Improving AlphaFold Predicted Contacts for Alpha-Helical Transmembrane Proteins Using Structural Features
Abstract
:1. Introduction
2. Results
2.1. Contact Prediction
Classifier | Structure Source | Feature Type | ||||||
---|---|---|---|---|---|---|---|---|
Average Precision | AUC-ROC | Average Precision | AUC-ROC | Average Precision | AUC-ROC | |||
NN (upperbound) | Exp. | SDF | 0.9569 ± 0.0039 | 0.9980 ± 0.0004 | 0.9497 ± 0.0054 | 0.9981 ± 0.0004 | 0.9456 ± 0.0043 | 0.9983 ± 0.0002 |
NN | AF | SDF | 0.8956 ± 0.0171 | 0.9919 ± 0.0035 | 0.9111 ± 0.0204 | 0.9957 ± 0.0016 | 0.9038 ± 0.0270 | 0.9965 ± 0.0011 |
NN (upperbound) | Exp. | CF | 0.8447 ± 0.0193 | 0.9908 ± 0.0018 | 0.8238 ± 0.0341 | 0.9894 ± 0.0041 | 0.8067 ± 0.4712 | 0.9912 ± 0.0035 |
NN | AF | CF | 0.8125 ± 0.0246 | 0.9846 ± 0.0046 | 0.8349 ± 0.0287 | 0.9915 ± 0.0017 | 0.8254 ± 0.0295 | 0.9927 ± 0.0014 |
AlphaFold2 | - | - | 0.7920 | 0.9441 | 0.8316 | 0.9561 | 0.8473 | 0.9643 |
DeepHelicon | - | - | - | - | 0.5679 ± 0.0440 | 0.9337 ± 0.0183 | 0.5678 ± 0.0479 | 0.9365 ± 0.0170 |
Classifier | Structure Source | Feature Type | ||||
---|---|---|---|---|---|---|
Average Precision | AUC-ROC | Average Precision | AUC-ROC | |||
NN (upperbound) | Exp. | SDF | 0.9641 | 0.9986 | 0.9618 | 0.9988 |
NN | AF | SDF | 0.9267 | 0.9958 | 0.9197 | 0.9968 |
NN (upperbound) | Exp. | CF | 0.8164 | 0.9907 | 0.8067 | 0.9920 |
NN | AF | CF | 0.7710 | 0.9891 | 0.7686 | 0.9904 |
AlphaFold2 | - | - | 0.8316 | 0.9561 | 0.8473 | 0.9643 |
DeepHelicon | - | - | 0.5678 | 0.9336 | 0.5678 | 0.9366 |
2.2. Variance Analysis
2.3. Case Study
3. Discussion
4. Materials and Methods
4.1. Dataset—Experimentally Determined Structures
4.2. Dataset—AlphaFold Predicted Structures
4.3. Methods
4.3.1. Structurally Derived Features (SDFs)
Inter-Helical Tilt Angle ()
Relative Residue Distance
- distance (mean relative residue distance) [35,64,65]: We calculate the average Euclidean distance between a pair of residues by considering all paired combinations of their heavy atoms. If are the 3D coordinates of the residue and for the residue . Additionally, if represents the Euclidean distance between two sets of 3D coordinates i and j then the mean relative residue distance between a residue pair is
- (Relative distance) [35,64,65]: We calculate the Euclidean distance between the alpha carbons of a pair of residues. If the atom for a residue R is returned by a function . Additionally, if is the atom for residue , i.e., and the atom for residue i.e. . Then, relative distance between a residue pair is
Relative Residue Angle
4.3.2. Coordinates as Features (CFs)
4.3.3. Classification Experiment
Performance Metrics
- Average precision: Average precision condenses the precision–recall curve by taking a weighted average of precision values at various thresholds. The weight applied to each threshold’s precision value is determined by the increase in recall from the previous threshold [37].
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krogh, A.; Larsson, B.; Von Heijne, G.; Sonnhammer, E.L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 2001, 305, 567–580. [Google Scholar] [CrossRef] [PubMed]
- Almén, M.S.; Nordström, K.J.; Fredriksson, R.; Schiöth, H.B. Mapping the human membrane proteome: A majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol. 2009, 7, 50. [Google Scholar] [CrossRef] [PubMed]
- Lagerström, M.C.; Schiöth, H.B. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat. Rev. Drug Discov. 2008, 7, 339–357. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Flynn, A.D. Drugging membrane protein interactions. Annu. Rev. Biomed. Eng. 2016, 18, 51–76. [Google Scholar] [CrossRef] [PubMed]
- Kermani, A.A. A guide to membrane protein X-ray crystallography. FEBS J. 2021, 288, 5788–5804. [Google Scholar] [CrossRef] [PubMed]
- Albers, R.W.W. Cell membrane structures and functions. In Basic Neurochemistry; Elsevier: Amsterdam, The Netherlands, 2012; pp. 26–39. [Google Scholar]
- Sun, J.; Frishman, D. DeepHelicon: Accurate prediction of inter-helical residue contacts in transmembrane proteins by residual neural networks. J. Struct. Biol. 2020, 212, 107574. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.; Sawyer, A. Elucidating the Structure of Membrane Proteins|BioTechniques. 2019. Available online: https://www.future-science.com/doi/10.2144/btn-2019-0030#:~:text=Membrane%20proteins%20are%20coded%20for,due%20to%20their%20hydrophobic%20nature (accessed on 15 June 2023).
- Josts, I.; Nitsche, J.; Maric, S.; Mertens, H.D.; Moulin, M.; Haertlein, M.; Prevost, S.; Svergun, D.I.; Busch, S.; Forsyth, V.T.; et al. Conformational states of ABC transporter MsbA in a lipid environment investigated by small-angle scattering using stealth carrier nanodiscs. Structure 2018, 26, 1072–1079. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Tao, F.; Qing, R.; Tang, H.; Skuhersky, M.; Corin, K.; Tegler, L.; Wassie, A.; Wassie, B.; Kwon, Y.; et al. QTY code enables design of detergent-free chemokine receptors that retain ligand-binding activities. Proc. Natl. Acad. Sci. USA 2018, 115, E8652–E8659. [Google Scholar] [CrossRef]
- Rohl, C.A.; Strauss, C.E.; Misura, K.M.; Baker, D. Protein structure prediction using Rosetta. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2004; Volume 383, pp. 66–93. [Google Scholar]
- AlQuraishi, M. Machine learning in protein structure prediction. Curr. Opin. Chem. Biol. 2021, 65, 1–8. [Google Scholar] [CrossRef]
- Raval, A.; Piana, S.; Eastwood, M.P.; Shaw, D.E. Assessment of the utility of contact-based restraints in accelerating the prediction of protein structure using molecular dynamics simulations. Protein Sci. 2016, 25, 19–29. [Google Scholar] [CrossRef]
- Dago, A.E.; Schug, A.; Procaccini, A.; Hoch, J.A.; Weigt, M.; Szurmant, H. Structural basis of histidine kinase autophosphorylation deduced by integrating genomics, molecular dynamics, and mutagenesis. Proc. Natl. Acad. Sci. USA 2012, 109, E1733–E1742. [Google Scholar] [CrossRef] [PubMed]
- Vangone, A.; Bonvin, A.M. Contacts-based prediction of binding affinity in protein–protein complexes. Elife 2015, 4, e07454. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Bei, Z.; Xi, W.; Hao, M.; Ju, Z.; Saravanan, K.M.; Zhang, H.; Guo, N.; Wei, Y. Evaluation of residue-residue contact prediction methods: From retrospective to prospective. PLoS Comput. Biol. 2021, 17, e1009027. [Google Scholar] [CrossRef]
- Ren, Z.; Ren, P.X.; Balusu, R.; Yang, X. Transmembrane helices tilt, bend, slide, torque, and unwind between functional states of rhodopsin. Sci. Rep. 2016, 6, 34129. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, R.; Fieldhouse, R.J.; Hayat, S.; Sun, Y.; Antipin, Y.; Yang, L.; Hopf, T.; Marks, D.S.; Sander, C. Evfold. org: Evolutionary couplings and protein 3d structure prediction. bioRxiv 2015, 021022. [Google Scholar] [CrossRef]
- Baldassi, C.; Zamparo, M.; Feinauer, C.; Procaccini, A.; Zecchina, R.; Weigt, M.; Pagnani, A. Fast and accurate multivariate Gaussian modeling of protein families: Predicting residue contacts and protein-interaction partners. PLoS ONE 2014, 9, e92721. [Google Scholar] [CrossRef]
- Wang, S.; Sun, S.; Li, Z.; Zhang, R.; Xu, J. Accurate de novo prediction of protein contact map by ultra-deep learning model. PLoS Comput. Biol. 2017, 13, e1005324. [Google Scholar] [CrossRef] [PubMed]
- Kandathil, S.M.; Greener, J.G.; Jones, D.T. Prediction of interresidue contacts with DeepMetaPSICOV in CASP13. Proteins Struct. Funct. Bioinform. 2019, 87, 1092–1099. [Google Scholar] [CrossRef]
- Li, J.; Sawhney, A.; Lee, J.Y.; Liao, L. Improving Inter-Helix Contact Prediction with Local 2D Topological Information. IEEE/ACM Trans. Comput. Biol. Bioinform. 2023, 20, 3001–3012. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Žídek, A.; Nelson, A.W.; Bridgland, A.; et al. Improved protein structure prediction using potentials from deep learning. Nature 2020, 577, 706–710. [Google Scholar] [CrossRef]
- Du, Z.; Su, H.; Wang, W.; Ye, L.; Wei, H.; Peng, Z.; Anishchenko, I.; Baker, D.; Yang, J. The trRosetta server for fast and accurate protein structure prediction. Nat. Protoc. 2021, 16, 5634–5651. [Google Scholar] [CrossRef] [PubMed]
- Xu, J. Distance-based protein folding powered by deep learning. Proc. Natl. Acad. Sci. USA 2019, 116, 16856–16865. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008. [Google Scholar]
- Saldaño, T.; Escobedo, N.; Marchetti, J.; Zea, D.J.; Mac Donagh, J.; Velez Rueda, A.J.; Gonik, E.; García Melani, A.; Novomisky Nechcoff, J.; Salas, M.N.; et al. Impact of protein conformational diversity on AlphaFold predictions. Bioinformatics 2022, 38, 2742–2748. [Google Scholar] [CrossRef] [PubMed]
- Outeiral, C.; Nissley, D.A.; Deane, C.M. Current structure predictors are not learning the physics of protein folding. Bioinformatics 2022, 38, 1881–1887. [Google Scholar] [CrossRef] [PubMed]
- Dobson, L.; Szekeres, L.I.; Gerdán, C.; Langó, T.; Zeke, A.; Tusnády, G.E. TmAlphaFold database: Membrane localization and evaluation of AlphaFold2 predicted alpha-helical transmembrane protein structures. Nucleic Acids Res. 2023, 51, D517–D522. [Google Scholar] [CrossRef]
- Liu, J.; Guo, Z.; Wu, T.; Roy, R.S.; Chen, C.; Cheng, J. Improving AlphaFold2-based Protein Tertiary Structure Prediction with MULTICOM in CASP15. Commun. Chem. 2023, 6, 188. [Google Scholar] [CrossRef]
- Evans, R.; O’Neill, M.; Pritzel, A.; Antropova, N.; Senior, A.; Green, T.; Žídek, A.; Bates, R.; Blackwell, S.; Yim, J.; et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv 2021. [Google Scholar] [CrossRef]
- McCafferty, C.L.; Pennington, E.L.; Papoulas, O.; Taylor, D.W.; Marcotte, E.M. Does AlphaFold2 model proteins’ intracellular conformations? An experimental test using cross-linking mass spectrometry of endogenous ciliary proteins. Commun. Biol. 2023, 6, 421. [Google Scholar] [CrossRef]
- Sawhney, A.; Li, J.; Liao, L. Inter-helical residue contact prediction in α-helical Transmembrane proteins using structural features. In International Work-Conference on Bioinformatics and Biomedical Engineering (IWBBIO); Springer: Cham, Switzerland, 2023. [Google Scholar]
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al. AlphaFold Protein Structure Database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022, 50, D439–D444. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Stack Exchange-Tikz. Drawing Neural Network with tikz-TeX-LaTeX Stack Exchange. 2023. Available online: https://tex.stackexchange.com/questions/153957/drawing-neural-network-with-tikz (accessed on 29 June 2023).
- Scikit-learn Logistic. Sklearn.linear_model.LogisticRegression—scikit-learn 0.24.2 Documentation. 2023. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html (accessed on 7 June 2023).
- Wikipedia Logistic. Logistic Regression—Wikipedia. 2023. Available online: https://en.wikipedia.org/wiki/Logistic_regression#References (accessed on 7 June 2023).
- Defazio, A.; Bach, F.; Lacoste-Julien, S. SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Adv. Neural Inf. Process. Syst. 2014, 27, 1646–1654. [Google Scholar]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: New York, NY, USA, 2013; Volume 112. [Google Scholar]
- Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the Ijcai, Montreal, QC, Canada, 20–25 August 1995; Volume 14, pp. 1137–1145. [Google Scholar]
- Scikit-Accuracy. 3.3. Metrics and Scoring: Quantifying the Quality of Predictions— Scikit-Learn 1.2.2 Documentation. 2023. Available online: https://scikit-learn.org/stable/modules/model_evaluation.html#accuracy-score (accessed on 7 June 2023).
- Wikipedia Precision. Precision and Recall—Wikipedia. 2023. Available online: https://en.wikipedia.org/wiki/Precision_and_recall (accessed on 10 June 2023).
- Wikipedia F-score. F-Score—Wikipedia. 2023. Available online: https://en.wikipedia.org/wiki/F-score (accessed on 10 June 2023).
- Sklearn F1. Sklearn.metrics.f1_score—scikit-learn 0.24.2 Documentation. 2023. Available online: https://scikit-learn.org/0.24/modules/generated/sklearn.metrics.f1_score.html?highlight=f1%20score#sklearn.metrics.f1_score (accessed on 10 June 2023).
- Uniprot-4g7vS. Phosphatidylinositol-3,4,5-Trisphosphate 3-Phosphatase—Ciona Intestinalis (Transparent Sea Squirt)|UniProtKB| UniProt. 2023. Available online: https://www.uniprot.org/uniprotkb/F6XHE4/entry#names_and_taxonomy (accessed on 10 June 2023).
- Kozma, D.; Simon, I.; Tusnady, G.E. PDBTM: Protein Data Bank of transmembrane proteins after 8 years. Nucleic Acids Res. 2012, 41, D524–D529. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y. How significant is a protein structure similarity with TM-score= 0.5? Bioinformatics 2010, 26, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.F.; Chen, Z.; Wang, C.; Yan, R.X.; Zhang, Z.; Song, J. Predicting residue-residue contacts and helix-helix interactions in transmembrane proteins using an integrative feature-based random forest approach. PLoS ONE 2011, 6, e26767. [Google Scholar] [CrossRef]
- Hönigschmid, P.; Frishman, D. Accurate prediction of helix interactions and residue contacts in membrane proteins. J. Struct. Biol. 2016, 194, 112–123. [Google Scholar] [CrossRef]
- The UniProt Consortium. UniProt: The Universal Protein knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [Google Scholar] [CrossRef]
- Alphafold DB. AlphaFold Protein Structure Database. 2022. Available online: https://alphafold.ebi.ac.uk/ (accessed on 23 May 2023).
- Berman, H.M.; Battistuz, T.; Bhat, T.N.; Bluhm, W.F.; Bourne, P.E.; Burkhardt, K.; Feng, Z.; Gilliland, G.L.; Iype, L.; Jain, S.; et al. The protein data bank. Acta Crystallogr. Sect. Biol. Crystallogr. 2002, 58, 899–907. [Google Scholar] [CrossRef]
- Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chao, H.; Chen, L.; Craig, P.A.; Crichlow, G.V.; Dalenberg, K.; Duarte, J.M.; et al. RCSB Protein Data Bank (RCSB. org): Delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning. Nucleic Acids Res. 2023, 51, D488–D508. [Google Scholar] [CrossRef]
- Faezov, B.; Dunbrack Jr, R.L. PDBrenum: A webserver and program providing Protein Data Bank files renumbered according to their UniProt sequences. PLoS ONE 2021, 16, e0253411. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Choi, J.; Yoon, S. QHELIX: A computational tool for the improved measurement of inter-helical angles in proteins. Protein J. 2007, 26, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Cooper, J. Alpha-Helix Geometry Part. 2—cryst.bbk.ac.uk. 1995. Available online: http://www.cryst.bbk.ac.uk/PPS95/course/3_geometry/helix2.html (accessed on 25 January 2022).
- Schrödinger, LLC. The AxPyMOL Molecular Graphics Plugin for Microsoft PowerPoint, Version 1.8; Schrödinger, LLC: New York, NY, USA, 2015. [Google Scholar]
- Schrödinger, LLC. The JyMOL Molecular Graphics Development Component, Version 1.8; Schrödinger, LLC: New York, NY, USA, 2015. [Google Scholar]
- Schrödinger, LLC. The PyMOL Molecular Graphics System, Version 1.8; Schrödinger, LLC: New York, NY, USA, 2015. [Google Scholar]
- Karlin, S.; Zuker, M.; Brocchieri, L. Measuring residue association in protein structures possible implications for protein folding. J. Mol. Biol. 1994, 239, 227–248. [Google Scholar] [CrossRef] [PubMed]
- Mahbub, S.; Bayzid, M.S. EGRET: Edge Aggregated Graph Attention Networks and Transfer Learning Improve Protein-Protein Interaction Site Prediction. Briefings Bioinform. 2021, 23, bbab578. [Google Scholar] [CrossRef]
- Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the ICML, Atlanta, GA, USA, 16–21 June 2013; Volume 30, p. 3. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, Sardinia, Italy, 13–15 May 2010; pp. 249–256. [Google Scholar]
- Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training recurrent neural networks. In Proceedings of the International Conference on Machine Learning, PMLR, Atlanta, GA, USA, 17–19 June 2013; pp. 1310–1318. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Curran Associates, Inc.: Glasgow, UK, 2019; pp. 8024–8035. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, And Prediction; Springer: New York, NY, USA, 2009; Volume 2. [Google Scholar]
- Sklearn KFold. Sklearn.model_selection.KFold— scikit-learn 0.24.2 Documentation. 2023. Available online: https://scikit-learn.org/0.24/modules/generated/sklearn.model_selection.KFold.html?highlight=kfold#sklearn.model_selection.KFold (accessed on 30 July 2023).
- Davis, J.; Goadrich, M. The relationship between Precision-Recall and ROC curves. In Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, Pennsylvania, 25–29 June 2006; pp. 233–240. [Google Scholar]
Dataset | # Seqs (% of Total) |
---|---|
(49) | 48 (98.0) |
(34) | 33 (97.1) |
Structure Source | Features | Feature Mean | Feature Variance | Feature Mean | Feature Variance | Feature Mean | Feature Variance |
---|---|---|---|---|---|---|---|
Exp | SDF | −0.1616 | 0.3656 | −0.2487 | 0.3363 | −0.1634 | 0.3653 |
AF | SDF | −0.1744 | 0.3707 | −0.2655 | 0.3338 | −0.1979 | 0.3707 |
Exp | CF | −0.1716 | 0.3025 | −0.2293 | 0.3466 | 0.0275 | 0.2969 |
AF | CF | 0.0351 | 0.1604 | 0.1510 | 0.2799 | 0.0132 | 0.2474 |
Dataset | #Sequences | #Filtered Sequences | AF Available | |
---|---|---|---|---|
165 | 162 | 154 | 2.10 | |
57 | 54 | 49 | 2.07 | |
44 | 40 | 34 | 1.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sawhney, A.; Li, J.; Liao, L. Improving AlphaFold Predicted Contacts for Alpha-Helical Transmembrane Proteins Using Structural Features. Int. J. Mol. Sci. 2024, 25, 5247. https://doi.org/10.3390/ijms25105247
Sawhney A, Li J, Liao L. Improving AlphaFold Predicted Contacts for Alpha-Helical Transmembrane Proteins Using Structural Features. International Journal of Molecular Sciences. 2024; 25(10):5247. https://doi.org/10.3390/ijms25105247
Chicago/Turabian StyleSawhney, Aman, Jiefu Li, and Li Liao. 2024. "Improving AlphaFold Predicted Contacts for Alpha-Helical Transmembrane Proteins Using Structural Features" International Journal of Molecular Sciences 25, no. 10: 5247. https://doi.org/10.3390/ijms25105247
APA StyleSawhney, A., Li, J., & Liao, L. (2024). Improving AlphaFold Predicted Contacts for Alpha-Helical Transmembrane Proteins Using Structural Features. International Journal of Molecular Sciences, 25(10), 5247. https://doi.org/10.3390/ijms25105247