Abiotic Stress Tolerance Boosted by Genetic Diversity in Plants
1. Polygenic Diversity for Abiotic Stress Tolerance
2. Pleiotropism Underlying Concerted Responses to Abiotic Stresses
3. Perspectives
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Benitez-Alfonso, Y.; Soanes, B.K.; Zimba, S.; Sinanaj, B.; German, L.; Sharma, V.; Bohra, A.; Kolesnikova, A.; Dunn, J.A.; Martin, A.C.; et al. Enhancing climate change resilience in agricultural crops. Curr. Biol. 2023, 33, R1246–R1261. [Google Scholar] [CrossRef]
- Razgour, O.; Forester, B.; Taggart, J.B.; Bekaert, M.; Juste, J.; Ibanez, C.; Puechmaille, S.J.; Novella-Fernandez, R.; Alberdi, A.; Manel, S. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl. Acad. Sci. USA 2019, 116, 10418–10423. [Google Scholar] [CrossRef]
- Breed, M.F.; Harrison, P.A.; Blyth, C.; Byrne, M.; Gaget, V.; Gellie, N.J.C.; Groom, S.V.C.; Hodgson, R.; Mills, J.G.; Prowse, T.A.A.; et al. The potential of genomics for restoring ecosystems and biodiversity. Nat. Rev. Genet. 2019, 20, 615–628. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, T.N.; Ketola, T.; Kronholm, I. Adaptation to environmental stress at different timescales. Ann. N. Y. Acad. Sci. 2018, 1476, 5–22. [Google Scholar] [CrossRef] [PubMed]
- Thuiller, W.; Albert, C.; Araújo, M.B.; Berry, P.M.; Cabeza, M.; Guisan, A.; Hickler, T.; Midgley, G.F.; Paterson, J.; Schurr, F.M.; et al. Predicting global change impacts on plant species' distributions: Future challenges. Perspect. Plant Ecol. Evol. Syst. 2008, 9, 137–152. [Google Scholar] [CrossRef]
- Barghi, N.; Hermisson, J.; Schlötterer, C. Polygenic adaptation: A unifying framework to understand positive selection. Nat. Rev. Genet. 2020, 21, 769–781. [Google Scholar] [CrossRef]
- Guevara-Escudero, M.; Osorio, A.N.; Cortés, A.J. Integrative Pre-Breeding for Biotic Resistance in Forest Trees. Plants 2021, 10, 2022. [Google Scholar] [CrossRef]
- Londoño-Caicedo, J.M.; Uribe-Londoño, M.; Buitrago-Bitar, M.A.; Cortés, A.J.; Muñoz-Flórez, J.E. Molecular Identification and Phylogenetic Diversity of Native Entomopathogenic Nematodes, and Their Bacterial Endosymbionts, Isolated from Banana and Plantain Crops in Western Colombia. Agronomy 2023, 13, 1373. [Google Scholar] [CrossRef]
- Mead, L.S.; Arnold, S.J. Quantitative genetic models of sexual selection. Trends Ecol. Evol. 2004, 19, 264–271. [Google Scholar] [CrossRef]
- Reyes-Herrera, P.H.; Muñoz-Baena, L.; Velásquez-Zapata, V.; Patiño, L.; Delgado-Paz, O.A.; Díaz-Diez, C.A.; Navas-Arboleda, A.A.; Cortés, A.J. Inheritance of Rootstock Effects in Avocado (Persea americana Mill.) cv. Hass. Front. Plant. Sci. 2020, 11, 555071. [Google Scholar] [CrossRef]
- Cañas-Gutiérrez, G.P.; Sepulveda-Ortega, S.; López-Hernández, F.; Navas-Arboleda, A.A.; Cortés, A.J. Inheritance of Yield Components and Morphological Traits in Avocado cv. Hass From “Criollo” “Elite Trees” via Half-Sib Seedling Rootstocks. Front. Plant Sci. 2022, 13, 843099. [Google Scholar] [CrossRef] [PubMed]
- Montesinos-Lopez, A.; Montesinos-Lopez, O.A.; Gianola, D.; Crossa, J.; Hernandez-Suarez, C.M. Multi-environment Genomic Prediction of Plant Traits Using Deep Learners with Dense Architecture. G3 2018, 8, 3813–3828. [Google Scholar] [CrossRef]
- Arnold, P.A.; Kruuk, L.E.B.; Nicotra, A.B. How to analyse plant phenotypic plasticity in response to a changing climate. New Phytol. 2019, 222, 1235–1241. [Google Scholar] [CrossRef] [PubMed]
- Etterson, J.R.; Shaw, R.G. Constraint to Adaptive Evolution in Response to Global Warming. Science 2001, 294, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Cortés, A.J.; López-Hernández, F.; Osorio-Rodriguez, D. Predicting thermal adaptation by looking into populations’ genomic past. Front Genet. 2020, 11, 564515. [Google Scholar] [CrossRef]
- Lascoux, M.; Glémin, S.; Savolainen, O. Local Adaptation in Plants. Encycl. Life Sci. 2016, 0025270, 1–7. [Google Scholar] [CrossRef]
- Denison, R.F. Darwinian Agriculture: How Understanding Evolution Can Improve Agriculture; Princeton University Press: Princeton, NJ, USA, 2016. [Google Scholar]
- Wakeley, J. Coalescent Theory: An Introduction; Harvard University: Cambridge, MA, USA, 2008. [Google Scholar]
- Bustamante, C.D.; Wakeley, J.; Sawyer, S.; Hartl, D.L. Directional Selection and the Site-Frequency Spectrum. Genetics 2001, 159, 1779–1788. [Google Scholar] [CrossRef]
- Lande, R. Models of speciation by sexual selection on polygenic traits. Proc. Natl. Acad. Sci. USA 1981, 78, 3721–3725. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R. The evolution of sexual preference. Eugen. Rev. 1915, 7, 184–192. [Google Scholar]
- Meyer, R.S.; Purugganan, M.D. Evolution of crop species: Genetics of domestication and diversification. Nat. Rev. Genet. 2013, 14, 840–852. [Google Scholar] [CrossRef]
- Arenas, S.; Cortés, A.J.; Mastretta-Yanes, A.; Jaramillo-Correa, J.P. Evaluating the accuracy of genomic prediction for the management and conservation of relictual natural tree populations. Tree Genet. Genomes 2021, 17, 12. [Google Scholar] [CrossRef]
- Cortinovis, G.; Di Vittori, V.; Bellucci, E.; Bitocchi, E.; Papa, R. Adaptation to novel environments during crop diversification. Curr. Opin. Plant Biol. 2020, 56, 203–217. [Google Scholar] [CrossRef] [PubMed]
- Forester, B.R.; Jones, M.R.; Joost, S.; Landguth, E.L.; Lasky, J.R. Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes. Mol. Ecol. 2016, 25, 104–120. [Google Scholar] [CrossRef]
- Ellegren, H. Genome sequencing and population genomics in non-model organisms. Trends Ecol. Evol. 2014, 29, 51–63. [Google Scholar] [CrossRef]
- Iwata, H.; Minamikawa, M.F.; Kajiya-Kanegae, H.; Ishimori, M.; Hayashi, T. Genomics-assisted breeding in fruit trees. Breed. Sci. 2016, 66, 100–115. [Google Scholar] [CrossRef]
- Crossa, J.; Perez-Rodriguez, P.; Cuevas, J.; Montesinos-Lopez, O.; Jarquin, D.; de Los Campos, G.; Burgueno, J.; Gonzalez-Camacho, J.M.; Perez-Elizalde, S.; Beyene, Y.; et al. Genomic Selection in Plant Breeding: Methods, Models, and Perspectives. Trends Plant Sci. 2017, 22, 961–975. [Google Scholar] [CrossRef]
- Slatkin, M. Linkage disequilibrium—Understanding the evolutionary past and mapping the medical future. Nat. Rev. Genet. 2008, 9, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Thistlethwaite, F.R.; Gamal El-Dien, O.; Ratcliffe, B.; Klapste, J.; Porth, I.; Chen, C.; Stoehr, M.U.; Ingvarsson, P.K.; El-Kassaby, Y.A. Linkage disequilibrium vs. pedigree: Genomic selection prediction accuracy in conifer species. PLoS ONE 2020, 15, e0232201. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Qiu, X.; Wang, Y.; Abubakar, A.S.; Chen, P.; Chen, J.; Chen, K.; Yu, C.; Wang, X.; Gao, G.; et al. Genome-Wide Investigation of the NAC Transcription Factor Family in Apocynum venetum Revealed Their Synergistic Roles in Abiotic Stress Response and Trehalose Metabolism. Int. J. Mol. Sci. 2023, 24, 4578. [Google Scholar] [CrossRef]
- Ravelombola, W.; Dong, L.; Barickman, T.C.; Xiong, H.; Manley, A.; Cason, J.; Pham, H.; Zia, B.; Mou, B.; Shi, A. Genetic Architecture of Salt Tolerance in Cowpea (Vigna unguiculata (L.) Walp.) at Seedling Stage Using a Whole Genome Resequencing Approach. Int. J. Mol. Sci. 2023, 24, 15281. [Google Scholar] [CrossRef]
- Wirojsirasak, W.; Songsri, P.; Jongrungklang, N.; Tangphatsornruang, S.; Klomsa-Ard, P.; Ukoskit, K. A Large-Scale Candidate-Gene Association Mapping for Drought Tolerance and Agronomic Traits in Sugarcane. Int. J. Mol. Sci. 2023, 24, 12801. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Han, X.; Lu, X.; Yang, H.; Wang, Z.Y.; Chai, M. Genome-Wide Identification and Characterization of the Msr Gene Family in Alfalfa under Abiotic Stress. Int. J. Mol. Sci. 2023, 24, 9638. [Google Scholar] [CrossRef]
- Ma, Y.; Zhong, M.; Li, J.; Jiang, Y.; Zhou, X.; Justice Ijeoma, C.; Tang, X.; Chen, S.; Cao, S. Genome Identification and Evolutionary Analysis of LBD Genes and Response to Environmental Factors in Phoebe bournei. Int. J. Mol. Sci. 2023, 24, 12581. [Google Scholar] [CrossRef]
- Guo, H.; Nie, C.Y.; Li, Z.; Kang, J.; Wang, X.L.; Cui, Y.N. Physiological and Transcriptional Analyses Provide Insight into Maintaining Ion Homeostasis of Sweet Sorghum under Salt Stress. Int. J. Mol. Sci. 2023, 24, 11045. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yu, J.; Zhu, B.; Gu, L.; Wang, H.; Du, X.; Zeng, T.; Tang, H. The SbbHLH041-SbEXPA11 Module Enhances Cadmium Accumulation and Rescues Biomass by Increasing Photosynthetic Efficiency in Sorghum. Int. J. Mol. Sci. 2023, 24, 13061. [Google Scholar] [CrossRef]
- López-Hernández, F.; Burbano-Erazo, E.; León-Pacheco, R.I.; Cordero-Cordero, C.C.; Villanueva-Mejía, D.F.; Tofiño-Rivera, A.P.; Cortés, A.J. Multi-environment genome wide association studies of yield traits in common bean (Phaseolus vulgaris L.) × Tepary bean (P. acutifolius A. Gray) inter-specific advanced lines at the humid and dry Colombian Caribbean sub-regions. bioRxiv 2023, 13, 1396. [Google Scholar] [CrossRef]
- Bayer, P.E.; Golicz, A.A.; Scheben, A.; Batley, J.; Edwards, D. Plant pan-genomes are the new reference. Nat. Plants 2020, 6, 914–920. [Google Scholar] [CrossRef]
- Nuruzzaman, M.; Sharoni, A.M.; Kikuchi, S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front. Microbiol. 2013, 4, 55831. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Xie, F.; Liang, W.; Liang, Y.; Zhang, Z.; Zhao, J.; Hu, G.; Qin, Y. HuNAC20 and HuNAC25, Two Novel NAC Genes from Pitaya, Confer Cold Tolerance in Transgenic Arabidopsis. Int. J. Mol. Sci. 2022, 23, 2189. [Google Scholar] [CrossRef]
- Nei, M. Molecular Evolutionary Genetics; Columbia University Press: New York, NY, USA, 1987. [Google Scholar]
- Barton, N.H.; Etheridge, A.M. The effect of selection on genealogies. Genetics 2004, 166, 1115–1131. [Google Scholar] [CrossRef]
- Redillas, M.C.F.R.; Jeong, J.S.; Kim, Y.S.; Jung, H.; Bang, S.W.; Choi, Y.D.; Ha, S.-H.; Reuzeau, C.; Kim, J.-K. The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol. J. 2012, 10, 792–805. [Google Scholar] [CrossRef]
- Iordachescu, M.; Imai, R. Trehalose biosynthesis in response to abiotic stresses. J. Integr. Plant Biol. 2008, 50, 1223–1229. [Google Scholar] [CrossRef] [PubMed]
- Marshall-Colon, A.; Long, S.P.; Allen, D.K.; Allen, G.; Beard, D.A.; Benes, B.; von Caemmerer, S.; Christensen, A.J.; Cox, D.J.; Hart, J.C.; et al. Crops In Silico: Generating Virtual Crops Using an Integrative and Multi-scale Modeling Platform. Front. Plant Sci. 2017, 8, 249725. [Google Scholar] [CrossRef]
- Murray, D.; Doran, P.; MacMathuna, P.; Moss, A.C. In silico gene expression analysis—An overview. Mol. Cancer 2007, 6, 50. [Google Scholar] [CrossRef]
- Khan, M.A.; Korban, S.S. Association mapping in forest trees and fruit crops. J. Experimenatal Bot. 2012, 63, 4045–4060. [Google Scholar] [CrossRef]
- Abberton, M.; Batley, J.; Bentley, A.; Bryant, J.; Cai, H.; Cockram, J.; de Oliveira, A.C.; Cseke, L.J.; Dempewolf, H.; De Pace, C.; et al. Global agricultural intensification during climate change: A role for genomics. Plant Biotechnol. J. 2016, 14, 1095–1098. [Google Scholar] [CrossRef]
- Cochrane, A.; Nicotra, A.; Ooi, M. Climate change: Alters plant recruitment from seed. Austral Ecol. 2019, 44, 931–934. [Google Scholar] [CrossRef]
- Barton, N.; Hermisson, J.; Nordborg, M. Why structure matters. Elife 2019, 8, e45380. [Google Scholar] [CrossRef]
- Wray, N.R.; Yang, J.; Hayes, B.J.; Price, A.L.; Goddard, M.E.; Visscher, P.M. Pitfalls of predicting complex traits from SNPs. Nat. Rev. Genet. 2013, 14, 507–515. [Google Scholar] [CrossRef]
- Chamberlin, T.C. The Method of Multiple Working Hypotheses. Science 1897, 366, 92–96. [Google Scholar]
- Erbe, M.; Ytournel, F.; Pimentel, E.C.G.; Sharifi, A.R.; Simianer, H. Power and robustness of three whole genome association mapping approaches in selected populations. J. Anim. Breed. Genet. 2011, 128, 3–14. [Google Scholar] [CrossRef]
- Kruglyak, L. The road to genome-wide association studies. Nat. Rev. Genet. 2008, 9, 314–318. [Google Scholar] [CrossRef]
- Lourenço, J.; Galtier, N.; Glémin, S. Complexity, Pleiotropy, and the Fitness Effect of Mutations. Evolution 2011, 65, 1559–1571. [Google Scholar] [CrossRef] [PubMed]
- Crossa, J.; Cerón-Rojas, J. Multi-trait Multi-environment Genome-wide Molecular Marker Selection Indices. J. Indian Soc. Agric. Stat. 2011, 65, 125–142. [Google Scholar]
- Stafford, W. Marker Assisted Selection (MAS): Key issues for Africa; The African Centre for Biosafety: Melville, South Africa, 2009. [Google Scholar]
- Butcher, P.; Southerton, S. Marker-assisted selection in forestry species. In Marker-Assisted Selection—Current Status and Future Perspectives in Crops, Livestock, Forestry and Fish; Guimarães, E., Ruane, J., Scherf, B., Sonnino, A., Dargie, J., Eds.; FAO: Rome, Italy, 2007. [Google Scholar]
- Des Marais, D.L.; Auchincloss, L.C.; Sukamtoh, E.; McKay, J.K.; Logan, T.; Richards, J.H.; Juenger, T.E. Variation in MPK12 affects water use efficiency in Arabidopsis and reveals a pleiotropic link between guard cell size and ABA response. Proc. Natl. Acad. Sci. USA 2014, 111, 2836–2841. [Google Scholar] [CrossRef]
- Ulian, T.; Diazgranados, M.; Pironon, S.; Padulosi, S.; Liu, U.; Davies, L.; Howes, M.J.R.; Borrell, J.S.; Ondo, I.; Pérez-Escobar, O.A.; et al. Unlocking plant resources to support food security and promote sustainable agriculture. Plants People Planet 2020, 2, 421–445. [Google Scholar] [CrossRef]
- Khaipho-Burch, M.; Cooper, M.; Crossa, J.; Leon, N.d.; Holland, J.; Lewis, R.; McCouch, S.; Murray, S.C.; Rabbi, I.; Ronald, P.; et al. Scale up trials to validate modified crops’ benefits. Nature 2023, 621, 470–473. [Google Scholar] [CrossRef]
- Ashraf, M.; Athar, H.R.; Harris, P.J.C.; Kwon, T.R. Some prospective strategies for improving crop salt tolerance. Adv. Agron. 2008, 97, 45–110. [Google Scholar] [CrossRef]
- Seiler, C.; Harshavardhan, V.T.; Rajesh, K.; Reddy, P.S.; Strickert, M.; Rolletschek, H.; Scholz, U.; Wobus, U.; Sreenivasulu, N. ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions. J. Exp. Bot. 2011, 62, 2615–2632. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Paz, J.; Cortés, A.J.; Hernández-Varela, C.A.; Mejía-de-Tafur, M.S.; Rodriguez-Medina, C.; Baligar, V.C. Rootstock-Mediated Genetic Variance in Cadmium Uptake by Juvenile Cacao (Theobroma cacao L.) Genotypes, and Its Effect on Growth and Physiology. Front. Plant Sci. 2021, 12, 777842. [Google Scholar] [CrossRef] [PubMed]
- Varshney, R.K.; Barmukh, R.; Roorkiwal, M.; Qi, Y.; Kholova, J.; Tuberosa, R.; Reynolds, M.P.; Tardieu, F.; Siddique, K.H.M. Breeding custom-designed crops for improved drought adaptation. Adv. Genet. 2021, 2, e202100017. [Google Scholar] [CrossRef]
- Parmesan, C.; Hanley, M.E. Plants and climate change: Complexities and surprises. Ann. Bot. 2015, 116, 849–864. [Google Scholar] [CrossRef]
- Scherer, L.; Svenning, J.C.; Huang, J.; Seymour, C.L.; Sandel, B.; Mueller, N.; Kummu, M.; Bekunda, M.; Bruelheide, H.; Hochman, Z.; et al. Global priorities of environmental issues to combat food insecurity and biodiversity loss. Sci. Total Environ. 2020, 730, 139096. [Google Scholar] [CrossRef] [PubMed]
- Khoury, C.K.; Brush, S.; Costich, D.E.; Curry, H.A.; Haan, S.; Engels, J.M.M.; Guarino, L.; Hoban, S.; Mercer, K.L.; Miller, A.J.; et al. Crop genetic erosion: Understanding and responding to loss of crop diversity. New Phytol. 2021, 233, 84–118. [Google Scholar] [CrossRef]
- Cortés, A.J.; López-Hernández, F.; Blair, M.W. Genome–Environment Associations, an Innovative Tool for Studying Heritable Evolutionary Adaptation in Orphan Crops and Wild Relatives. Front. Genet. 2022, 13, 910386. [Google Scholar] [CrossRef]
- Gepts, P. A comparison between crop domestication, classical plant breeding, and genetic engineering. Crop Sci. 2002, 42, 1780–1790. [Google Scholar] [CrossRef]
- Varshney, R.K. The Plant Genome special issue: Advances in genomic selection and application of machine learning in genomic prediction for crop improvement. Plant Genome 2021, 14, e20178. [Google Scholar] [CrossRef]
- Grinberg, N.F.; Orhobor, O.I.; King, R.D. An evaluation of machine-learning for predicting phenotype: Studies in yeast, rice, and wheat. Mach. Learn. 2020, 109, 251–277. [Google Scholar] [CrossRef]
- Schrider, D.R.; Kern, A.D. Supervised Machine Learning for Population Genetics: A New Paradigm. Trends Genet. 2018, 34, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Payseur, B.A.; Schrider, D.R.; Kern, A.D. S/HIC: Robust Identification of Soft and Hard Sweeps Using Machine Learning. PLoS Genet. 2016, 12, e1005928. [Google Scholar] [CrossRef] [PubMed]
- Libbrecht, M.W.; Noble, W.S. Machine learning applications in genetics and genomics. Nat. Rev. Genet. 2015, 16, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Cortés, A.J.; López-Hernández, F. Harnessing Crop Wild Diversity for Climate Change Adaptation. Genes 2021, 12, 783. [Google Scholar] [CrossRef]
- Doudna, J.A.; Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 2014, 346, 1258096. [Google Scholar] [CrossRef] [PubMed]
- Bohra, A.; Kilian, B.; Sivasankar, S.; Caccamo, M.; Mba, C.; McCouch, S.R.; Varshney, R.K. Reap the crop wild relatives for breeding future crops. Trends Biotechnol. 2021, 40, 412–431. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.; Ghosh, S.; Williams, M.J.; Cuddy, W.S.; Simmonds, J.; Rey, M.D.; Asyraf Md Hatta, M.; Hinchliffe, A.; Steed, A.; Reynolds, D.; et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat. Plants 2018, 4, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Martignago, D.; Rico-Medina, A.; Blasco-Escamez, D.; Fontanet-Manzaneque, J.B.; Cano-Delgado, A.I. Drought Resistance by Engineering Plant Tissue-Specific Responses. Front. Plant Sci. 2019, 10, 1676. [Google Scholar] [CrossRef]
- Saint Pierre, C.; Crossa, J.L.; Bonnett, D.; Yamaguchi-Shinozaki, K.; Reynolds, M.P. Phenotyping transgenic wheat for drought resistance. J. Exp. Bot. 2012, 63, 1799–1808. [Google Scholar] [CrossRef] [PubMed]
- Lemmon, Z.H.; Reem, N.T.; Dalrymple, J.; Soyk, S.; Swartwood, K.E.; Rodriguez-Leal, D.; Eck, J.V.; Lippman, Z.B. Rapid improvement of domestication traits in an orphan crop by genome editing. Nat. Plants 2018, 4, 766–770. [Google Scholar] [CrossRef] [PubMed]
- Varshney, R.K.; Graner, A.; Sorrells, M.E. Genomics-assisted breeding for crop improvement. Trends Plant Sci. 2005, 10, 621–630. [Google Scholar] [CrossRef]
- Varshney, R.K.; Bohra, A.; Roorkiwal, M.; Barmukh, R.; Cowling, W.A.; Chitikineni, A.; Lam, H.-M.; Hickey, L.T.; Croser, J.S.; Bayer, P.E.; et al. Fast-forward breeding for a food-secure world. Trends Genet. 2021, 37, 1124–1136. [Google Scholar] [CrossRef]
- Smale, M.; Jamora, N. Valuing genebanks. Food Secur. 2020, 12, 905–918. [Google Scholar] [CrossRef]
- Brink, M.; van Hintum, T. Genebank Operation in the Arena of Access and Benefit-Sharing Policies. Front. Plant Sci. 2019, 10, 1712. [Google Scholar] [CrossRef] [PubMed]
- Peláez, D.; Aguilar, P.A.; Mercado, M.; López-Hernández, F.; Guzmán, M.; Burbano-Erazo, E.; Denning-James, K.; Medina, C.I.; Blair, M.W.; De Vega, J.J.; et al. Genotype Selection, and Seed Uniformity and Multiplication to Ensure Common Bean (Phaseolus vulgaris L.) var. Liborino. Agronomy 2022, 12, 2285. [Google Scholar] [CrossRef]
- McCouch, S. Feeding the future. Nature 2013, 499, 23–24. [Google Scholar] [CrossRef]
- Foden, W.B.; Young, B.E.; Akçakaya, H.R.; Garcia, R.A.; Hoffmann, A.A.; Stein, B.A.; Thomas, C.D.; Wheatley, C.J.; Bickford, D.; Carr, J.A.; et al. Climate change vulnerability assessment of species. Wiley Interdiscip. Rev. Clim. Chang. 2018, 10, e551. [Google Scholar] [CrossRef]
Species | Goal | Sampling | Genotyping | Key Finding | Reference |
---|---|---|---|---|---|
Molecular In Silico Characterization | |||||
Apocynum venetum | ° To characterize in silico AvNAC proteins for abiotic stress responses | Genome sequence of A. venetum | WGS and 74 NAC TFs classified in 15 subgroups | AvNAC58 and 69 are differentially expressed in drought and salt stresses | Huang et al. [31] |
Genetic Mapping | |||||
Cowpea (Vigna unguiculata) | + To unveil the genomic architecture of salt tolerance in cowpea | 331 cowpea accessions from USDA-PGRCU tested in greenhouse trials | WGR (14,465,516 SNPs) imputed in GWAS (BLINK) | Identified QTLs and SNPs enable cowpea breeding through MAS | Ravelombola et al. [32] |
Sugarcane (Saccharum officinarum) | + To detect candidate genes for drought tolerance and agronomic traits | 159 diverse sugarcane accessions enriched for Thai lines and varieties | Target enrichment sequencing of 649 gene candidates to drought tolerance | 19 pleiotropic genes were related to the drought-tolerance response | Wirojsirasak et al. [33] |
Gene Functional Validation via Expression Analysis | |||||
Alfalfa (Medicago sativa) | ‡ To identify Msr genes and validate their response to abiotic stress | Alfalfa “Xinjiang DaYe” genome sequence and “Zhongmu No. 1” | 15 Msr genes validated with qRT-PCR | MsMsr genes play a role in during salt, drought, and ABA stresses | Zhao et al. [34] |
Phoebe bournei | ‡ To identify LBD genes and validate their response to abiotic stress | Genome sequence of P. bournei, and a mature tree for qRT-PCR | 38 putative LBD gene sequences, 5 selected for qRT-PCR | PbLBDs were pleiotropic for cold, heat, drought, and salt stress responses | Ma et al. [35] |
Sorghum (Sorghum bicolor) | ‡ To map and validate the molecular responses during salt stress | Sorghum cultivar “Lvjuren” | Transcriptome profiling and qRT-PCR | HKT1;5, CLCc and NPF7.3-1 are candidate genes in the salt stress response | Guo et al. [36] |
Trans-Genesis for Gene Functional Validation | |||||
Sorghum (Sorghum bicolor) | § To overexpress SbEXPA11 to validate its functionality for Cd exposure | Transgenic and WT sorghum cultivar ‘TX430’ | qRT-PCR of SbEXPA11 | SbEXPA11 is a target to develop phytoremediary sorghum varieties | Wang et al. [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortés, A.J. Abiotic Stress Tolerance Boosted by Genetic Diversity in Plants. Int. J. Mol. Sci. 2024, 25, 5367. https://doi.org/10.3390/ijms25105367
Cortés AJ. Abiotic Stress Tolerance Boosted by Genetic Diversity in Plants. International Journal of Molecular Sciences. 2024; 25(10):5367. https://doi.org/10.3390/ijms25105367
Chicago/Turabian StyleCortés, Andrés J. 2024. "Abiotic Stress Tolerance Boosted by Genetic Diversity in Plants" International Journal of Molecular Sciences 25, no. 10: 5367. https://doi.org/10.3390/ijms25105367
APA StyleCortés, A. J. (2024). Abiotic Stress Tolerance Boosted by Genetic Diversity in Plants. International Journal of Molecular Sciences, 25(10), 5367. https://doi.org/10.3390/ijms25105367