency of flavonoids and related phenolics towards Schizaphis graminum and Myzus persicae: Aphid feeding deterrents in wheat. Phytochemistry 1981, 20, 2489–2493. [Google Scholar] [CrossRef]
- Frazier, J.L.; Chyb, S. Use of feeding inhibitors in insect control. In Regulatory Mechanisms in Insect Feeding; Chapman, R.F., de Boer, G., Eds.; Chapman & Hall: New York, NY, USA, 1995; pp. 364–381. [Google Scholar]
- Ponsen, M.B. Alimentary tract. In Aphids, Their Biology, Natural Enemies and Control; Minks, A.K., Harrewijn, P., Eds.; Elsevier: Amsterdam, The Netherlands, 1987; Volume A, pp. 79–97. [Google Scholar]
- Pettersson, J.; Tjallingii, W.F.; Hardie, J. Host-plant selection and feeding. In Aphids as Crop Pests; van Emden, H.F., Harrington, R., Eds.; CABI: Wallingford, UK, 2017; pp. 173–195. [Google Scholar]
- Paprocka, M.; Gliszczyńska, A.; Dancewicz, K.; Gabryś, B. Novel hydroxy- and epoxy-cis-jasmone and dihydrojasmone derivatives affect the foraging of the peach potato aphid Myzus persicae (Sulzer) (Homoptera: Aphididae). Molecules 2018, 23, 2362. [Google Scholar] [CrossRef] [PubMed]
- Dancewicz, K.; Sznajder, K.; Załuski, D.; Kordan, B.; Gabryś, B. Behavioral sensitivity of Myzus persicae to volatile isoprenoids in plant tissues. Entomol. Exp. Appl. 2016, 160, 229–240. [Google Scholar] [CrossRef]
- Wróblewska-Kurdyk, A.; Dancewicz, K.; Gliszczyńska, A.; Gabryś, B. Antifeedant Potential of Geranylacetone and Nerylacetone and Their Epoxy-Derivatives against Myzus persicae (Sulz.). Molecules 2022, 27, 8871. [Google Scholar] [CrossRef] [PubMed]
- Powell, G.; Hardie, J.; Pickett, J. Effects of the antifeedant polygodial on plant penetration by aphids, assessed by video and electrical recording. Entomol. Exp. Appl. 1993, 68, 193–200. [Google Scholar] [CrossRef]
- Van Hoof, H.A. An Investigation of the Biological Transmission of a Non-Persistent Virus. Ph.D. Thesis, Wageningen University and Research, Wageningen, The Netherlands, 1958. [Google Scholar]
- Tjallingii, W.F.; Esch, T.H.H. Fine structure of aphid stylet routes in plant tissues in correlation with EPG signals. Physiol. Entomol. 1993, 18, 317–328. [Google Scholar] [CrossRef]
- Tjallingii, W.F. Sieve element acceptance by aphids. Eur. J. Entomol. 1994, 91, 47–52. [Google Scholar]
- Miles, P. Aphid saliva. Biol. Rev. 1999, 74, 41–85. [Google Scholar] [CrossRef]
- Souza, M.F.; Davis, J.A. Detailed characterization of Melanaphis sacchari (Hemiptera: Aphididae) feeding behavior on different host plants. Environ. Entomol. 2020, 49, 683–691. [Google Scholar] [CrossRef]
- Gabryś, B.; Pawluk, M. Acceptability of different species of Brassicaceae as hosts for the cabbage aphid. Entomol. Exp. Appl. 1999, 91, 105–109. [Google Scholar] [CrossRef]
- Sarria, E.; Cid, M.; Garzo, E.; Fereres, A. Workbook for automatic parameter calculation of EPG data. Comput. Electron. Agric. 2009, 67, 35–42. [Google Scholar] [CrossRef]
- Harrewijn, P. Resistance mechanisms of plant genotypes to various aphid species. In Aphid-Plant Genotype Interactions; Campbell, R.K., Eikenbary, R.D., Eds.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1990; pp. 117–130. [Google Scholar]
- Hardie, J.; Holyoak, M.; Taylor, N.J.; Griffiths, D.C. The combination of electronic monitoring and video-assisted observations of plant penetration by aphids and behavioural effects of polygodial. Èntomol. Exp. Appl. 1992, 62, 233–239. [Google Scholar] [CrossRef]
EPG Variable | Hesperidin 0.0% | Hesperidin 0.1% | Hesperidin 0.5% | LSD0.05 | p-ANOVA | |||
---|---|---|---|---|---|---|---|---|
n 1 | Mean ± SEM | n 1 | Mean ± SEM | n 1 | Mean ± SEM | |||
No probing | ||||||||
Total duration of np | 22 | 1354 a ± 222.2 | 14 | 2976 a ± 759.3 | 14 | 3466 a ± 1288.2 | 2299.2 | 0.098 |
Number of np | 22 | 15.5 a ± 1.9 | 14 | 20.3 a ± 4.0 | 14 | 19.7 a ± 3.4 | 9.06 | 0.409 |
Mean duration of np | 22 | 80.5 a ± 7.4 | 14 | 195.5 a ± 71.9 | 14 | 238.4 a ± 129.3 | 222.1 | 0.252 |
Probing | ||||||||
Total probing time | 22 | 27,446 a ± 222.2 | 14 | 25,824 a ± 759.3 | 14 | 25,334 a ± 1288.2 | 2299.2 | 0.098 |
Number of probes | 22 | 15.5 a ± 1.9 | 14 | 20.1 a ± 4.0 | 14 | 19.7 a ± 3.5 | 9.12 | 0.442 |
Number of short probes (C < 3 min) | 22 | 8.0 a ± 1.4 | 14 | 11.3 a ± 3.0 | 14 | 9.8 a ± 2.4 | 6.69 | 0.542 |
Pathway phase | ||||||||
Total duration of C | 22 | 10,443 a ± 918 | 14 | 14,009 a ± 1681 | 14 | 14,205 a ± 1523 | 4038.4 | 0.063 |
Number of C | 22 | 19.7 a ± 2.1 | 14 | 23.1 a ± 4.1 | 14 | 23.1 a ± 3.5 | 9.49 | 0.632 |
Mean duration of C | 22 | 608.4 a ± 52.9 | 14 | 795.5 a ± 152.4 | 14 | 708.3 a ± 81.1 | 287.5 | 0.35 |
Proportion of probing spent in C (%) | 22 | 38.4 b ± 3.5 | 14 | 54.5 a ± 6.5 | 14 | 54.5 a ± 6.5 | 15.33 | 0.014 |
Derailed stylet activities | ||||||||
Total duration of F | 22 | 0 a ± 0 | 14 | 0 a ± 0 | 14 | 0 a ± 0 | * | - |
Number of F | 22 | 0 a ± 0 | 14 | 0 a ± 0 | 14 | 0 a ± 0 | * | - |
Mean duration of F 2 | 22 | 0 a ± 0 | 14 | 0 a ± 0 | 14 | 0 a ± 0 | * | - |
Proportion of probing spent in F (%) | 22 | 0 a ± 0 | 14 | 0 a ± 0 | 14 | 0 a ± 0 | * | - |
Xylem phase | ||||||||
Total duration of G | 22 | 0 a ± 0 | 14 | 2005 a ± 918.3 | 14 | 2949 a ± 2028.1 | 3331.2 | 0.13 |
Number of G | 22 | 0 a ± 0 | 14 | 0.5 a ± 0.2 | 14 | 0.5 a ± 0.4 | 0.618 | 0.108 |
Mean duration of G 2 | 22 | 0 c ± 0 | 6 | 3654 b ± 735 | 2 | 7677 a ± 4151 | 2687.5 | 0.011 |
Proportion of probing spent in G (%) | 22 | 0 a ± 0 | 14 | 9.1 a ± 4.5 | 14 | 10.6 a ± 7.3 | 13.14 | 0.143 |
Phloem phase: general | ||||||||
Total duration of phloem phase E (E1 + E2) | 22 | 17,003 a ± 1047 | 14 | 9810 b ± 1922 | 14 | 8180 b ± 1555 | 4461.8 | <0.001 |
Total duration of E1 | 22 | 527.9 a ± 106 | 14 | 437.9 a ± 125.5 | 14 | 572.3 a ± 160.4 | 395.9 | 0.784 |
Total duration of E2 | 22 | 16,476 a ± 1084 | 14 | 9372 b ± 1881 | 14 | 7608 b ± 1531 | 4455.3 | <0.001 |
Phloem phase: salivation (E1) | ||||||||
Number of E1 | 22 | 8 a ± 1.3 | 14 | 6.9 a ± 1.9 | 14 | 6.2 a ± 1.2 | 4.561 | 0.673 |
Mean duration of E1 2 | 22 | 69.1 a ± 11.2 | 12 | 59.3 a ± 15.9 | 12 | 83.6 a ± 13.9 | 41.1 | 0.493 |
Number of single E1 2 | 22 | 0.2 a ± 0.1 | 12 | 0.1 a ± 0.1 | 12 | 0.3 a ± 0.1 | 0.3583 | 0.723 |
Total duration of E1 followed by E2 2 | 22 | 383.3 a ± 63.7 | 12 | 338.8 a ± 62 | 12 | 432.7 a ± 78.4 | 207.7 | 0.663 |
Total duration of E1 followed by E2 > 10 min 2 | 22 | 211.9 a ± 28.7 | 12 | 251.7 a ± 47.2 | 12 | 254.8 a ± 51.3 | 117.6 | 0.644 |
Duration of the E1 followed by 1st E2 2 | 22 | 62.8 a ± 17.5 | 12 | 98 a ± 27.4 | 12 | 96 a ± 20.4 | 63.2 | 0.357 |
Duration of the E1 followed by 1st E2 > 10 min 2 | 22 | 61.4 a ± 17.3 | 12 | 96.8 a ± 27.5 | 12 | 121.8 a ± 26.2 | 66.7 | 0.131 |
Contribution of E1 to phloem phase (%) 2 | 22 | 3.6 b ± 0.7 | 12 | 5.2 ab ± 1.4 | 12 | 9.6 a ± 2.5 | 4.222 | 0.015 |
Proportion of probing spent in E1 (%) | 22 | 1.9 a ± 0.4 | 14 | 1.6 a ± 0.5 | 14 | 2.4 a ± 0.6 | 1.475 | 0.58 |
Phloem phase: sap ingestion (E2) | ||||||||
Number of E2 | 22 | 6.9 a ± 1.0 | 14 | 6 a ± 1.7 | 14 | 4.3 a ± 0.8 | 3.753 | 0.327 |
Number of E2 > 10 min | 22 | 4 a ± 0.4 | 14 | 3.6 a ± 0.6 | 14 | 2.9 a ± 0.7 | 1.729 | 0.345 |
Mean duration of E2 2 | 22 | 5153 a ± 1393 | 12 | 1826 a ± 474.8 | 12 | 1964 a ± 570.7 | 3526.5 | 0.057 |
Duration of the longest E2 2 | 22 | 9178 a ± 1337.4 | 12 | 4342 b ± 848.8 | 12 | 4277 b ± 810.8 | 3690.8 | 0.004 |
Proportion of probing spent in E2 (%) | 22 | 59.7 a ± 3.7 | 14 | 34.8 b ± 6.8 | 14 | 29.9 b ± 5.4 | 15.64 | <0.001 |
EPG Variable | Hesperidin 0.0% | Hesperidin 0.1% | Hesperidin 0.5% | LSD0.05 | p-ANOVA | |||
---|---|---|---|---|---|---|---|---|
n 1 | Mean ± SEM | n 1 | Mean ± SEM | n 1 | Mean ± SEM | |||
Start of EPG | ||||||||
Time to 1st probe from start of EPG | 22 | 81.7 a ± 22.8 | 14 | 40.1 a ± 14 | 14 | 131.6 a ± 87.3 | 143 | 0.442 |
Duration of 1st probe | 22 | 1913 a ± 761.4 | 14 | 333 a ± 152.5 | 14 | 1382 a ± 605.8 | 2041.7 | 0.237 |
Duration of the second nonprobe period | 22 | 48.2 a ± 7.9 | 14 | 139.6 a ± 101.4 | 14 | 71.3 a ± 16.7 | 154.9 | 0.422 |
Duration of 2nd probe | 22 | 1436 a ± 694.9 | 14 | 977 a ± 638.6 | 14 | 2354 a ± 1439.7 | 2880.6 | 0.619 |
Before 1st phloem phase | ||||||||
Time from start of EPG to 1st E 2 | 22 | 3900 b ± 638 | 14 | 10,741 a ± 2487 | 14 | 8653 ab ± 2460 | 5450.6 | 0.019 |
Time from 1st probe to 1st E 3 | 22 | 3819 b ± 638 | 14 | 10,700 a ± 2478 | 14 | 8521 ab ± 2407 | 5388.3 | 0.017 |
Time from the beginning of that probe to 1st E 4 | 22 | 1248 a ± 81.7 | 12 | 1461 a ± 160.5 | 12 | 1489 a ± 311 | 510 | 0.494 |
Number of probes to the 1st E1 | 22 | 6 a ± 1 | 12 | 10.4 a ± 2.1 | 12 | 8.2 a ± 2.5 | 5.034 | 0.151 |
Duration of nonprobe period before the 1st E | 22 | 411 b ± 123.7 | 14 | 1743 a ± 722 | 14 | 898 ab ± 314.6 | 1214.7 | 0.061 |
Duration of the shortest C wave before E1 4 | 22 | 986 a ± 75.7 | 12 | 1274 a ± 137.5 | 12 | 1217 a ± 142.5 | 325.2 | 0.107 |
1st phloem phase | ||||||||
Duration of 1st phloem phase E 4 | 22 | 5284 a ± 1416 | 12 | 2639 ab ± 768.3 | 12 | 1438 b ± 337.9 | 3711.9 | 0.063 |
Before 1st sap ingestion phase E2 | ||||||||
Time from start of EPG to 1st E2 5 | 22 | 4180 b ± 654 | 14 | 10,835 a ± 2488 | 14 | 10,709 a ± 2613 | 5619.6 | 0.012 |
Time from 1st probe to 1st E2 6 | 22 | 3881 b ± 649 | 14 | 10,784 a ± 2478 | 14 | 8713 ab ± 2376 | 5364 | 0.015 |
Time from the beginning of that probe to 1st E2 7 | 22 | 1411 b ± 85.9 | 12 | 1572 ab ± 168.8 | 12 | 2106 a ± 345 | 556.1 | 0.026 |
Before 1st sap ingestion phase E2 > 10 min | ||||||||
Time to from start of EPG 1st E2 > 10 min 8 | 22 | 4180 b ± 654 | 14 | 10,835 a ± 2488 | 14 | 10,709 a ± 2613 | 5619.6 | 0.012 |
Time from 1st probe to 1st E2 > 10 min 9 | 22 | 4098 b ± 654 | 14 | 10,795 a ± 2480 | 14 | 10,578 a ± 2568 | 5564.6 | 0.011 |
Time from the beginning of that probe to 1st E2 > 10 min. 10 | 22 | 1411 b ± 85.9 | 12 | 1572 ab ± 168.8 | 12 | 2106 a ± 345 | 556.1 | 0.026 |
After 1st phloem phase | ||||||||
Number of probes after 1st E 4 | 22 | 9.6 a ± 1.9 | 12 | 9.7 a ± 2.9 | 12 | 12.5 a ± 2.6 | 7.52 | 0.645 |
Number of probes shorter than 3 min after 1st E 4 | 22 | 4.8 a ± 1.2 | 12 | 5.9 a ± 2.3 | 12 | 6 a ± 1.6 | 5.174 | 0.84 |
Potential E2 index 11 | 22 | 66.9 a ± 4.3 | 12 | 44.5 b ± 8.2 | 12 | 32.4 b ± 6.1 | 18.47 | <0.001 |
EPG Variable | Hesperidin 0.0% | Hesperidin 0.1% | Hesperidin 0.5% | LSD0.05 | p-ANOVA | |||
---|---|---|---|---|---|---|---|---|
n 1 | Mean ± SEM | n 1 | Mean ± SEM | n 1 | Mean ± SEM | |||
No probing | ||||||||
Total duration of np | 15 | 2232 b ± 385 | 15 | 5862 a ± 1389 | 12 | 3052 ab ± 1246 | 3347.69 | 0.049 |
Number of np | 15 | 9.5 a ± 6.0 | 15 | 11.0 a ± 6.4 | 12 | 6.6 a ± 5.0 | 4.84 | 0.16 |
Mean duration of np | 15 | 244.2 a ± 23.8 | 15 | 802.9 a ± 293.7 | 12 | 651.9 a ± 265.6 | 694.04 | 0.186 |
Probing | ||||||||
Total probing time | 15 | 26,568 a ± 385 | 15 | 22,933 b ± 1388 | 12 | 25,747 ab ± 1246 | 3345.89 | 0.048 |
Number of probes | 15 | 9.3 a ± 1.5 | 15 | 10.7 a ± 1.7 | 12 | 6.3 a ± 1.4 | 4.82 | 0.167 |
Number of short probes (C < 3 min) | 15 | 3.1 a ± 0.8 | 15 | 3.1 a ± 0.8 | 12 | 1.9 a ± 0.7 | 2.51 | 0.526 |
Pathway phase | ||||||||
Total duration of C | 15 | 6680 a ± 906.9 | 15 | 7707 a ± 798.7 | 12 | 5896 a ± 1021.5 | 2787.51 | 0.384 |
Number of C | 15 | 15.4 a ± 2.026 | 15 | 17.1 a ± 1.8 | 12 | 14.2 a ± 2.6 | 6.56 | 0.637 |
Mean duration of C | 15 | 439.3 a ± 47.75 | 15 | 463 a ± 31.8 | 12 | 486.3 a ± 52.6 | 135.85 | 0.763 |
Proportion of probing spent in C (%) | 15 | 25.8 a ± 3.8 | 15 | 34.1 a ± 3.1 | 12 | 23.6 a ± 4 | 11.13 | 0.111 |
Derailed stylet activities | ||||||||
Total duration of F | 15 | 4115 a ± 840 | 15 | 4237 a ± 1191 | 12 | 2925 a ± 1109 | 3260.9 | 0.651 |
Number of F | 15 | 1.9 a ± 0.4 | 15 | 2 a ± 0.5 | 12 | 1.4 a ± 0.5 | 1.44 | 0.651 |
Mean duration of F 2 | 12 | 2581 a ± 447.5 | 12 | 1856 a ± 315.5 | 7 | 2477 a ± 836.6 | 1312.5 | 0.412 |
Proportion of probing spent in F (%) | 15 | 15.7 a ± 3.3 | 15 | 18.34 a ± 4.72 | 12 | 12.4 a ± 5.074 | 13.45 | 0.645 |
Xylem phase | ||||||||
Total duration of G | 15 | 1401 b ± 815 | 15 | 4619 ab ± 837 | 12 | 8719 a ± 2470 | 4370.05 | 0.004 |
Number of G | 15 | 0.5 b ± 0.3 | 15 | 1.7 ab ± 0.3 | 12 | 2.8 a ± 0.8 | 1.38 | 0.006 |
Mean duration of G 2 | 4 | 2528 a ± 1031 | 12 | 3340 a ± 669.3 | 9 | 3460 a ± 845 | 2004.33 | 0.54 |
Proportion of probing spent in G (%) | 15 | 5.4 b ± 3.094 | 15 | 23.7 a ± 5 | 12 | 33.4 a ± 9.2 | 17.94 | 0.006 |
Phloem phase: general | ||||||||
Total duration of phloem phase E (E1 + E2) | 15 | 14,371 a ± 1904 | 15 | 6371 b ± 1979 | 12 | 8207 ab ± 2463 | 6456.76 | 0.021 |
Total duration of E1 | 15 | 219.9 a ± 49.4 | 15 | 175 a ± 67.9 | 12 | 395 a ± 209.7 | 356.87 | 0.401 |
Total duration of E2 | 15 | 14,151 a ± 1920 | 15 | 6196 b ± 1951 | 12 | 7812 ab ± 2505 | 6479.77 | 0.022 |
Phloem phase: salivation (E1) | ||||||||
Number of E1 | 15 | 4.3 a ± 0.7 | 15 | 3.3 a ± 0.8 | 12 | 4.3 a ± 1.1 | 2.56 | 0.615 |
Mean duration of E1 2 | 15 | 47.8 a ± 7.64 | 12 | 44.2 a ± 8 | 10 | 91 a ± 47.5 | 67.31 | 0.279 |
Number of single E1 2 | 15 | 0.8 a ± 0.3 | 15 | 0.4 a ± 0.2 | 12 | 1 a ± 0.5 | 0.97 | 0.404 |
Total duration of E1 followed by E2 2 | 15 | 183.2 a ± 43.5 | 12 | 136.9 a ± 30.1 | 10 | 249.9 a ± 110.3 | 180.55 | 0.417 |
Total duration of E1 followed by E2 > 10 min 2 | 14 | 99.5 a ± 33.9 | 9 | 67.9 a ± 11.6 | 8 | 84.1 a ± 22.1 | 78.49 | 0.66 |
Duration of the E1 followed by 1st E2 2 | 15 | 41.1 a ± 8.3 | 12 | 35.4 a ± 3.3 | 10 | 41.5 a ± 8.9 | 21.63 | 0.788 |
Duration of the E1 followed by 1st E2 > 10 min 2 | 14 | 42.8 a ± 4.5 | 9 | 43.2 a ± 4.5 | 8 | 37.2 a ± 4.1 | 12.27 | 0.521 |
Contribution of E1 to phloem phase (%) 2 | 15 | 7.2 a ± 5.1 | 12 | 13.6 a ± 5.5 | 10 | 14.9 a ± 7.9 | 17.52 | 0.587 |
Proportion of probing spent in E1 (%) | 15 | 0.8 a ± 0.2 | 15 | 0.7 a ± 0.2 | 12 | 2 a ± 1.3 | 2.01 | 0.357 |
Phloem phase: sap ingestion (E2) | ||||||||
Number of E2 | 15 | 3.5 a ± 0.5 | 15 | 2.8 a ± 0.7 | 12 | 3.3 a ± 0.9 | 2.04 | 0.718 |
Number of E2 > 10 min | 15 | 1.6 a ± 0.3 | 15 | 0.9 a ± 0.3 | 12 | 1.3 a ± 0.3 | 0.88 | 0.246 |
Mean duration of E2 2 | 15 | 7109 a ± 2091 | 12 | 3246 a ± 1566 | 10 | 5154 a ± 2277 | 5881.65 | 0.34 |
Duration of the longest E2 2 | 15 | 12,299 a ± 2064 | 12 | 6619 a ± 2150 | 10 | 6895 a ± 2120 | 6217.1 | 0.085 |
Proportion of probing spent in E2 (%) | 15 | 52.2 a ± 6.6 | 15 | 23.2 b ± 6.9 | 12 | 28.5 b ± 8.7 | 22.68 | 0.015 |
EPG Variable | Hesperidin 0.0% | Hesperidin 0.1% | Hesperidin 0.5% | LSD0.05 | p-ANOVA | |||
---|---|---|---|---|---|---|---|---|
n 1 | Mean ± SEM | n 1 | Mean ± SEM | n 1 | Mean ± SEM | |||
Start of EPG | ||||||||
Time to 1st probe from start of EPG | 15 | 225.4 a ± 75 | 15 | 176.9 a ± 85.5 | 12 | 458.1 a ± 210.4 | 386.9 | 0.276 |
Duration of 1st probe | 15 | 4874 a ± 1760 | 15 | 4416 a ± 1073 | 12 | 6467 a ± 2949 | 5973.42 | 0.752 |
Duration of the second nonprobe period | 15 | 239.5 a ± 96.9 | 15 | 163.8 a ± 35.3 | 12 | 136.5 a ± 52.5 | 214.22 | 0.559 |
Duration of 2nd probe | 15 | 4004 a ± 1722.3 | 15 | 2136 a ± 642.2 | 12 | 1268 a ± 573.9 | 3697.24 | 0.271 |
Before 1st phloem phase | ||||||||
Time from start of EPG to 1st E 2 | 15 | 6812 a ± 1188 | 15 | 10,463 a ± 2626 | 12 | 10,174 a ± 2846 | 7013.94 | 0.442 |
Time from 1st probe to 1st E 3 | 15 | 6587 a ± 1180 | 15 | 10,286 a ± 2631 | 12 | 9716 a ± 2731 | 6909.23 | 0.442 |
Time from the beginning of that probe to 1st E 4 | 15 | 1907 a ± 717.7 | 12 | 2905 a ± 652.7 | 10 | 2944 a ± 1134.7 | 2382.01 | 0.553 |
Number of probes to the 1st E1 4 | 15 | 3.4 a ± 0.5 | 12 | 2.7 a ± 0.9 | 10 | 3.6 a ± 0.8 | 2.05 | 0.641 |
Duration of nonprobe period before the 1st E | 15 | 722 a ± 123.9 | 15 | 2004 a ± 711.9 | 12 | 789 a ± 224.9 | 1426.15 | 0.092 |
Duration of the shortest C wave before E1 4 | 15 | 823 b ± 133.5 | 12 | 1879 a ± 570.9 | 10 | 708 b ± 136.3 | 990.3 | 0.024 |
1st phloem phase | ||||||||
Duration of 1st phloem phase E 4 | 15 | 5887 a ± 2382 | 12 | 2644 a ± 1623 | 10 | 3451 a ± 2221 | 6337.09 | 0.492 |
Before 1st sap ingestion phase E2 | ||||||||
Time from start of EPG to 1st E2 5 | 15 | 7051 a ± 1170 | 15 | 10,491 a ± 2623 | 12 | 11,222 a ± 2926 | 7074.03 | 0.393 |
Time from 1st probe to 1st E2 6 | 15 | 6825 a ± 1162 | 15 | 10,314 a ± 2628 | 12 | 10,764 a ± 2819 | 6975.26 | 0.404 |
Time from the beginning of that probe to 1st E2 7 | 15 | 2145 a ± 744.1 | 12 | 2940 a ± 651.7 | 10 | 1301 a ± 536.4 | 2003.33 | 0.229 |
Before 1st sap ingestion phase E2 > 10 min | ||||||||
Time to from start of EPG 1st E2 > 10 min 8 | 15 | 11,488 a ± 2051 | 15 | 18,381 a ± 2635 | 12 | 16,746 a ± 2979 | 7836.54 | 0.132 |
Time from 1st probe to 1st E2 > 10 min 9 | 15 | 11,262 a ± 2065 | 15 | 18,204 a ± 2657 | 12 | 16,288 a ± 2909 | 7817.67 | 0.132 |
Time from the beginning of that probe to 1st E2 > 10 min. 10 | 14 | 1301 b ± 203.2 | 9 | 2972 ab ± 760.1 | 8 | 3358 a ± 1075.7 | 1686.75 | 0.027 |
After 1st phloem phase | ||||||||
Number of probes after 1st E | 15 | 5.9 a ± 1.3 | 15 | 4.5 a ± 1.1 | 12 | 2.8 a ± 1.2 | 3.74 | 0.236 |
Number of probes shorter than 3 min after 1st E | 15 | 2.3 a ± 0.7 | 15 | 1 ab ± 0.4 | 12 | 0.7 b ± 0.4 | 1.57 | 0.046 |
Potential E2 index 11 | 15 | 63 a ± 8.0 | 9 | 26.0 b ± 8.4 | 8 | 39.3 ab ± 11.9 | 28.62 | 0.019 |
EPG Variable | Hesperidin 0.0% | Hesperidin 0.1% | Hesperidin 0.5% | LSD0.05 | p-ANOVA | |||
---|---|---|---|---|---|---|---|---|
n 1 | Mean ± SEM | n 1 | Mean ± SEM | n 1 | Mean ± SEM | |||
No probing | ||||||||
Total duration of np | 17 | 3614 a ± 777.3 | 15 | 5218 a ± 1186.3 | 14 | 4424 a ± 901.9 | 2866 | 0.489 |
Number of np | 17 | 41.2 a ± 6.6 | 15 | 37 a ± 5.1 | 14 | 33.4 a ± 5.8 | 17.78 | 0.655 |
Mean duration of np | 17 | 82.2 b ± 6.6 | 15 | 146.3 a ± 33.2 | 14 | 129.2 ab ± 16.2 | 62.7 | 0.044 |
Probing | ||||||||
Total probing time | 17 | 25,186 a ± 777.3 | 15 | 23,580 a ± 1186.9 | 14 | 24,375 a ± 901.9 | 2866.7 | 0.489 |
Number of probes | 17 | 41.1 a ± 6.6 | 15 | 36.7 a ± 5.1 | 14 | 33.3 a ± 5.7 | 17.71 | 0.65 |
Number of short probes (C < 3 min) | 17 | 26.9 a ± 5.2 | 15 | 23.2 a ± 4.1 | 14 | 20.6 a ± 4.6 | 14.02 | 0.633 |
Pathway phase | ||||||||
Total duration of C | 17 | 11,757 a ± 1358 | 15 | 13,334 a ± 1399 | 14 | 12,617 a ± 1924 | 4629.2 | 0.764 |
Number of C | 17 | 43.7 a ± 6.7 | 15 | 39.8 a ± 5.2 | 14 | 35.8 a ± 5.9 | 18.14 | 0.656 |
Mean duration of C | 17 | 344.7 a ± 50.9 | 15 | 394.3 a ± 50.8 | 14 | 461.1 a ± 97.2 | 200.2 | 0.477 |
Proportion of probing spent in C (%) | 17 | 49 a ± 6.6 | 15 | 58.3 a ± 5.9 | 14 | 53.9 a ± 8.3 | 20.8 | 0.635 |
Derailed stylet activities | ||||||||
Total duration of F | 17 | 1750.8 a ± 585.2 | 15 | 535.6 ab ± 359.8 | 14 | 92.5 b ± 64.9 | 1279.3 | 0.023 |
Number of F | 17 | 0.7 a ± 0.2 | 15 | 0.3 ab ± 0.2 | 14 | 0.1 b ± 0.1 | 0.516 | 0.031 |
Mean duration of F 2 | 9 | 2526 a ± 552.4 | 3 | 2274 a ± 1389.2 | 2 | 648 b ± 155.5 | 1453.9 | 0.03 |
Proportion of probing spent in F (%) | 17 | 6.8 a ± 2.4 | 15 | 2 ab ± 1.345 | 14 | 0.4 b ± 0.3 | 5.142 | 0.027 |
Xylem phase | ||||||||
Total duration of G | 17 | 764 b ± 236.3 | 15 | 2321 a ± 505.8 | 14 | 1198 ab ± 601.7 | 1349.7 | 0.05 |
Number of G | 17 | 0.6 a ± 0.2 | 15 | 1 a ± 0.2 | 14 | 0.5 a ± 0.2 | 0.586 | 0.205 |
Mean duration of G 2 | 8 | 1235 b ± 115.6 | 11 | 2404 a ± 372.3 | 6 | 2103 a ± 505 | 812.6 | 0.011 |
Proportion of probing spent in G (%) | 17 | 3.1 b ± 0.9 | 15 | 9.6 a ± 2.3 | 14 | 5.4 ab ± 3 | 6.4 | 0.049 |
Phloem phase: general | ||||||||
Total duration of phloem phase E (E1 + E2) | 17 | 10,914 a ± 1842 | 15 | 7390 a ± 1645 | 14 | 10,467 a ± 2513 | 5972.4 | 0.406 |
Total duration of E1 | 17 | 100.1 a ± 18.83 | 15 | 174 a ± 61.5 | 14 | 114.6 a ± 21.2 | 114.6 | 0.359 |
Total duration of E2 | 17 | 10,814 a ± 1850 | 15 | 7216 a ± 1659 | 14 | 10,353 a ± 2516 | 5996.7 | 0.394 |
Phloem phase: salivation (E1) | ||||||||
Number of E1 | 17 | 1.9 a ± 0.3 | 15 | 2.5 a ± 0.4 | 14 | 2.4 a ± 0.5 | 1.186 | 0.519 |
Mean duration of E1 2 | 16 | 51 a ± 4.2 | 14 | 60.6 a ± 7.6 | 13 | 48.6 a ± 4.1 | 15.99 | 0.265 |
Number of single E1 | 17 | 0.1 a ± 0.1 | 15 | 0.1 a ± 0.1 | 14 | 0.1 a ± 0.1 | 0.2654 | 0.979 |
Total duration of E1 followed by E2 2 | 16 | 99.8 a ± 18.2 | 14 | 180.4 a ± 65 | 13 | 116.2 a ± 19.9 | 115.3 | 0.302 |
Total duration of E1 followed by E2 > 10 min 2 | 15 | 62.8 b ± 7.9 | 12 | 106.6 a ± 11 | 13 | 79.4 ab ± 11.8 | 28.31 | 0.007 |
Duration of the E1 followed by 1st E2 2 | 16 | 57.4 a ± 7.3 | 14 | 56.5 a ± 5.2 | 13 | 48.8 a ± 3.3 | 16.83 | 0.515 |
Duration of the E1 followed by 1st E2 > 10 min 2 | 15 | 52.2 ab ± 3.5 | 12 | 61.2 a ± 5.1 | 13 | 48.4 b ± 3.2 | 11.02 | 0.05 |
Contribution of E1 to phloem phase (%) 2 | 16 | 3.3 a ± 1.8 | 14 | 6.1 a ± 2.7 | 13 | 3.1 a ± 0.9 | 5.71 | 0.468 |
Proportion of probing spent in E1 (%) | 17 | 0.4 a ± 0.1 | 15 | 0.8 a ± 0.3 | 14 | 0.5 a ± 0.1 | 0.532 | 0.292 |
Phloem phase: sap ingestion (E2) | ||||||||
Number of E2 | 17 | 1.8 a ± 0.3 | 15 | 2.4 a ± 0.4 | 14 | 2.3 a ± 0.5 | 1.156 | 0.525 |
Number of E2 > 10 min | 17 | 1.1 a ± 0.2 | 15 | 1.5 a ± 0.3 | 14 | 1.6 a ± 0.3 | 0.687 | 0.297 |
Mean duration of E2 2 | 16 | 9315 a ± 2105 | 14 | 4221 a ± 1268 | 13 | 7348 a ± 2636 | 5966.5 | 0.194 |
Duration of the longest E2 2 | 16 | 10,798 a ± 1885 | 14 | 6126 a ± 1615 | 13 | 9363 a ± 2480 | 5776.2 | 0.221 |
Proportion of probing spent in E2 (%) | 17 | 40.6 a ± 6.7 | 15 | 29.3 a ± 5.9 | 14 | 39.7 a ± 8.9 | 21.47 | 0.475 |
EPG Variable | Hesperidin 0.0% | Hesperidin 0.1% | Hesperidin 0.5% | LSD0.05 | p-ANOVA | |||
---|---|---|---|---|---|---|---|---|
n 1 | Mean ± SEM | n 1 | Mean ± SEM | n 1 | Mean ± SEM | |||
Start of EPG | ||||||||
Time to 1st probe from start of EPG | 17 | 74.6 a ± 28.9 | 15 | 107.19 a ± 64.3 | 14 | 91.4 a ± 31.2 | 131.1 | 0.867 |
Duration of 1st probe | 17 | 138.5 a ± 44 | 15 | 76 a ± 22.6 | 14 | 80 a ± 31 | 104.5 | 0.359 |
Duration of the second nonprobe period | 17 | 88.8 a ± 21.2 | 15 | 59.2 a ± 14.1 | 14 | 90.3 a ± 14.7 | 52.5 | 0.383 |
Duration of 2nd probe | 17 | 1356 a ± 1013.7 | 15 | 163.4 a ± 69.2 | 14 | 271.1 a ± 144.6 | 1960.1 | 0.355 |
Before 1st phloem phase | ||||||||
Time from start of EPG to 1st E 2 | 17 | 11,063 a ± 1829 | 15 | 11,764 a ± 2326 | 14 | 10,917 a ± 2413 | 6478.2 | 0.959 |
Time from 1st probe to 1st E 3 | 17 | 10,989 a ± 1831 | 15 | 11,657 a ± 2332 | 14 | 10,825 a ± 2414 | 6488 | 0.961 |
Time from the beginning of that probe to 1st E 4 | 16 | 2156 a ± 538.5 | 14 | 2435 a ± 465.5 | 13 | 1939 a ± 398 | 1396.8 | 0.765 |
Number of probes to the 1st E1 | 16 | 20.7 a ± 3.4 | 14 | 18.4 a ± 4.5 | 13 | 20.2 a ± 4.8 | 12.09 | 0.916 |
Duration of nonprobe period before the 1st E | 17 | 2274 a ± 756.6 | 15 | 1952 a ± 524.9 | 14 | 2356 a ± 631.3 | 1966.2 | 0.903 |
Duration of the shortest C wave before E1 | 16 | 1987 a ± 555.5 | 14 | 1994 a ± 399.5 | 13 | 1587 a ± 264.8 | 1289.9 | 0.759 |
1st phloem phase | ||||||||
Duration of 1st phloem phase E | 16 | 8754 a ± 2254 | 14 | 2444 b ± 1230 | 13 | 7831 ab ± 2644 | 6140.1 | 0.045 |
Before 1st sap ingestion phase E2 | ||||||||
Time from start of EPG to 1st E2 5 | 17 | 11,497 a ± 1828 | 15 | 12,694 a ± 2220 | 14 | 10,962 a ± 2412 | 6369.9 | 0.848 |
Time from 1st probe to 1st E2 6 | 17 | 11,422 a ± 1832 | 15 | 12,587 a ± 2229 | 14 | 10,871 a ± 2413 | 6383.3 | 0.852 |
Time from the beginning of that probe to 1st E2 7 | 16 | 2256 a ± 531.8 | 14 | 2571 a ± 453.3 | 13 | 1988 a ± 397.9 | 1376.9 | 0.686 |
Before 1st sap ingestion phase E2 > 10 min | ||||||||
Time to from start of EPG 1st E2 > 10 min 8 | 17 | 15,197 a ± 2152 | 15 | 16,349 a ± 2601 | 14 | 11,384 a ± 2543 | 7219.9 | 0.346 |
Time from 1st probe to 1st E2 > 10 min 9 | 17 | 15,123 a ± 2150 | 15 | 16,242 a ± 2616 | 14 | 11,293 a ± 2544 | 7233.6 | 0.348 |
Time from the beginning of that probe to 1st E2 > 10 min. 10 | 15 | 2495 a ± 546.4 | 12 | 3056 a ± 552.8 | 13 | 2027 a ± 389.9 | 1417.5 | 0.335 |
After 1st phloem phase | ||||||||
Number of probes after 1st E 10 | 17 | 15.7 a ± 4.6 | 15 | 15.7 a ± 4.3 | 14 | 11.6 a ± 3.2 | 12.48 | 0.733 |
Number of probes shorter than 3 min after 1st E 10 | 17 | 10.7 a ± 3.6 | 15 | 10.3 a ± 3.3 | 14 | 7.8 a ± 2.8 | 9.87 | 0.802 |
Potential E2 index 11 | 17 | 60.9 a ± 9.2 | 12 | 48.8 a ± 9.8 | 13 | 51.3 a ± 9.7 | 28.66 | 0.629 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stec, K.; Kordan, B.; Bocianowski, J.; Gabryś, B. Hesperidin as a Species-Specific Modifier of Aphid Behavior. Int. J. Mol. Sci. 2024, 25, 4822. https://doi.org/10.3390/ijms25094822
Stec K, Kordan B, Bocianowski J, Gabryś B. Hesperidin as a Species-Specific Modifier of Aphid Behavior. International Journal of Molecular Sciences. 2024; 25(9):4822. https://doi.org/10.3390/ijms25094822
Chicago/Turabian StyleStec, Katarzyna, Bożena Kordan, Jan Bocianowski, and Beata Gabryś. 2024. "Hesperidin as a Species-Specific Modifier of Aphid Behavior" International Journal of Molecular Sciences 25, no. 9: 4822. https://doi.org/10.3390/ijms25094822
APA StyleStec, K., Kordan, B., Bocianowski, J., & Gabryś, B. (2024). Hesperidin as a Species-Specific Modifier of Aphid Behavior. International Journal of Molecular Sciences, 25(9), 4822. https://doi.org/10.3390/ijms25094822