Apolipoprotein-CIII O-Glycosylation Is Associated with Micro- and Macrovascular Complications of Type 2 Diabetes
Abstract
:1. Introduction
2. Results
2.1. Cohort Characteristics
2.2. Associations of Apo-CIII Glycosylation with Micro- and Macrovascular Complications in the DiaGene Study
2.3. Apo-CIII Glycosylation-Associated Genetic Variants and Complications of Diabetes in the DiaGene and Hoorn DCS Studies, a Meta-Analysis
3. Research Design and Methods
3.1. Study Design
3.2. Definitions
3.3. Apo-CIII Glycosylation Analysis
3.4. Experimental Design and Statistical Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organisation. WHO Factsheet Diabetes. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 8 May 2020).
- Gæde, P.; Vedel, P.; Larsen, N.; Jensen, G.V.H.; Parving, H.H.; Pedersen, O. Multifactorial Intervention and Cardiovascular Disease in Patients with Type 2 Diabetes. N. Engl. J. Med. 2003, 348, 383–393. [Google Scholar] [CrossRef]
- Patel, K.V.; Vaduganathan, M. Targeting Multiple Domains of Residual Cardiovascular Disease Risk in Patients with Diabetes. Curr. Opin. Cardiol. 2020, 35, 517–523. [Google Scholar] [CrossRef]
- Ginsberg, H.N. Lipoprotein Physiology in Nondiabetic and Diabetic States: Relationship to Atherogenesis. Diabetes Care 1991, 14, 839–855. [Google Scholar] [CrossRef]
- Norata, G.D.; Tsimikas, S.; Pirillo, A.; Catapano, A.L. Apolipoprotein C-III: From Pathophysiology to Pharmacology. Trends Pharmacol. Sci. 2015, 36, 675–687. [Google Scholar] [CrossRef]
- Dai, W.; Zhang, Z.; Yao, C.; Zhao, S. Emerging Evidences for the Opposite Role of Apolipoprotein C3 and Apolipoprotein A5 in Lipid Metabolism and Coronary Artery Disease. Lipids Health Dis. 2019, 18, 220. [Google Scholar] [CrossRef]
- Borén, J.; Packard, C.J.; Taskinen, M.-R. The Roles of ApoC-III on the Metabolism of Triglyceride-Rich Lipoproteins in Humans. Front. Endocrinol. 2020, 11, 474. [Google Scholar] [CrossRef]
- Kawakami, A.; Yoshida, M. Apolipoprotein CIII Links Dyslipidemia with Atherosclerosis. J. Atheroscler. Thromb. 2009, 16, 6–11. [Google Scholar] [CrossRef]
- Olin-Lewis, K.; Krauss, R.M.; La Belle, M.; Blanche, P.J.; Barrett, P.H.R.; Wight, T.N.; Chait, A. ApoC-III Content of ApoB-Containing Lipoproteins Is Associated with Binding to the Vascular Proteoglycan Biglycan. J. Lipid Res. 2002, 43, 1969–1977. [Google Scholar] [CrossRef]
- Hiukka, A.; Fruchart-Najib, J.; Leinonen, E.; Hilden, H.; Fruchart, J.-C.; Taskinen, M.-R. Alterations of Lipids and Apolipoprotein CIII in Very Low Density Lipoprotein Subspecies in Type 2 Diabetes. Diabetologia 2005, 48, 1207–1215. [Google Scholar] [CrossRef]
- Sundsten, T.; Östenson, C.-G.; Bergsten, P. Serum Protein Patterns in Newly Diagnosed Type 2 Diabetes Mellitus—Influence of Diabetic Environment and Family History of Diabetes. Diabetes Metab. Res. Rev. 2008, 24, 148–154. [Google Scholar] [CrossRef]
- Yassine, H.N.; Trenchevska, O.; Ramrakhiani, A.; Parekh, A.; Koska, J.; Walker, R.W.; Billheimer, D.; Reaven, P.D.; Yen, F.T.; Nelson, R.W.; et al. The Association of Human Apolipoprotein C-III Sialylation Proteoforms with Plasma Triglycerides. PLoS ONE 2015, 10, e0144138. [Google Scholar] [CrossRef]
- Juntti-Berggren, L.; Refai, E.; Appelskog, I.; Andersson, M.; Imreh, G.; Dekki, N.; Uhles, S.; Yu, L.; Griffiths, W.J.; Zaitsev, S.; et al. Apolipoprotein CIII Promotes Ca2+-Dependent β Cell Death in Type 1 Diabetes. Proc. Natl. Acad. Sci. USA 2004, 101, 10090–10094. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, J.; Hu, Y.; Ding, Y.; Zhu, J.; Zhuang, C. Relationship between Serum Apolipoproteins Levels and Retinopathy Risk in Subjects with Type 2 Diabetes Mellitus. Acta Diabetol. 2018, 55, 681–689. [Google Scholar] [CrossRef]
- HU, Z.-J.; REN, L.-P.; WANG, C.; LIU, B.; SONG, G.-Y. Associations between Apolipoprotein CIII Concentrations and Microalbuminuria in Type 2 Diabetes. Exp. Ther. Med. 2014, 8, 951–956. [Google Scholar] [CrossRef]
- Klein, R.L.; McHenry, M.B.; Lok, K.H.; Hunter, S.J.; Le, N.-A.; Jenkins, A.J.; Zheng, D.; Semler, A.; Page, G.; Brown, W.V.; et al. Apolipoprotein C-III Protein Concentrations and Gene Polymorphisms in Type 1 Diabetes. J. Diabetes Complicat. 2005, 19, 18–25. [Google Scholar] [CrossRef]
- Wyler von Ballmoos, M.C.; Haring, B.; Sacks, F.M. The Risk of Cardiovascular Events with Increased Apolipoprotein CIII: A Systematic Review and Meta-Analysis. J. Clin. Lipidol. 2015, 9, 498–510. [Google Scholar] [CrossRef]
- Jørgensen, A.B.; Frikke-Schmidt, R.; Nordestgaard, B.G.; Tybjærg-Hansen, A. Loss-of-Function Mutations in APOC3 and Risk of Ischemic Vascular Disease. N. Engl. J. Med. 2014, 371, 32–41. [Google Scholar] [CrossRef]
- Pollin, T.I.; Damcott, C.M.; Shen, H.; Ott, S.H.; Shelton, J.; Horenstein, R.B.; Post, W.; McLenithan, J.C.; Bielak, L.F.; Peyser, P.A.; et al. A Null Mutation in Human APOC3 Confers a Favorable Plasma Lipid Profile and Apparent Cardioprotection. Science 2008, 322, 1702–1705. [Google Scholar] [CrossRef]
- Jia, X.; Al Rifai, M.; Hussain, A.; Martin, S.; Agarwala, A.; Virani, S.S. Highlights from Studies in Cardiovascular Disease Prevention Presented at the Digital 2020 European Society of Cardiology Congress: Prevention Is Alive and Well. Curr. Atheroscler. Rep. 2020, 22, 72. [Google Scholar] [CrossRef]
- Nurmohamed, N.S.; Dallinga-Thie, G.M.; Stroes, E.S.G. Targeting ApoC-III and ANGPTL3 in the Treatment of Hypertriglyceridemia. Expert Rev. Cardiovasc. Ther. 2020, 18, 355–361. [Google Scholar] [CrossRef]
- Fogacci, F.; Norata, G.D.; Toth, P.P.; Arca, M.; Cicero, A.F.G. Efficacy and Safety of Volanesorsen (ISIS 304801): The Evidence from Phase 2 and 3 Clinical Trials. Curr. Atheroscler. Rep. 2020, 22, 18. [Google Scholar] [CrossRef]
- Hiukka, A.; Ståhlman, M.; Pettersson, C.; Levin, M.; Adiels, M.; Teneberg, S.; Leinonen, E.S.; Hultén, L.M.; Wiklund, O.; Orešič, M.; et al. ApoCIII-Enriched LDL in Type 2 Diabetes Displays Altered Lipid Composition, Increased Susceptibility for Sphingomyelinase, and Increased Binding to Biglycan. Diabetes 2009, 58, 2018–2026. [Google Scholar] [CrossRef]
- Holleboom, A.G.; Karlsson, H.; Lin, R.-S.; Beres, T.M.; Sierts, J.A.; Herman, D.S.; Stroes, E.S.G.; Aerts, J.M.; Kastelein, J.J.P.; Motazacker, M.M.; et al. Heterozygosity for a Loss-of-Function Mutation in GALNT2 Improves Plasma Triglyceride Clearance in Man. Cell Metab. 2011, 14, 811–818. [Google Scholar] [CrossRef]
- Kegulian, N.C.; Ramms, B.; Horton, S.; Trenchevska, O.; Nedelkov, D.; Graham, M.J.; Lee, R.G.; Esko, J.D.; Yassine, H.N.; Gordts, P.L.S.M. ApoC-III Glycoforms Are Differentially Cleared by Hepatic TRL (Triglyceride-Rich Lipoprotein) Receptors. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 2145–2156. [Google Scholar] [CrossRef]
- Nicolardi, S.; van der Burgt, Y.E.M.; Dragan, I.; Hensbergen, P.J.; Deelder, A.M. Identification of New Apolipoprotein-CIII Glycoforms with Ultrahigh Resolution MALDI-FTICR Mass Spectrometry of Human Sera. J. Proteome Res. 2013, 12, 2260–2268. [Google Scholar] [CrossRef]
- Olivieri, O.; Chiariello, C.; Martinelli, N.; Castagna, A.; Speziali, G.; Girelli, D.; Pizzolo, F.; Bassi, A.; Cecconi, D.; Robotti, E.; et al. Sialylated Isoforms of Apolipoprotein C-III and Plasma Lipids in Subjects with Coronary Artery Disease. Clin. Chem. Lab. Med. 2018, 56, 1542–1550. [Google Scholar] [CrossRef]
- Mendoza, S.; Trenchevska, O.; King, S.M.; Nelson, R.W.; Nedelkov, D.; Krauss, R.M.; Yassine, H.N. Changes in Low-Density Lipoprotein Size Phenotypes Associate with Changes in Apolipoprotein C-III Glycoforms after Dietary Interventions. J. Clin. Lipidol. 2017, 11, 224–233.e2. [Google Scholar] [CrossRef]
- Savinova, O.V.; Fillaus, K.; Jing, L.; Harris, W.S.; Shearer, G.C. Reduced Apolipoprotein Glycosylation in Patients with the Metabolic Syndrome. PLoS ONE 2014, 9, e104833. [Google Scholar] [CrossRef]
- Harvey, S.B.; Zhang, Y.; Wilson-Grady, J.; Monkkonen, T.; Nelsestuen, G.L.; Kasthuri, R.S.; Verneris, M.R.; Lund, T.C.; Ely, E.W.; Bernard, G.R.; et al. O-Glycoside Biomarker of Apolipoprotein C3: Responsiveness to Obesity, Bariatric Surgery, and Therapy with Metformin, to Chronic or Severe Liver Disease and to Mortality in Severe Sepsis and Graft VS Host Disease. J. Proteome Res. 2009, 8, 603–612. [Google Scholar] [CrossRef]
- van Herpt, T.T.W.; Lemmers, R.F.H.; van Hoek, M.; Langendonk, J.G.; Erdtsieck, R.J.; Bravenboer, B.; Lucas, A.; Mulder, M.T.; Haak, H.R.; Lieverse, A.G.; et al. Introduction of the DiaGene Study: Clinical Characteristics, Pathophysiology and Determinants of Vascular Complications of Type 2 Diabetes. Diabetol. Metab. Syndr. 2017, 9, 47. [Google Scholar] [CrossRef]
- Van Der Heijden, A.A.W.A.; Rauh, S.P.; Dekker, J.M.; Beulens, J.W.; Elders, P.; T’Hart, L.M.; Rutters, F.; Van Leeuwen, N.; Nijpels, G. The Hoorn Diabetes Care System (DCS) Cohort. A Prospective Cohort of Persons with Type 2 Diabetes Treated in Primary Care in the Netherlands. BMJ Open 2017, 7, e015599. [Google Scholar] [CrossRef]
- Nederlands Huisartsen Genootschap; Van Binsbergen, J.; Langens, F.; Dapper, A.; Van Halteren, M.; Glijsteen, R.; Cleyndert, G.; Mekenkamp-Oei, S.; Van Avendonk, M. NHG-Standaard Obesitas. Available online: https://richtlijnen.nhg.org/standaarden/obesitas (accessed on 10 May 2024).
- Nederlands Huisartsen Genootschap. NHG-Standaard Laboratoriumdiagnostiek. Available online: https://richtlijnen.nhg.org/landelijke-eerstelijns-samenwerkingsafspraken/laboratoriumdiagnostiek#volledige-tekst-referentiewaarden (accessed on 10 May 2024).
- Nederlands Huisartsen Genootschap. NHG-Standaard Cardiovasculair Risicomanagement. Available online: https://richtlijnen.nhg.org/standaarden/cardiovasculair-risicomanagement#volledige-tekst-aanbevelingen--14 (accessed on 10 May 2024).
- Naber, A.; Demus, D.; Slieker, R.; Nicolardi, S.; Beulens, J.W.J.; Elders, P.J.M.; Lieverse, A.G.; Sijbrands, E.J.G.; ’t Hart, L.M.; Wuhrer, M.; et al. Apolipoprotein-CIII O-Glycosylation, a Link between GALNT2 and Plasma Lipids. Int. J. Mol. Sci. 2023, 24, 14844. [Google Scholar] [CrossRef]
- American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2005, 28, s37–s42. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Zimmet, P.Z. Definition, Diagnosis and Classification of Diabetes Mellitus and Its Complications. Part 1: Diagnosis and Classification of Diabetes Mellitus. Provisional Report of a WHO Consultation. Diabet. Med. 1998, 15, 539–553. [Google Scholar] [CrossRef]
- Demus, D.; Naber, A.; Dotz, V.; Jansen, B.C.; Bladergroen, M.R.; Nouta, J.; Sijbrands, E.J.G.; Van Hoek, M.; Nicolardi, S.; Wuhrer, M. Large-Scale Analysis of Apolipoprotein CIII Glycosylation by Ultrahigh Resolution Mass Spectrometry. Front. Chem. 2021, 9, 678883. [Google Scholar] [CrossRef]
- Schwarzer, G. Package “meta”, Version 7.0-0. 2024. Available online: https://cran.r-project.org/web/packages/meta/index.html (accessed on 15 March 2024).
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring Inconsistency in Meta-Analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef]
- American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2014, 37, 81–90. [Google Scholar] [CrossRef]
- Caron, S.; Verrijken, A.; Mertens, I.; Samanez, C.H.; Mautino, G.; Haas, J.T.; Duran-Sandoval, D.; Prawitt, J.; Francque, S.; Vallez, E.; et al. Transcriptional Activation of Apolipoprotein CIII Expression by Glucose May Contribute to Diabetic Dyslipidemia. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 513–519. [Google Scholar] [CrossRef]
- Taskinen, M.-R.; Packard, C.J.; Borén, J. Emerging Evidence That ApoC-III Inhibitors Provide Novel Options to Reduce the Residual CVD. Curr. Atheroscler. Rep. 2019, 21, 27. [Google Scholar] [CrossRef]
- Adiels, M.; Taskinen, M.R.; Björnson, E.; Andersson, L.; Matikainen, N.; Söderlund, S.; Kahri, J.; Hakkarainen, A.; Lundbom, N.; Sihlbom, C.; et al. Role of Apolipoprotein C-III Overproduction in Diabetic Dyslipidaemia. Diabetes Obes. Metab. 2019, 21, 1861–1870. [Google Scholar] [CrossRef]
- Roman, T.S.; Marvelle, A.F.; Fogarty, M.P.; Vadlamudi, S.; Gonzalez, A.J.; Buchkovich, M.L.; Huyghe, J.R.; Fuchsberger, C.; Jackson, A.U.; Wu, Y.; et al. Multiple Hepatic Regulatory Variants at the GALNT2 GWAS Locus Associated with High-Density Lipoprotein Cholesterol. Am. J. Hum. Genet. 2015, 97, 801–815. [Google Scholar] [CrossRef]
- Schjoldager, K.T.B.G.; Vakhrushev, S.Y.; Kong, Y.; Steentoft, C.; Nudelman, A.S.; Pedersen, N.B.; Wandall, H.H.; Mandel, U.; Bennett, E.P.; Levery, S.B.; et al. Probing Isoform-Specific Functions of Polypeptide GalNAc-Transferases Using Zinc Finger Nuclease Glycoengineered SimpleCells. Proc. Natl. Acad. Sci. USA 2012, 109, 9893–9898. [Google Scholar] [CrossRef]
- Koska, J.; Yassine, H.; Trenchevska, O.; Sinar, S.; Schwenke, D.C.; Yen, F.T.; Billheimer, D.; Nelson, R.W.; Nedelkov, D.; Reaven, P.D. Disialylated Apolipoprotein C-III Proteoform Is Associated with Improved Lipids in Prediabetes and Type 2 Diabetes1. J. Lipid Res. 2016, 57, 894–905. [Google Scholar] [CrossRef]
- Mauger, J.F.; Couture, P.; Bergeron, N.; Lamarche, B. Apolipoprotein C-III Isoforms: Kinetics and Relative Implication in Lipid Metabolism. J. Lipid Res. 2006, 47, 1212–1218. [Google Scholar] [CrossRef]
- Geng, T.; Zhu, K.; Lu, Q.; Wan, Z.; Chen, X.; Liu, L.; Pan, A.; Liu, G. Healthy Lifestyle Behaviors, Mediating Biomarkers, and Risk of Microvascular Complications among Individuals with Type 2 Diabetes: A Cohort Study. PLoS Med. 2023, 20, e1004135. [Google Scholar] [CrossRef]
- Sillanaukee, P.; Pönniö, M.; Jääskeläinen, I.P. Occurrence of Sialic Acids in Healthy Humans and Different Disorders. Eur. J. Clin. Investig. 1999, 29, 413–425. [Google Scholar] [CrossRef]
- Watts, G.F.; Crook, M.A.; Haq, S.; Mandalia, S. Serum Sialic Acid as an Indicator of Change in Coronary Artery Disease. Metabolism 1995, 44, 147–148. [Google Scholar] [CrossRef]
- Harake, B.; Caines, P.S.M.; Thibert, R.J.; Cheung, R.M.C. A Simple Micromethod for Rapid Assessment of the Distribution of Apolipoprotein C Isoforms in Very-Low-Density Lipoprotein. Clin. Biochem. 1991, 24, 255–260. [Google Scholar] [CrossRef]
- Rodríguez, M.; Rehues, P.; Iranzo, V.; Mora, J.; Balsells, C.; Guardiola, M.; Ribalta, J. Distribution of Seven ApoC-III Glycoforms in Plasma, VLDL, IDL, LDL and HDL of Healthy Subjects. J. Proteom. 2022, 251, 104398. [Google Scholar] [CrossRef]
DiaGene (n = 1571) | Hoorn DCS (n = 5409) | Reference Values | |
---|---|---|---|
Sex male/female (%/%) | 54.2/45.8 | 55.4/44.6 | |
Age, year, mean (±SD) | 65.1 (10.6) | 61.1 (11) | |
Duration of diabetes, year, median (IQR) | 8.0 (10.6) | 0.6 (2.7) | |
BMI, kg/m2, median (IQR) | 30.0 (6.3) | 29.4 (6.5) | 18.5–24.9 |
HbA1c, %, median (IQR) | 6.8 (1.3) | 6.7 (1.4) | 4.0–6.0 |
HbA1c, mmol/mol, median (IQR) | 50.8 (14.2) | 49.7 (15.8) | 20–42 |
Systolic blood pressure, mmHg, mean (±SD) | 142.0 (19.0) | 142.5 (20) | <140 |
Diastolic blood pressure, mmHg, mean (±SD) | 77.5 (9.9) | 80.8 (10) | <90 |
Mean arterial pressure, mmHg, mean (±SD) | 99.0 (11.0) | 101.4 (12) | <107 |
Creatinine, μmol/l, median (IQR) | 77.0 (25.0) | 79.9 (21.7) | 61–120/48–99 * |
HDL-cholesterol, mmol/L, median (IQR) | 1.1 (0.4) | 1.2 (0.4) | >1.0 |
Non-HDL-cholesterol, mmol/L, median (IQR) | 3.0 (1.1) | 3.8 (1.5) | <3.9 |
LDL-cholesterol, mmol/L, mean (±SD) | 2.5 (0.8) | 2.9 (1.5) | <3.0 |
Total Cholesterol, mmol/L, median (IQR) | 4.2 (1.1) | 5.0 (1.6) | <5.0 |
Triglycerides, mmol/L, median (IQR) | 1.4 (1.0) | 1.7 (1.1) | <2.0 |
Medication use, n (%) | |||
Statins or fibrates | 1020 (69.2) | 2276 (42.1) | |
Insulin or analogues | 463 (31.4) | 447 (8.3) | |
Smoking, n (%) | |||
Never | 361 (25.4) | 1667 (31.9) | |
Former | 804 (56.5) | 2429 (46.5) | |
Current | 257 (18.1) | 1130 (21.6) | |
Complications, n-case/n-total (%) | |||
Prevalent Retinopathy | 257/1478 (17.4) | 194/5321 (3.6) | |
Incident Retinopathy | 175/1168 (15.0) | 824/5127 (16.1) | |
Prevalent Nephropathy | 309/1401 (22.1) | 499/5407 (9.2) | |
Incident Nephropathy | 206/1058 (19.5) | 1009/4908 (20.6) | |
Prevalent Neuropathy | 187/611 (30.6) | NA | |
Incident Neuropathy | 192/400 (48.0) | NA | |
Prevalent macrovascular disease | 536/1328 (40.4) | 111/5396 (2.1) | |
Incident macrovascular disease | 86/913 (9.4) | 438/5285 (8.3) |
Retinopathy | ||||||
---|---|---|---|---|---|---|
Model 1 | Model 2 | |||||
Proteoform | Beta | 95% CI | p-Value | Beta | 95% CI | p-Value |
Apo-CIII0a | 4.053 | −3.502 to 11.609 | 0.293 | 9.968 | 1.437 to 18.499 | 0.022 |
Apo-CIII0c | −3.930 | −9.252 to 1.392 | 0.148 | −3.372 | −9.213 to 2.468 | 0.258 |
Apo-CIII1 | −7.215 | −11.137 to −3.294 | 0.0003 | −4.121 | −8.543 to 0.301 | 0.068 |
Apo-CIII2 | 5.309 | 2.279 to 8.339 | 0.0006 | 3.379 | −0.024 to 6.783 | 0.052 |
Nephropathy | ||||||
Model 1 | Model 2 | |||||
Proteoform | Beta | 95% CI | p-Value | Beta | 95% CI | p-Value |
Apo-CIII0a | 0.486 | −6.938 to 7.910 | 0.898 | 2.403 | −5.132 to 9.938 | 0.532 |
Apo-CIII0c | 0.363 | −4.519 to 5.244 | 0.884 | 0.890 | −4.082 to 5.861 | 0.726 |
Apo-CIII1 | −3.945 | −7.716 to −0.174 | 0.040 | −2.468 | −6.338 to 1.402 | 0.211 |
Apo-CIII2 | 2.377 | −0.512 to 5.266 | 0.107 | 1.386 | −1.589 to 4.361 | 0.361 |
Neuropathy | ||||||
Model 1 | Model 2 | |||||
Proteoform | Beta | 95% CI | p-Value | Beta | 95% CI | p-Value |
Apo-CIII0a | 5.505 | −4.277 to 15.287 | 0.270 | 5.871 | −3.979 to 15.720 | 0.243 |
Apo-CIII0c | 1.064 | −5.392 to 7.520 | 0.747 | 0.951 | −5.545 to 7.447 | 0.774 |
Apo-CIII1 | 7.706 | 2.317 to 13.095 | 0.005 | 8.000 | 2.558 to 13.441 | 0.004 |
Apo-CIII2 | −4.968 | −9.065 to −0.871 | 0.017 | −5.116 | −9.260 to −0.972 | 0.016 |
Macrovascular disease | ||||||
Model 1 | Model 2 | |||||
Proteoform | Beta | 95% CI | p-Value | Beta | 95% CI | p-Value |
Apo-CIII0a | −9.195 | −15.847 to −2.543 | 0.007 | −8.795 | −15.471 to −2.118 | 0.010 |
Apo-CIII0c | 0.635 | −3.615 to 4.885 | 0.770 | 0.880 | −3.392 to 5.152 | 0.686 |
Apo-CIII1 | −0.123 | −3.429 to 3.184 | 0.942 | 0.301 | −3.042 to 3.644 | 0.860 |
Apo-CIII2 | −0.077 | −2.622 to 2.468 | 0.953 | −0.401 | −2.979 to 2.176 | 0.760 |
Retinopathy | ||||||
---|---|---|---|---|---|---|
Model 1 | Model 2 | |||||
Proteoform | Beta | 95% CI | p-Value | Beta | 95% CI | p-Value |
Apo-CIII0a | −4.554 | −13.457 to 4.348 | 0.316 | 3.171 | −5.753 to 12.094 | 0.486 |
Apo-CIII0c | −5.834 | −11.866 to 0.198 | 0.058 | −4.784 | −10.840 to 1.271 | 0.122 |
Apo-CIII1 | −4.958 | −9.268 to −0.649 | 0.024 | −2.037 | −6.521 to 2.447 | 0.373 |
Apo-CIII2 | 4.484 | 1.158 to 7.810 | 0.008 | 2.522 | −0.962 to 6.006 | 0.156 |
Nephropathy | ||||||
Model 1 | Model 2 | |||||
Proteoform | Beta | 95% CI | p-Value | Beta | 95% CI | p-Value |
Apo-CIII0a | −5.189 | −13.555 to 3.178 | 0.224 | −4.794 | −13.196 to 3.608 | 0.263 |
Apo-CIII0c | −0.130 | −5.465 to 5.204 | 0.962 | −0.488 | −5.831 to 4.855 | 0.858 |
Apo-CIII1 | −2.852 | −6.933 to 1.229 | 0.171 | −2.761 | −6.936 to 1.413 | 0.195 |
Apo-CIII2 | 1.366 | −1.863 to 4.595 | 0.407 | 1.400 | −1.877 to 4.677 | 0.402 |
Neuropathy | ||||||
Model 1 | Model 2 | |||||
Proteoform | Beta | 95% CI | p-Value | Beta | 95% CI | p-Value |
Apo-CIII0a | −5.944 | −14.462 to 2.573 | 0.171 | −5.555 | −14.206 to 3.097 | 0.208 |
Apo-CIII0c | 3.525 | −1.469 to 8.519 | 0.166 | 2.213 | −2.896 to 7.323 | 0.396 |
Apo-CIII1 | 0.647 | −3.527 to 4.821 | 0.761 | 0.398 | −3.896 to 4.691 | 0.856 |
Apo-CIII2 | −1.981 | −5.206 to 1.245 | 0.229 | −1.308 | −4.601 to 1.984 | 0.436 |
Macrovascular Disease | ||||||
Model 1 | Model 2 | |||||
Proteoform | Beta | 95% CI | p-Value | Beta | 95% CI | p-Value |
Apo-CIII0a | −6.948 | −19.786 to 5.890 | 0.289 | −3.852 | −16.455 to 8.751 | 0.549 |
Apo-CIII0c | 0.564 | −7.660 to 8.788 | 0.893 | 0.992 | −6.978 to 8.962 | 0.807 |
Apo-CIII1 | −2.327 | −8.512 to 3.857 | 0.461 | 0.244 | −6.016 to 6.504 | 0.939 |
Apo-CIII2 | 0.639 | −4.317 to 5.595 | 0.800 | −1.096 | −6.055 to 3.864 | 0.665 |
Retinopathy | DiaGene | Hoorn DCS | Meta-Analysis | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Locus | rsID | EA | RA | OR | 95% CI | p-Value | OR | 95% CI | p-Value | OR | p-Value |
GALNT2 | rs4846913 | A | C | 0.869 | 0.696 to 1.086 | 0.218 | 0.935 | 0.763 to 1.147 | 0.521 | 0.905 | 0.192 |
GALNT2 | rs35498929 | T | C | 0.884 | 0.637 to 1.227 | 0.461 | 0.897 | 0.651 to 1.236 | 0.508 | 0.891 | 0.324 |
GALNT2:RP5-956O18.3 | rs3213497 | T | C | 0.991 | 0.716 to 1.372 | 0.958 | 0.774 | 0.559 to 1.071 | 0.122 | 0.875 | 0.283 |
IFT172/NRBP1 | rs67086575 | G | A | 0.819 | 0.594 to 1.128 | 0.221 | 0.929 | 0.701 to 1.231 | 0.606 | 0.879 | 0.231 |
Nephropathy | DiaGene | Hoorn DCS | Meta-Analysis | ||||||||
Locus | rsID | EA | RA | OR | 95% CI | p-Value | OR | 95% CI | p-Value | OR | p-Value |
GALNT2 | rs4846913 | A | C | 0.912 | 0.988 to 0.795 | 0.912 | 1.033 | 0.904 to 1.179 | 0.637 | 1.020 | 0.730 |
GALNT2 | rs35498929 | T | C | 0.999 | 0.733 to 1.360 | 0.993 | 0.903 | 0.734 to 1.110 | 0.333 | 0.932 | 0.417 |
GALNT2:RP5-956O18.3 | rs3213497 | T | C | 0.853 | 0.619 to 1.175 | 0.331 | 0.819 | 0.667 to 1.005 | 0.056 | 0.829 | 0.033 |
IFT172/NRBP1 | rs67086575 | G | A | 0.282 | 0.848 to 0.628 | 0.282 | 1.123 | 0.945 to 1.335 | 0.189 | 1.003 | 0.980 |
Neuropathy | DiaGene | Hoorn DCS | Meta-Analysis | ||||||||
Locus | rsID | EA | RA | OR | 95% CI | p-Value | OR | 95% CI | p-Value | OR | p-Value |
GALNT2 | rs4846913 | A | C | 1.270 | 0.948 to 1.700 | 0.109 | NA | NA | NA | NA | NA |
GALNT2 | rs35498929 | T | C | 1.350 | 0.895 to 2.034 | 0.152 | NA | NA | NA | NA | NA |
GALNT2:RP5-956O18.3 | rs3213497 | T | C | 1.161 | 0.765 to 1.761 | 0.483 | NA | NA | NA | NA | NA |
IFT172/NRBP1 | rs67086575 | G | A | 0.989 | 0.664 to 1.472 | 0.956 | NA | NA | NA | NA | NA |
Macrovascular Complications | DiaGene | Hoorn DCS | Meta-Analysis | ||||||||
Locus | rsID | EA | RA | OR | 95% CI | p-Value | OR | 95% CI | p-Value | OR | p-Value |
GALNT2 | rs4846913 | A | C | 1.103 | 0.922 to 1.320 | 0.283 | 1.056 | 0.806 to 1.385 | 0.691 | 1.014 | 0.869 |
GALNT2 | rs35498929 | T | C | 0.917 | 0.711 to 1.184 | 0.507 | 1.236 | 0.846 to 1.806 | 0.273 | 1.029 | 0.842 |
GALNT2:RP5-956O18.3 | rs3213497 | T | C | 0.983 | 0.755 to 1.280 | 0.900 | 1.256 | 0.875 to 1.803 | 0.216 | 1.076 | 0.534 |
IFT172/NRBP1 | rs67086575 | G | A | 0.937 | 0.736 to 1.194 | 0.601 | 0.840 | 0.572 to 1.234 | 0.375 | 0.909 | 0.358 |
Retinopathy | DiaGene | Hoorn DCS | Meta-Analysis | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Locus | rsID | EA | RA | OR | 95% CI | p-Value | OR | 95% CI | p-Value | OR | p-Value |
GALNT2 | rs4846913 | A | C | 0.739 | 0.575 to 0.951 | 0.019 | 0.928 | 0.754 to 1.142 | 0.480 | 0.838 | 0.118 |
GALNT2 | rs35498929 | T | C | 0.858 | 0.592 to 1.244 | 0.419 | 0.890 | 0.642 to 1.234 | 0.485 | 0.876 | 0.292 |
GALNT2:RP5-956O18.3 | rs3213497 | T | C | 1.099 | 0.771 to 1.567 | 0.602 | 0.776 | 0.557 to 1.081 | 0.133 | 0.918 | 0.625 |
IFT172/NRBP1 | rs67086575 | G | A | 0.857 | 0.598 to 1.226 | 0.398 | 0.934 | 0.703 to 1.242 | 0.640 | 0.903 | 0.372 |
Nephropathy | DiaGene | Hoorn DCS | Meta-Analysis | ||||||||
Locus | rsID | EA | RA | OR | 95% CI | p-Value | OR | 95% CI | p-Value | OR | p-Value |
GALNT2 | rs4846913 | A | C | 0.949 | 0.760 to 1.184 | 0.641 | 1.032 | 0.902 to 1.180 | 0.651 | 1.008 | 0.889 |
GALNT2 | rs35498929 | T | C | 0.996 | 0.726 to 1.367 | 0.982 | 0.889 | 0.721 to 1.097 | 0.272 | 0.920 | 0.351 |
GALNT2:RP5-956O18.3 | rs3213497 | T | C | 0.883 | 0.639 to 1.220 | 0.450 | 0.776 | 0.628 to 0.958 | 0.056 | 0.806 | 0.017 |
IFT172/NRBP1 | rs67086575 | G | A | 0.868 | 0.639 to 1.189 | 0.366 | 1.118 | 0.938 to 1.333 | 0.212 | 1.018 | 0.884 |
Neuropathy | DiaGene | Hoorn DCS | Meta-Analysis | ||||||||
Locus | rsID | EA | RA | OR | 95% CI | p-Value | OR | 95% CI | p-Value | OR | p-Value |
GALNT2 | rs4846913 | A | C | 1.254 | 0.935 to 1.681 | 0.130 | NA | NA | NA | NA | NA |
GALNT2 | rs35498929 | T | C | 1.350 | 0.895 to 2.038 | 0.153 | NA | NA | NA | NA | NA |
GALNT2:RP5-956O18.3 | rs3213497 | T | C | 1.182 | 0.779 to 1.795 | 0.432 | NA | NA | NA | NA | NA |
IFT172/NRBP1 | rs67086575 | G | A | 0.978 | 0.656 to 1.459 | 0.914 | NA | NA | NA | NA | NA |
Macrovascular Complications | DiaGene | Hoorn DCS | Meta-Analysis | ||||||||
Locus | rsID | EA | RA | OR | 95% CI | p-Value | OR | 95% CI | p-Value | OR | p-Value |
GALNT2 | rs4846913 | A | C | 1.091 | 0.911 to 1.307 | 0.343 | 1.036 | 0.781 to 1.374 | 0.806 | 1.075 | 0.354 |
GALNT2 | rs35498929 | T | C | 0.915 | 0.708 to 1.182 | 0.495 | 1.255 | 0.844 to 1.866 | 0.262 | 1.031 | 0.840 |
GALNT2:RP5-956O18.3 | rs3213497 | T | C | 0.990 | 0.760 to 1.289 | 0.939 | 1.216 | 0.831 to 1.780 | 0.314 | 1.059 | 0.606 |
IFT172/NRBP1 | rs67086575 | G | A | 0.947 | 0.743 to 1.208 | 0.663 | 0.867 | 0.586 to 1.284 | 0.476 | 0.924 | 0.455 |
Retinopathy | DiaGene | Hoorn DCS | Meta-Analysis | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Locus | rsID | EA | RA | HR | 95% CI | p-Value | HR | 95% CI | p-Value | HR | p-Value |
GALNT2 | rs4846913 | A | C | 0.992 | 0.778 to 1.266 | 0.949 | 1.100 | 0.997 to 1.214 | 0.057 | 1.084 | 0.082 |
GALNT2 | rs35498929 | T | C | 0.724 | 0.494 to 1.063 | 0.099 | 1.106 | 0.960 to 1.275 | 0.162 | 0.931 | 0.732 |
GALNT2:RP5-956O18.3 | rs3213497 | T | C | 0.696 | 0.468 to 1.037 | 0.075 | 0.851 | 0.734 to 0.988 | 0.034 | 0.830 | 0.009 |
IFT172/NRBP1 | rs67086575 | G | A | 0.916 | 0.654 to 1.281 | 0.607 | 1.026 | 0.902 to 1.168 | 0.693 | 1.011 | 0.855 |
Nephropathy | DiaGene | Hoorn DCS | Meta-Analysis | ||||||||
Locus | rsID | EA | RA | HR | 95% CI | p-Value | HR | 95% CI | p-Value | HR | p-Value |
GALNT2 | rs4846913 | A | C | 0.862 | 0.696 to 1.067 | 0.173 | 0.989 | 0.906 to 1.081 | 0.814 | 0.957 | 0.453 |
GALNT2 | rs35498929 | T | C | 1.049 | 0.774 to 1.423 | 0.756 | 0.952 | 0.831 to 1.091 | 0.480 | 0.968 | 0.601 |
GALNT2:RP5-956O18.3 | rs3213497 | T | C | 1.069 | 0.796 to 1.436 | 0.657 | 0.931 | 0.817 to 1.061 | 0.284 | 0.952 | 0.422 |
IFT172/NRBP1 | rs67086575 | G | A | 0.961 | 0.719 to 1.286 | 0.791 | 0.987 | 0.876 to 1.112 | 0.828 | 0.983 | 0.767 |
Neuropathy | DiaGene | Hoorn DCS | Meta-Analysis | ||||||||
Locus | rsID | EA | RA | HR | 95% CI | p-Value | HR | 95% CI | p-Value | HR | p-Value |
GALNT2 | rs4846913 | A | C | 1.040 | 0.827 to 1.308 | 0.735 | NA | NA | NA | NA | NA |
GALNT2 | rs35498929 | T | C | 1.258 | 0.897 to 1.766 | 0.184 | NA | NA | NA | NA | NA |
GALNT2:RP5-956O18.3 | rs3213497 | T | C | 0.974 | 0.683 to 1.388 | 0.883 | NA | NA | NA | NA | NA |
IFT172/NRBP1 | rs67086575 | G | A | 0.857 | 0.617 to 1.191 | 0.358 | NA | NA | NA | NA | NA |
Macrovascular Complications | DiaGene | Hoorn DCS | Meta-Analysis | ||||||||
Locus | rsID | EA | RA | HR | 95% CI | p-Value | HR | 95% CI | p-Value | HR | p-Value |
GALNT2 | rs4846913 | A | C | 1.020 | 0.731 to 1.424 | 0.906 | 1.020 | 0.892 to 1.166 | 0.773 | 1.020 | 0.751 |
GALNT2 | rs35498929 | T | C | 0.954 | 0.589 to 1.548 | 0.850 | 1.128 | 0.930 to 1.370 | 0.222 | 1.103 | 0.287 |
GALNT2:RP5-956O18.3 | rs3213497 | T | C | 1.313 | 0.823 to 2.096 | 0.253 | 0.885 | 0.722 to 1.086 | 0.242 | 1.018 | 0.926 |
IFT172/NRBP1 | rs67086575 | G | A | 0.608 | 0.355 to 1.040 | 0.069 | 0.985 | 0.822 to 1.180 | 0.867 | 0.830 | 0.418 |
Retinopathy | DiaGene | Hoorn DCS | Meta-Analysis | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Locus | rsID | EA | RA | HR | 95% CI | p-Value | HR | 95% CI | p-Value | HR | p-Value |
GALNT2 | rs4846913 | A | C | 0.884 | 0.684 to 1.142 | 0.344 | 1.081 | 0.978 to 1.194 | 0.128 | 1.013 | 0.892 |
GALNT2 | rs35498929 | T | C | 0.773 | 0.522 to 1.145 | 0.199 | 1.110 | 0.963 to 1.280 | 0.151 | 0.972 | 0.870 |
GALNT2:RP5-956O18.3 | rs3213497 | T | C | 0.741 | 0.496 to 1.108 | 0.145 | 0.848 | 0.730 to 0.985 | 0.031 | 0.834 | 0.012 |
IFT172/NRBP1 | rs67086575 | G | A | 0.852 | 0.612 to 1.187 | 0.344 | 1.033 | 0.907 to 1.177 | 0.624 | 0.999 | 0.991 |
Nephropathy | DiaGene | Hoorn DCS | Meta-Analysis | ||||||||
Locus | rsID | EA | RA | HR | 95% CI | p-Value | HR | 95% CI | p-Value | HR | p-Value |
GALNT2 | rs4846913 | A | C | 0.868 | 0.701 to 1.076 | 0.197 | 0.980 | 0.896 to 1.072 | 0.665 | 0.961 | 0.373 |
GALNT2 | rs35498929 | T | C | 1.061 | 0.783 to 1.437 | 0.704 | 0.967 | 0.844 to 1.108 | 0.625 | 0.982 | 0.768 |
GALNT2:RP5-956O18.3 | rs3213497 | T | C | 1.082 | 0.805 to 1.454 | 0.601 | 0.934 | 0.818 to 1.066 | 0.310 | 0.957 | 0.477 |
IFT172/NRBP1 | rs67086575 | G | A | 0.968 | 0.725 to 1.293 | 0.827 | 0.981 | 0.869 to 1.108 | 0.760 | 0.979 | 0.714 |
Neuropathy | DiaGene | Hoorn DCS | Meta-Analysis | ||||||||
Locus | rsID | EA | RA | HR | 95% CI | p-Value | HR | 95% CI | p-Value | HR | p-Value |
GALNT2 | rs4846913 | A | C | 1.034 | 0.822 to 1.300 | 0.778 | NA | NA | NA | NA | NA |
GALNT2 | rs35498929 | T | C | 1.285 | 0.917 to 1.801 | 0.145 | NA | NA | NA | NA | NA |
GALNT2:RP5-956O18.3 | rs3213497 | T | C | 0.990 | 0.694 to 1.411 | 0.956 | NA | NA | NA | NA | NA |
IFT172/NRBP1 | rs67086575 | G | A | 0.860 | 0.618 to 1.197 | 0.370 | NA | NA | NA | NA | NA |
Macrovascular Complications | DiaGene | Hoorn DCS | Meta-Analysis | ||||||||
Locus | rsID | EA | RA | HR | 95% CI | p-Value | HR | 95% CI | p-Value | HR | p-Value |
GALNT2 | rs4846913 | A | C | 0.938 | 0.665 to 1.323 | 0.716 | 0.999 | 0.872 to 1.143 | 0.983 | 0.991 | 0.883 |
GALNT2 | rs35498929 | T | C | 0.906 | 0.551 to 1.490 | 0.698 | 1.151 | 0.947 to 1.399 | 0.156 | 1.116 | 0.236 |
GALNT2:RP5-956O18.3 | rs3213497 | T | C | 1.387 | 0.865 to 2.226 | 0.175 | 0.870 | 0.707 to 1.071 | 0.189 | 1.045 | 0.848 |
IFT172/NRBP1 | rs67086575 | G | A | 0.687 | 0.400 to 1.179 | 0.173 | 1.002 | 0.836 to 1.202 | 0.979 | 0.907 | 0.558 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naber, A.; Demus, D.; Slieker, R.C.; Nicolardi, S.; Beulens, J.W.J.; Elders, P.J.M.; Lieverse, A.G.; Sijbrands, E.J.G.; ‘t Hart, L.M.; Wuhrer, M.; et al. Apolipoprotein-CIII O-Glycosylation Is Associated with Micro- and Macrovascular Complications of Type 2 Diabetes. Int. J. Mol. Sci. 2024, 25, 5365. https://doi.org/10.3390/ijms25105365
Naber A, Demus D, Slieker RC, Nicolardi S, Beulens JWJ, Elders PJM, Lieverse AG, Sijbrands EJG, ‘t Hart LM, Wuhrer M, et al. Apolipoprotein-CIII O-Glycosylation Is Associated with Micro- and Macrovascular Complications of Type 2 Diabetes. International Journal of Molecular Sciences. 2024; 25(10):5365. https://doi.org/10.3390/ijms25105365
Chicago/Turabian StyleNaber, Annemieke, Daniel Demus, Roderick C. Slieker, Simone Nicolardi, Joline W. J. Beulens, Petra J. M. Elders, Aloysius G. Lieverse, Eric J. G. Sijbrands, Leen M. ‘t Hart, Manfred Wuhrer, and et al. 2024. "Apolipoprotein-CIII O-Glycosylation Is Associated with Micro- and Macrovascular Complications of Type 2 Diabetes" International Journal of Molecular Sciences 25, no. 10: 5365. https://doi.org/10.3390/ijms25105365
APA StyleNaber, A., Demus, D., Slieker, R. C., Nicolardi, S., Beulens, J. W. J., Elders, P. J. M., Lieverse, A. G., Sijbrands, E. J. G., ‘t Hart, L. M., Wuhrer, M., & van Hoek, M. (2024). Apolipoprotein-CIII O-Glycosylation Is Associated with Micro- and Macrovascular Complications of Type 2 Diabetes. International Journal of Molecular Sciences, 25(10), 5365. https://doi.org/10.3390/ijms25105365