The Precious Potential of the Sacred Tree Chamaecyparis obtusa (Siebold & Zucc.) Endl. as a Source of Secondary Metabolites with Broad Biological Applications
Abstract
:1. Introduction
2. Phytochemistry of Chamaecyparis obtusa
3. Antimicrobial and Antivirus Activity
3.1. Antioxidant Activity
3.2. Anticancer Activity
3.3. Antidiabetic Activity
3.4. Antiasthmatic Activity
3.5. Other Airway Diseases
3.6. Dermatological Effects
3.7. Anti-Inflammatory Activities
3.8. Antiallergic Effects
3.9. Analgesic Effects
3.10. Activity in the Central Nervous System
3.11. Anti-Insect Activity and Plant Diseases
3.12. Other Applications
4. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
AD | atopic dermatitis |
ALP | alkaline phosphatase |
ATP | adenosine 5′-triphosphate |
BALF | bronchoalveolar lavage fluid |
CNS | central nervous system |
COEO | Chamaecyparis obtusa essential oil |
COX-2 | cyclooxygenase-2 |
CREB | cAMP response element-binding protein |
DNCB | 2,4-dinitrochlorobenzene |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
EMT | epithelial-mesenchymal transition |
ERK | extracellular signal-regulated kinase |
GR | glutathione reductase |
HOMA-IR | homeostatic model assessment—insulin resistance |
HRV | heart rate variability |
HSV-1 | Herpes simplex virus 1 |
IGF-1 | insulin-like growth factor 1 |
JAK/STAT | Janus kinases/signal transducer and activator of transcription proteins signaling pathway |
JNK | c-Jun N-terminal kinase |
KGF | keratinocyte growth factor |
LFCO | Lactobacillus-fermented Chamaecyparis obtusa |
MBC | minimum bactericidal concentration |
MIC | minimum inhibitory concentration |
MITF | microphthalmia-associated transcription factor |
MRSA | methicillin-resistant Staphylococcus aureus |
NGFR | nerve growth factor receptor |
NO | nitric oxide |
NSAID | non-steroidal anti-inflammatory drug |
PARP | poly (ADP-ribose) polymerase |
ROS | reactive oxygen species |
SOD | superoxide dismutase |
STAT3 | signal transducer and activator of transcription 3 |
TGFβ1 | transforming growth factor β1 |
TNFα | transforming growth factor α |
TRP1 and TRP2 | tyrosinase-related proteins |
TTO | tea tree oil |
VEGF | vascular endothelial growth factor |
VRE | vancomycin-resistant enterococci |
WHO | World Health Organization |
α-MSH | alpha-melanocyte-stimulating hormone |
γ-GT | γ-glutamyl transpeptidase |
References
- Page, C.N. Cupressaceae. In Pteridophytes and Gymnosperms. The Families and Genera of Vascular Plants; Kramer, K.U., Green, P.S., Eds.; Springer: Berlin/Heidelberg, Germany, 1990; Volume 1. [Google Scholar]
- Hart, J.A.; Price, R.A. The genera of Cupressaceae (including Taxodiaceae) in the southeastern United States. J. Arnold Arbor. 1990, 71, 275–322. [Google Scholar] [CrossRef]
- Zhao, J. Plant troponoids: Chemistry, biological activity, and biosynthesis. Curr. Med. Chem. 2007, 14, 2597–2621. [Google Scholar] [CrossRef] [PubMed]
- Miceli, N.; Trovato, A.; Marino, A.; Bellinghieri, V.; Melchini, A.; Dugo, P.; Cacciola, F.; Donato, P.; Mondello, L.; Güvenç, A.; et al. Phenolic composition and biological activities of Juniperus drupacea Labill. berries from Turkey. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2011, 49, 2600–2608. [Google Scholar] [CrossRef] [PubMed]
- Elshafie, H.S.; Caputo, L.; De Martino, L.; Gruľová, D.; Zheljazkov, V.Z.; De Feo, V.; Camele, I. Biological investigations of essential oils extracted from three Juniperus species and evaluation of their antimicrobial, antioxidant and cytotoxic activities. J. Appl. Microbiol. 2020, 129, 1261–1271. [Google Scholar] [CrossRef]
- Caruntu, S.; Ciceu, A.; Olah, N.K.; Don, I.; Hermenean, A.; Cotoraci, C. Thuja occidentalis L. (Cupressaceae): Ethnobotany, Phytochemistry and Biological Activity. Molecules 2020, 25, 5416. [Google Scholar] [CrossRef]
- Yang, A.-R.; Hwang, J.; Cho, M.S. Regional Early Growth Performances of Planted Chamaecyparis obtusa Seedlings in Relation to Site Properties. J. Korean For. Soc. 2014, 103, 375–382. [Google Scholar] [CrossRef]
- Osone, Y.; Hashimoto, S.; Kenzo, T.; Araki, M.G.; Inoue, Y.; Shichi, K.; Toriyama, J.; Yamashita, N.; Tsuruta, K.; Ishizuka, S.; et al. Plant trait database for Cryptomeria japonica and Chamaecyparis obtusa (SugiHinoki DB): Their physiology, morphology, anatomy and biochemistry. Ecol. Res. 2020, 35, 274–275. [Google Scholar] [CrossRef]
- Lin, C.Y.; Cheng, S.S.; Chang, S.T. Chemotaxonomic identification of Chamaecyparis formosensis Matsumura and Chamaecyparis obtusa var. formosana (Hayata) Rehder using characteristic compounds of wood essential oils. Biochem. Syst. Ecol. 2022, 105, 104525. [Google Scholar] [CrossRef]
- Available online: https://www.treesandshrubsonline.org/articles/chamaecyparis/chamaecyparis-obtusa/ (accessed on 21 January 2024).
- Tsumura, Y.; Matsumoto, A.; Tani, N.; Ujino-Ihara, T.; Kado, T.; Iwata, H.; Uchida, K. Genetic diversity and the genetic structure of natural populations of Chamaecyparis obtusa: Implications for management and conservation. Heredit 2007, 99, 161–172. [Google Scholar] [CrossRef]
- Jang, E.S. Investigation of sound absorption ability of hinoki cypress (Chamaecyparis obtusa) cubes. J. Korean Wood Sci. Technol. 2022, 50, 365–374. [Google Scholar] [CrossRef]
- Elshiekh, Y.H.; Ali, M.A.M.; Abubakr, R.; Musa, Y.A.A. Evaluation of Antibacterial, Antioxidant and Phytochemical screening of Chamaecyparis obtusa (Crippsii) Fruits. Am. J. Res. Commun. 2020, 8, 15–24. [Google Scholar]
- Tang, B.; Park, H.E.; Row, K.H. Simultaneous extraction of flavonoids from Chamaecyparis obtusa using deep eutectic solvents as additives of conventional extractions solvents. J. Chromatogr. Sci. 2015, 53, 836–840. [Google Scholar] [CrossRef] [PubMed]
- Krauze-Baranowska, M.; Pobłocka, L.; El Helab, A.A. Biflavones from Chamaecyparis obtusa. Z. Für Naturforschung C 2005, 60, 679–685. [Google Scholar] [CrossRef]
- Sakushima, A.; Ohno, K.; Coskun, M.; Seki, K.I.; Ohkura, K. Separation and identification of taxifolin 3-O-glucoside isomers from Chamaecyparis obtusa (Cupressaceae). Nat. Prod. Lett. 2002, 16, 383–387. [Google Scholar] [CrossRef]
- Jeong, E.J.; Hwang, L.; Lee, M.; Lee, K.Y.; Ahn, M.J.; Sung, S.H. Neuroprotective biflavonoids of Chamaecyparis obtusa leaves against glutamate-induced oxidative stress in HT22 hippocampal cells. Food Chem. Toxicol. 2014, 64, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Lee, S.G.; Oh, T.J.; Lim, S.R.; Kim, S.H.; Lee, H.J.; Kim, Y.S.; Choi, H.K. Antiproliferative and apoptotic activity of Chamaecyparis obtusa leaf extract against the HCT116 human colorectal cancer cell line and investigation of the bioactive compound by gas chromatography-mass spectrometry-based metabolomics. Molecules 2015, 20, 18066–18082. [Google Scholar] [CrossRef] [PubMed]
- Takaku, N.; Choi, D.H.; Mikame, K.; Okunishi, T.; Suzuki, S.; Ohashi, H.; Umezawa, T.; Shimada, M. Lignans of Chamaecyparis obtusa. J. Wood Sci. 2001, 47, 476–482. [Google Scholar] [CrossRef]
- Kuroyanagi, M.; Ikeda, R.; Gao, H.Y.; Muto, N.; Otaki, K.; Sano, T.; Kawahara, N.; Nakane, T. Neurite outgrowth-promoting active constituents of the Japanese cypress (Chamaecyparis obtusa). Chem. Pharm. Bull. 2008, 56, 60–63. [Google Scholar] [CrossRef]
- Kuo, Y.C.; Kuo, Y.H.; Lin, Y.L.; Tsai, W.J. Yatein from Chamaecyparis obtusa suppresses herpes simplex virus type 1 replication in HeLa cells by interruption the immediate-early gene expression. Antivir. Res. 2006, 70, 112–120. [Google Scholar] [CrossRef]
- Cox-Georgian, D.; Ramadoss, N.; Dona, C.; Basu, C. Therapeutic and medicinal uses of terpenes. In Medicinal Plants; Springer: Cham, Switzerland, 2019; pp. 333–359. [Google Scholar]
- Ozaki, N.; Hasegawa, S.; Hirose, Y. Terpenoids from the seed of Chamaecyparis obtusa. Phytochemistry 1983, 22, 1771–1773. [Google Scholar] [CrossRef]
- Hirose, Y.; Hasegawa, S.; Ozaki, N.; Iitaka, Y. Three new terpenoid quinone methides from the seed of Chamaecyparis obtusa. Tetrahedron Lett. 1983, 24, 1535–1538. [Google Scholar] [CrossRef]
- Shieh, B.; Iizuka, Y.; Matsubara, Y. Monoterpenoid and sesquiterpenoid constituents of the essential oil of hinoki (Chamaecyparis obtusa (Sieb. et Zucc.) Endl.). Agric. Biol. Chem. 1981, 45, 1497–1499. [Google Scholar]
- Fukushima, J.I.; Yatagai, M.; Ohira, T. Abietane-type and labdane-type diterpenoids from the cones of Chamaecyparis obtusa. J. Wood Sci. 2002, 48, 326–330. [Google Scholar] [CrossRef]
- Fujise, Y.; Maruta, I.; Ito, S.; Nozoe, T. Chemical constituents of essential oil of Chamaecyparis obtusa (SIEB. et ZUCC.). Chem. Pharm. Bull. 1964, 12, 991–994. [Google Scholar] [CrossRef]
- Ludwiczuk, A.; Skalicka-Woźniak, K.; Georgiev, M.I. Terpenoids. In Pharmacognosy; Academic Press: Cambridge, MA, USA, 2017; pp. 233–266. [Google Scholar]
- Kuo, Y.H.; Chen, C.H.; Lin, Y.L. New lignans from the heartwood of Chamaecyparis obtusa var. formosana. Chem. Pharm. Bull. 2002, 50, 978–980. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.H.; Chen, C.H.; Chien, S.C.; Lin, H.C. Novel diterpenes from the heartwood of Chamaecyparis obtusa var. formosana. Chem. Pharm. Bull. 2004, 52, 764–766. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.D.; Cheng, M.J.; Chen, J.J.; Khamthong, N.; Lin, W.W.; Kuo, Y.H. Secondary Metabolites with Antimicrobial Activities from Chamaecyparis obtusa var. formosana. Molecules 2022, 27, 429. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.H.; Chen, C.H.; Chien, S.C.; Lin, Y.L. Five new cadinane-type sesquiterpenes from the heartwood of Chamaecyparis obtusa var. formosana. J. Nat. Prod. 2002, 65, 25–28. [Google Scholar] [CrossRef]
- Ríos, J.L. Essential oils: What they are and how the terms are used and defined. In Essential Oils in Food Preservation, Flavor and Safety; Academic Press: Cambridge, MA, USA, 2016; pp. 3–10. [Google Scholar]
- Ramsey, J.T.; Shropshire, B.C.; Nagy, T.R.; Chambers, K.D.; Li, Y.; Korach, K.S. Essential Oils and Health. Yale J. Biol. Med. 2020, 93, 291–305. [Google Scholar]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Kasuya, H.; Hata, E.; Satou, T.; Yoshikawa, M.; Hayashi, S.; Masuo, Y.; Koike, K. Effect on emotional behavior and stress by inhalation of the essential oil from Chamaecyparis Obtusa. Nat. Prod. Commun. 2013, 8, 1934578X1300800428. [Google Scholar] [CrossRef]
- Eltayeb, L.M.; Yagi, S.; Mohamed, H.M.; Zengin, G.; Shariati, M.A.; Rebezov, M.; Lorenzo, J.M. Essential oils composition and biological activity of Chamaecyparis obtusa, Chrysopogon nigritanus and Lavandula coronopifolia grown wild in Sudan. Molecules 2023, 28, 1005. [Google Scholar] [CrossRef]
- Park, I.K.; Lee, S.G.; Choi, D.H.; Park, J.D.; Ahn, Y.J. Insecticidal activities of constituents identified in the essential oil from leaves of Chamaecyparis obtusa against Callosobruchus chinensis (L.) and Sitophilus oryzae (L.). J. Stored Prod. Res. 2003, 39, 375–384. [Google Scholar] [CrossRef]
- Lee, S.H.; Do, H.S.; Min, K.J. Effects of essential oil from Hinoki cypress, Chamaecyparis obtusa, on physiology and behavior of flies. PLoS ONE 2015, 10, e0143450. [Google Scholar] [CrossRef]
- Yang, J.K.; Choi, M.S.; Seo, W.T.; Rinker, D.L.; Han, S.W.; Cheong, G.W. Chemical composition and antimicrobial activity of Chamaecyparis obtusa leaf essential oil. Fitoterapia 2007, 78, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Murata, K.; Tanaka, K.; Akiyama, R.; Noro, I.; Nishio, A.; Nakagawa, S.; Matsumura, S.; Matsuda, H. Anti-cholinesterase activity of crude drugs selected from the ingredients of incense sticks and heartwood of Chamaecyparis obtusa. Nat. Prod. Commun. 2018, 13, 1934578X1801300704. [Google Scholar] [CrossRef]
- Lee, G.S.; Hong, E.J.; Gwak, K.S.; Park, M.J.; Choi, K.C.; Choi, I.G.; Jang, J.W.; Jeung, E.B. The essential oils of Chamaecyparis obtusa promote hair growth through the induction of vascular endothelial growth factor gene. Fitoterapia 2010, 81, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.S.; Kang, S.Y.; Kim, Y.H.; Lee, Y.E.; Choi, N.Y.; You, Y.O.; Kim, K.J. Chamaecyparis obtusa essential oil inhibits methicillin-resistant Staphylococcus aureus biofilm formation and expression of virulence factors. J. Med. Food 2015, 18, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, V.K.; Sharma, A.; Baek, K.H. Antibacterial mode of action of the essential oil obtained from Chamaecyparis obtusa sawdust on the membrane integrity of selected foodborne pathogens. Food Technol. Biotechnol. 2014, 52, 109. [Google Scholar]
- Park, M.J.; Choi, W.S.; Kang, H.Y.; Gwak, K.S.; Lee, G.S.; Jeung, E.B.; Choi, I.G. Inhibitory effect of the essential oil from Chamaecyparis obtusa on the growth of food-borne pathogens. J. Microbiol. 2010, 48, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Koyama, S.; Yamaguchi, Y.; Tanaka, S.; Motoyoshiya, J. A new substance (Yoshixol) with an interesting antibiotic mechanism from wood oil of Japanese traditional tree (Kiso-Hinoki), Chamaecyparis obtusa. Gen. Pharmacol. 1997, 28, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Lee, B.K.; Kim, J.H.; Lee, S.H.; Hong, S.K. Comparison of chemical compositions and antimicrobial activities of essential oils from three conifer trees; Pinus densiflora, Cryptomeria japonica, and Chamaecyparis obtusa. J. Microbiol. Biotechnol. 2009, 19, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Seo, K.A.; Li, S.H. A Study on the Anti-bacterial Effect and Dandruff Scalp Emprovement of Malassezia furfur of Chamaecyparis obtusa. Korean J. Aesthet. Cosmetol. 2015, 13, 285–293. [Google Scholar]
- Kim, E.H.; Kang, S.Y.; Park, B.I.; Kim, Y.H.; Lee, Y.R.; Hoe, J.H.; You, Y.O. Chamaecyparis obtusa suppresses virulence genes in Streptococcus mutans. Evid.-Based Complement. Altern. Med. Ecam 2016, 2016, 2396404. [Google Scholar] [CrossRef] [PubMed]
- Bae, M.S.; Park, D.H.; Choi, C.Y.; Kim, G.Y.; Yoo, J.C.; Cho, S.S. Essential oils and non-volatile compounds derived from Chamaecyparis obtusa: Broad spectrum antimicrobial activity against infectious bacteria and MDR (multidrug resistant) strains. Nat. Prod. Commun. 2016, 11, 1934578X1601100536. [Google Scholar] [CrossRef]
- Young, I.S.; Woodside, J.V. Antioxidants in health and disease. J. Clin. Pathol. 2001, 54, 176–186. [Google Scholar] [CrossRef]
- Mamta; Misra, K.; Dhillon, G.S.; Brar, S.K.; Verma, M. Antioxidants. In Biotransformation of Waste Biomass into High Value Biochemicals; Springer: New York, NY, USA, 2014; pp. 117–138. [Google Scholar]
- Kim, J.H.; Lee, S.O.; Do, K.B.; Ji, W.D.; Kim, S.G.; Back, Y.D.; Kim, K.J. Analysis of the component and immunological efficacy of Chamaecyparis obtusa leaf extract. Korean J. Clin. Lab. Sci. 2018, 50, 37–43. [Google Scholar] [CrossRef]
- Marimuthu, P.; Wu, C.L.; Chang, H.T.; Chang, S.T. Antioxidant activity of the ethanolic extract from the bark of Chamaecyparis obtusa var. formosana. J. Sci. Food Agric. 2008, 88, 1400–1405. [Google Scholar] [CrossRef]
- Cheng, S.C.; Li, W.H.; Shi, Y.C.; Yen, P.L.; Lin, H.Y.; Liao, V.H.C.; Chang, S.T. Antioxidant activity and delayed aging effects of hot water extract from Chamaecyparis obtusa var. formosana leaves. J. Agric. Food Chem. 2014, 62, 4159–4165. [Google Scholar] [CrossRef]
- Bajpai, V.K.; Sharma, A.; Kim, S.H.; Baek, K.H. Phenolic content and antioxidant capacity of essential oil obtained from sawdust of Chamaecyparis obtusa by microwave-assisted hydrodistillation. Food Technol. Biotechnol. 2013, 51, 360. [Google Scholar]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Gordaliza, M. Natural products as leads to anticancer drugs. Clin. Transl. Oncol. 2007, 9, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, T.; Merecz-Sadowska, A.; Rijo, P.; Mori, M.; Hatziantoniou, S.; Górski, K.; Szemraj, J.; Pikearski, J.; Śliwiński, T.; Bijak, M.; et al. Hidden in plants—A review of the anticancer potential of the Solanaceae family in in vitro and in vivo studies. Cancers 2022, 14, 1455. [Google Scholar] [CrossRef] [PubMed]
- Dibwe, D.F.; Sun, S.; Ueda, J.Y.; Balachandran, C.; Matsumoto, K.; Awale, S. Discovery of potential antiausterity agents from the Japanese cypress Chamaecyparis obtusa. Bioorg. Med. Chem. Lett. 2017, 27, 4898–4903. [Google Scholar] [CrossRef]
- Chien, S.C.; Chang, J.Y.; Kuo, C.C.; Hsieh, C.C.; Yang, N.S.; Kuo, Y.H. Cytotoxic and novel skeleton compounds from the heartwood of Chamaecyparis obtusa var. formosana. Tetrahedron Lett. 2007, 48, 1567–1569. [Google Scholar] [CrossRef]
- Koyama, S.; Tanaka, S.; Yamaguchi, Y.; Motoyoshya, J. Apoptosis-like (possible quantum thermodynamic) cell death induced by Yoshixol and wood oil of Chamaecyparis obtusa (Kiso-Hinoki) on HeLa cell. Gen. Pharmacol. 1997, 28, 805–811. [Google Scholar] [CrossRef]
- Kwon, Y.J.; Seo, E.B.; Kim, S.K.; Lee, H.S.; Lee, H.; Jang, Y.A.; Kim, Y.M.; Kim, Y.N.; Lee, J.T.; Ye, S.K. Pharmacological anti-tumor effects of natural Chamaecyparis obtusa (siebold & zucc.) endl. Leaf extracts on breast cancer. J. Ethnopharmacol. 2023, 313, 116598. [Google Scholar] [PubMed]
- Suryasa, I.W.; Rodríguez-Gámez, M.; Koldoris, T. Health and treatment of diabetes mellitus. Int. J. Health Sci. 2021, 5, i–v. [Google Scholar] [CrossRef]
- Prabhakar, P.K.; Doble, M. Mechanism of action of natural products used in the treatment of diabetes mellitus. Chin. J. Integr. Med. 2011, 17, 563–574. [Google Scholar] [CrossRef]
- Ríos, J.; Francini, F.; Schinella, G. Natural products for the treatment of type 2 diabetes mellitus. Planta Medica 2015, 81, 975–994. [Google Scholar] [CrossRef]
- Agarwal, P.; Gupta, R. Alpha-amylase inhibition can treat diabetes mellitus. Res. Rev. J. Med. Health Sci. 2016, 5, 1–8. [Google Scholar]
- Hsu, C.Y.; Lin, G.M.; Lin, H.Y.; Chang, S.T. Characteristics of proanthocyanidins in leaves of Chamaecyparis obtusa var. formosana as strong α-glucosidase inhibitors. J. Sci. Food Agric. 2018, 98, 3806–3814. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Lin, G.M.; Chang, S.T. Hypoglycemic activity of extracts of Chamaecyparis obtusa var. formosana leaf in rats with hyperglycemia induced by high-fat diets and streptozotocin. J. Tradit. Complement. Med. 2020, 10, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Lambrecht, B.N.; Hammad, H. The immunology of asthma. Nat. Immunol. 2015, 16, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Amaral-Machado, L.; Oliveira, W.N.; Moreira-Oliveira, S.S.; Pereira, D.T.; Alencar, E.N.; Tsapis, N.; Egito, E.S.T. Use of natural products in asthma treatment. Evid.-Based Complement. Altern. Med. 2020, 2020, 1021258. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Lee, S.M.; Lim, H.B. Attenuation effect of Chamaecyparis obtusa leaf essential oils on airway hyperresponsiveness and airway inflammation in ovalbumin-induced murine asthma model. Korean J. Med. Crop Sci. 2015, 23, 237–244. [Google Scholar] [CrossRef]
- Ahn, C.; Jang, Y.; Kim, J.; Park, M.; Yoo, Y.; Jeung, E. Anti-asthmatic effects of volatile organic compounds from Chamaecyparis obtusa, Pinus densiflora, Pinus koraiensis, and Larix kaempferi wood panels. J. Physiol. Pharmacol. 2018, 69, 933–941. [Google Scholar]
- Raha, S.; Kim, S.M.; Lee, H.J.; Lee, S.J.; Heo, J.D.; Venkatarame Gowda Saralamma, V.; Ha, S.E.; Kim, E.H.; Mun, S.P.; Kim, G.S. Essential oil from Korean Chamaecyparis obtusa leaf ameliorates respiratory activity in SpragueDawley rats and exhibits protection from NF-κB-induced inflammation in WI38 fibroblast cells. Int. J. Mol. Med. 2019, 43, 393–403. [Google Scholar] [PubMed]
- Ahn, C.; Lee, J.H.; Kim, J.W.; Park, M.J.; Lee, S.S.; Jeung, E.B. Alleviation effects of natural volatile organic compounds from Pinus densiflora and Chamaecyparis obtusa on systemic and pulmonary inflammation. Biomed. Rep. 2018, 9, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.H.; Ye, M.K.; Lee, D.W.; Che, M.H. Effect of microencapsulated essential oil form Chamaecyparis obtusa on monocyte-derived dendritic cell activation and CD4+ T cell polarization. PLoS ONE 2018, 13, e0201233. [Google Scholar] [CrossRef]
- Sitarek, P.; Kowalczyk, T.; Wieczfinska, J.; Merecz-Sadowska, A.; Górski, K.; Śliwiński, T.; Skała, E. Plant extracts as a natural source of bioactive compounds and potential remedy for the treatment of certain skin diseases. Curr. Pharm. Des. 2020, 26, 2859–2875. [Google Scholar] [CrossRef]
- Nutten, S. Atopic dermatitis: Global epidemiology and risk factors. Ann. Nutr. Metab. 2015, 66 (Suppl. S1), 8–16. [Google Scholar] [CrossRef]
- David Boothe, W.; Tarbox, J.A.; Tarbox, M.B. Atopic dermatitis: Pathophysiology. In Management of Atopic Dermatitis. Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2017; Volume 1027, pp. 21–37. [Google Scholar]
- Joo, S.S.; Yoo, Y.M.; Ko, S.H.; Choi, W.; Park, M.J.; Kang, H.Y.; Choi, K.C.; Choi, I.G.; Jeung, E.B. Effects of essential oil from Chamaecypris obtusa on the development of atopic dermatitis-like skin lesions and the suppression of Th cytokines. J. Dermatol. Sci. 2010, 60, 122–125. [Google Scholar] [CrossRef]
- Yoo, K.H.; Kwon, T.R.; Kim, Y.U.; Kim, E.H.; Kim, B.J. The effects of fabric containing Chamaecyparis obtusa essential oil on atopic dermatitis-like lesions: A functional clothing possibility. Ski. Pharmacol. Physiol. 2020, 33, 142–152. [Google Scholar] [CrossRef]
- Yang, H.; Ahn, C.; Choi, I.G.; Choi, W.S.; Park, M.J.; Lee, S.S.; Choi, D.H.; Jeung, E.B. Estimation of the environmental effect of natural volatile organic compounds from Chamaecyparis obtusa and their effect on atopic dermatitis-like skin lesions in mice. Mol. Med. Rep. 2015, 12, 345–350. [Google Scholar] [CrossRef]
- Yang, J.; Choi, W.S.; Kim, J.W.; Lee, S.S.; Park, M.J. Anti-inflammatory effect of essential oils extracted from wood of four coniferous tree species. J. Korean Wood Sci. Technol. 2019, 47, 674–691. [Google Scholar] [CrossRef]
- Yang, H.; Jung, E.M.; Ahn, C.; Lee, G.S.; Lee, S.Y.; Kim, S.H.; Choi, I.G.; Park, M.J.; Lee, S.S.; Choi, D.H.; et al. Elemol from Chamaecyparis obtusa ameliorates 2, 4-dinitrochlorobenzene-induced atopic dermatitis. Int. J. Mol. Med. 2015, 36, 463–472. [Google Scholar] [CrossRef]
- Paus, R.; Cotsarelis, G. The biology of hair follicles. N. Engl. J. Med. 1999, 341, 491–497. [Google Scholar] [CrossRef]
- Park, Y.O.; Kim, S.E.; Kim, Y.C. Action mechanism of Chamaecyparis obtusa oil on hair growth. Toxicol. Res. 2013, 29, 241–247. [Google Scholar] [CrossRef]
- Jang, Y.A.; Kim, S.G.; Kim, H.K.; Lee, J.T. Biological Activity and Component Analyses of Chamaecyparis obtusa Leaf Extract: Evaluation of Antiwrinkle and Cell Protection Effects in UVA-Irradiated Cells. Medicina 2023, 59, 755. [Google Scholar] [CrossRef]
- Bayazid, A.B.; Jang, Y.A.; Jeong, S.A.; Lim, B.O. Cypress tree (Chamaecyparis obtusa) Bark extract inhibits melanogenesis through repressing CREB and MITF signalling pathways in α-MSH-stimulated B16F10 cells. Food Agric. Immunol. 2022, 33, 498–510. [Google Scholar] [CrossRef]
- Kwon, H.H.; Yoon, J.Y.; Park, S.Y.; Min, S.; Suh, D.H. Comparison of clinical and histological effects between lactobacillus-fermented Chamaecyparis obtusa and tea tree oil for the treatment of acne: An eight-week double-blind randomized controlled split-face study. Dermatology 2014, 229, 102–109. [Google Scholar] [CrossRef]
- Kim, B.E.; Goleva, E.; Hall, C.F.; Park, S.H.; Lee, U.H.; Brauweiler, A.M.; Leung, D.Y. Skin wound healing is accelerated by a lipid mixture representing major lipid components of Chamaecyparis obtusa plant extract. J. Investig. Dermatol. 2018, 138, 1176–1186. [Google Scholar] [CrossRef]
- Antonelli, M.; Kushner, I. It’s time to redefine inflammation. FASEB J. 2017, 31, 1787–1791. [Google Scholar] [CrossRef]
- Ahmed, A.U. An overview of inflammation: Mechanism and consequences. Front. Biol. 2011, 6, 274–281. [Google Scholar] [CrossRef]
- An, B.S.; Kang, J.H.; Yang, H.; Jung, E.M.; Kang, H.S.; Choi, I.G.; Jeung, E.B. Anti-inflammatory effects of essential oils from Chamaecyparis obtusa via the cyclooxygenase-2 pathway in rats. Mol. Med. Rep. 2013, 8, 255–259. [Google Scholar] [CrossRef]
- Park, Y.; Yoo, S.A.; Kim, W.U.; Cho, C.S.; Woo, J.M.; Yoon, C.H. Anti-inflammatory effects of essential oils extracted from Chamaecyparis obtusa on murine models of inflammation and RAW 264.7 cells. Mol. Med. Rep. 2016, 13, 3335–3341. [Google Scholar] [CrossRef]
- Kwon, Y.J.; Seo, E.B.; Kim, S.K.; Noh, K.H.; Lee, H.; Joung, Y.W.; Shin, H.; Jang, Y.A.; Kim, Y.M.; Lee, Y.T.; et al. Chamaecyparis obtusa (Siebold & Zucc.) Endl. leaf extracts prevent inflammatory responses via inhibition of the JAK/STAT axis in RAW264. 7 cells. J. Ethnopharmacol. 2022, 282, 114493. [Google Scholar]
- Kwak, B.M.; Kim, E.H.; Kim, Y.M.; Kim, H.T. Component analysis of four-part extracts from Chamaecyparis obtusa Endl. by supercritical fluid extraction and anti-inflammatory effect on RAW 264.7 cells. J. Exerc. Rehabil. 2019, 15, 723. [Google Scholar] [CrossRef]
- Shih, M.F.; Chen, L.Y.; Tsai, P.J.; Cherng, J.Y. In vitro and in vivo therapeutics of β-thujaplicin on LPS-induced inflammation in macrophages and septic shock in mice. Int. J. Immunopathol. Pharmacol. 2012, 25, 39–48. [Google Scholar] [CrossRef]
- Chien, T.C.; Lo, S.F.; Ho, C.L. Chemical composition and anti-inflammatory activity of Chamaecyparis obtusa f. formosana wood essential oil from Taiwan. Nat. Prod. Commun. 2014, 9, 1934578X1400900537. [Google Scholar] [CrossRef]
- Romagnani, S. Cytokines and chemoattractants in allergic inflammation. Mol. Immunol. 2002, 38, 881–885. [Google Scholar] [CrossRef]
- Inagaki, N.; Nagai, H. Drugs for the treatment of allergic diseases. Jpn. J. Pharmacol. 2001, 86, 275–280. [Google Scholar] [CrossRef]
- Tan, H.T.T.; Sugita, K.; Akdis, C.A. Novel biologicals for the treatment of allergic diseases and asthma. Curr. Allergy Asthma Rep. 2016, 16, 70. [Google Scholar] [CrossRef]
- Shin, S.H.; Ye, M.K.; Lee, D.W.; Che, M.H. Immunomodulative effects of Chamaecyparis obtusa essential oil in mouse model of allergic rhinitis. Molecules 2020, 25, 4517. [Google Scholar] [CrossRef]
- Choi, I.G.; Kim, K.J.; Kim, Y.M.; Park, M.J.; Lee, Y.S.; Jeoung, D.I. Fractions of Chamaecyparis obtusa display antiallergic effect in rbl2h3 cells. J. Microbiol. Biotechnol. 2006, 16, 1747–1752. [Google Scholar]
- Shin, S.H.; Ye, M.K.; Chae, M.H.; Lee, D.W. Chamaecyparis obtusa Essential Oil Inhibits House Dust Mite Induced Nasal Epithelial Cell Activation and Immune Responses. J. Oleo Sci. 2021, 70, 431–438. [Google Scholar] [CrossRef]
- Park, Y.; Jung, S.M.; Yoo, S.A.; Kim, W.U.; Cho, C.S.; Park, B.J.; Woo, J.M.; Yoon, C.H. Antinociceptive and anti-inflammatory effects of essential oil extracted from Chamaecyparis obtusa in mice. Int. Immunopharmacol. 2015, 29, 320–325. [Google Scholar] [CrossRef]
- Suh, H.R.; Chung, H.J.; Park, E.H.; Moon, S.W.; Park, S.J.; Park, C.W.; Kim, Y.I.; Han, H.C. The effects of Chamaecyparis obtusa essential oil on pain-related behavior and expression of pro-inflammatory cytokines in carrageenan-induced arthritis in rats. Biosci. Biotechnol. Biochem. 2016, 80, 203–209. [Google Scholar] [CrossRef]
- Bae, D.; Seol, H.; Yoon, H.G.; Na, J.R.; Oh, K.; Choi, C.Y.; Lee, D.; Jun, W.; Lee, K.Y.; Lee, J.; et al. Inhaled essential oil from Chamaecyparis obtuse ameliorates the impairments of cognitive function induced by injection of β-amyloid in rats. Pharm. Biol. 2012, 50, 900–910. [Google Scholar] [CrossRef]
- Park, H.J.; Kim, S.K.; Kang, W.S.; Woo, J.M.; Kim, J.W. Effects of essential oil from Chamaecyparis obtusa on cytokine genes in the hippocampus of maternal separation rats. Can. J. Physiol. Pharmacol. 2014, 92, 95–101. [Google Scholar] [CrossRef]
- Kasuya, H.; Iida, S.; Ono, K.; Satou, T.; Koike, K. Intracerebral distribution of α-pinene and the anxiolytic-like effect in mice following inhaled administration of essential oil from Chamaecyparis obtusa. Nat. Prod. Commun. 2015, 10, 1934578X1501000841. [Google Scholar] [CrossRef]
- Ikei, H.; Song, C.; Miyazaki, Y. Physiological effects of touching the wood of hinoki cypress (Chamaecyparis obtusa) with the soles of the feet. Int. J. Environ. Res. Public Health 2018, 15, 2135. [Google Scholar] [CrossRef]
- Ikei, H.; Song, C.; Miyazaki, Y. Physiological effects of touching hinoki cypress (Chamaecyparis obtusa). J. Wood Sci. 2018, 64, 226–236. [Google Scholar] [CrossRef]
- Ikei, H.; Song, C.; Miyazaki, Y. Physiological effect of olfactory stimulation by Hinoki cypress (Chamaecyparis obtusa) leaf oil. J. Physiol. Anthropol. 2015, 34, 44. [Google Scholar] [CrossRef]
- Yu, J.Q.; Komada, H. Hinoki (Chamaecyparis obtusa) bark, a substrate with anti-pathogen properties that suppress some root diseases of tomato. Sci. Hortic. 1999, 81, 13–24. [Google Scholar] [CrossRef]
- Hiramatsu, Y.; Matsui, N.; Ohira, T.; Imai, Y.; Miyazaki, Y. Effect of hinoki (Chamaecyparis obtusa) wood-wool in tatami mat [floor covering mats made of rice and rush straws] on the activity of house dust mite Dermatophagoides pteronyssinus. J. Wood Sci. 2006, 52, 353–357. [Google Scholar] [CrossRef]
- Jang, Y.S.; Jeon, J.H.; Lee, H.S. Mosquito larvicidal activity of active constituent derived from Chamaecyparis obtusa leaves against 3 mosquito species. J. Am. Mosq. Control Assoc. 2005, 21, 400–403. [Google Scholar] [CrossRef]
- Jeon, J.H.; Lee, S.H.; Kim, M.K.; Lee, H.S. Larvicidal activity of Chamaecyparis obtusa and Thuja orientalis leaf oils against two mosquito species. J. Appl. Biol. Chem. 2005, 48, 26–28. [Google Scholar]
- Morikawa, T.; Ashitani, T.; Kofujita, H.; Takahashi, K. Antitermitic activity of extracts from Chamaecyparis obtusa branch heartwood. Eur. J. Wood Wood Prod. 2014, 72, 651–657. [Google Scholar] [CrossRef]
- Jang, Y.S.; Lee, C.H.; Kim, M.K.; Kim, J.H.; Lee, S.H.; Lee, H.S. Acaricidal activity of active constituent isolated in Chamaecyparis obtusa leaves against Dermatophagoides spp. J. Agric. Food Chem. 2005, 53, 1934–1937. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Lee, H.S.; Li, Y.; Choi, J.H.; Yun, J.J.; Jung, J.E.; Choi, W.; Yoon, K.C. Experimental and clinical applications of Chamaecyparis obtusa extracts in dry eye disease. Oxidative Med. Cell. Longev. 2017, 2017, 4523673. [Google Scholar] [CrossRef] [PubMed]
- Lim, L.; Jang, Y.S.; Yun, J.J.; Song, H. Phytoncide, nanochemicals from Chamaecyparis obtusa, inhibits proliferation and migration of vascular smooth muscle cells. J. Nanosci. Nanotechnol. 2015, 15, 112–115. [Google Scholar] [CrossRef] [PubMed]
- Choi, N.Y.; Park, B.I. Dyeing Performance and Anti-Superbacterial Activity of Cotton Fabrics Dyed with Chamaecyparis obtusa. Molecules 2023, 28, 6497. [Google Scholar] [CrossRef]
Potential Application | Insect | Oil/Extract | Main/Important/Basic Compounds | Ref |
---|---|---|---|---|
Pest deterrent in the storage of products | Callosobruchus chinensis (L.), Sitophilus oryzae (L.) | Essential oil | bornyl acetate, (+)-limonene, myrcene, α-phellandrene, α-pinene, sabinene and terpinolene | [38] |
Spodoptera litura (Fabricius) | Cones extract | trans-communic acid, trans-communol, 12-hydroxy-6,7-seco-abieta-8,11, 13-triene-6,7-dial, chamaecydin, ferruginol | [26] | |
Mosquito repellent | Larvae of Aedes aegypti (L.) Ochlerotatus togoi (Theobald), Culex pipiens pallens (Coquillett) | Leaf methanol extract | β–thujaplicin | [115] |
Larvae of Aedes aegypti (L.) and Culex pipiens pallens (Coquillett) | Essential oil | - | [116] | |
Fly repellent | Drosophila melanogaster (Meigen), Musca domestica (L.) | Essential oil | α-terpinolene (+)-3-carene, α-pinene, sabinene, and γ-terpinen | [39] |
Antithermal agent | Reticulitermes speratus (Kolbe) | Branch and trunk heartwood extract | hinokiresinol, germacra-1-(10), α-cadinol, t-cadinol, 5-dien-4b-ol and hinokinin | [117] |
Acaricide agent | Dermatophagoides farinae, Dermatophagoides pteronyssinus | Leaf methanol and hexane extract | β-thujaplicin | [118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Górski, K.M.; Kowalczyk, T.; Picot, L.; Rijo, P.; Ghorbanpour, M.; Sitarek, P. The Precious Potential of the Sacred Tree Chamaecyparis obtusa (Siebold & Zucc.) Endl. as a Source of Secondary Metabolites with Broad Biological Applications. Int. J. Mol. Sci. 2024, 25, 2723. https://doi.org/10.3390/ijms25052723
Górski KM, Kowalczyk T, Picot L, Rijo P, Ghorbanpour M, Sitarek P. The Precious Potential of the Sacred Tree Chamaecyparis obtusa (Siebold & Zucc.) Endl. as a Source of Secondary Metabolites with Broad Biological Applications. International Journal of Molecular Sciences. 2024; 25(5):2723. https://doi.org/10.3390/ijms25052723
Chicago/Turabian StyleGórski, Karol Maksymilian, Tomasz Kowalczyk, Laurent Picot, Patricia Rijo, Mansour Ghorbanpour, and Przemysław Sitarek. 2024. "The Precious Potential of the Sacred Tree Chamaecyparis obtusa (Siebold & Zucc.) Endl. as a Source of Secondary Metabolites with Broad Biological Applications" International Journal of Molecular Sciences 25, no. 5: 2723. https://doi.org/10.3390/ijms25052723
APA StyleGórski, K. M., Kowalczyk, T., Picot, L., Rijo, P., Ghorbanpour, M., & Sitarek, P. (2024). The Precious Potential of the Sacred Tree Chamaecyparis obtusa (Siebold & Zucc.) Endl. as a Source of Secondary Metabolites with Broad Biological Applications. International Journal of Molecular Sciences, 25(5), 2723. https://doi.org/10.3390/ijms25052723