High-Throughput Genomics Identify Novel FBN1/2 Variants in Severe Neonatal Marfan Syndrome and Congenital Heart Defects
Abstract
:1. Introduction
2. Results
2.1. History and Clinical Course
2.1.1. Case A
2.1.2. Case B
2.2. Genetic Workup
2.2.1. Proband A Cytogenomic Whole-Genome SNP Microarray
2.2.2. Proband B Trio-Whole-Exome Sequencing
3. Discussion
3.1. Neonatal Marfan Syndrome (nMFS)
3.2. Congenital Contractual Arachnodactyly (CCA)
4. Materials and Methods
4.1. Human Studies
4.2. Cytogenomic SNP Microarray
4.3. Trio Whole-Exome Sequencing (WES)
4.4. Variant Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABG | Arterial Blood Gas Analysis |
ACMG | American College of Medical Genetics |
cbEGF | Calcium Binding Epidermal Growth Factor |
CCA | Congenital Contractual Arachnodactyly |
CPAP | Continuous Positive Airway Pressure |
DOL | Day of life |
D-TGA | Dextro-Transposition of the Great Arteries |
ECM | Extracellular Matrix |
EGF | Epidermal Growth Factor |
FBN-1 | Fibrillin-1 |
FBN-2 | Fibrillin-2 |
HGMD | Human Gene Mutation Database |
LTBP | Latent Transforming Growth Factor β1 Binding Protein |
MFS | Marfan Syndrome |
MR | Mitral Regurgitation |
NICU | Neonatal Intensive Care Unit |
nMFS | Neonatal Marfan Syndrome |
OI | Oxygen Index |
OMIM | Online Mendelian Inheritance in Man |
PGE1 | Prostaglandin E1 |
PPHN | Persistent Pulmonary Hypertension |
SFU | Society of Fetal Urology |
SNP | Single-Nucleotide Polymorphism |
SNV | Single-Nucleotide Variants |
TGFBR1 | Transforming Growth Factor Beta Receptor type 1 |
TR | Tricuspid Regurgitation |
TRPG | Tricuspid Regurgitation Pressure Gradient |
UCLA | University of California |
VUS | Variant of Uncertain Clinical Significance |
WES | Whole-Exome Sequencing |
References
- Bax, D.V.; Bernard, S.E.; Lomas, A.; Morgan, A.; Humphries, J.; Shuttleworth, C.A.; Humphries, M.J.; Kielty, C.M. Cell Adhesion to Fibrillin-1 Molecules and Microfibrils Is Mediated by α5β1 and αvβ3 Integrins. J. Biol. Chem. 2003, 278, 34605–34616. [Google Scholar] [CrossRef] [PubMed]
- Thomson, J.; Singh, M.; Eckersley, A.; Cain, S.A.; Sherratt, M.J.; Baldock, C. Fibrillin microfibrils and elastic fibre proteins: Functional interactions and extracellular regulation of growth factors. Semin. Cell Dev. Biol. 2018, 89, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Kielty, C.M.; Sherratt Michael, J.; Marson, A.; Baldock, C. Fibrillin Microfibrils. In Advances in Protein Chemistry; Elsevier: Amsterdam, The Netherlands, 2005; Volume 70, pp. 405–436. [Google Scholar] [CrossRef]
- Quondamatteo, F.; Reinhardt, D.P.; Charbonneau, N.L.; Pophal, G.; Sakai, L.Y.; Herken, R. Fibrillin-1 and fibrillin-2 in human embryonic and early fetal development. Matrix Biol. 2002, 21, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.R.; Summers, K.M. Structure and function of the mammalian fibrillin gene family: Implications for human connective tissue diseases. Mol. Genet. Metab. 2012, 107, 635–647. [Google Scholar] [CrossRef]
- Frédéric, M.Y.; Monino, C.; Marschall, C.; Hamroun, D.; Faivre, L.; Jondeau, G.; Klein, H.-G.; Neumann, L.; Gautier, E.; Binquet, C.; et al. The FBN2 gene: New mutations, locus-specific database (Universal Mutation Database FBN2), and genotype-phenotype correlations. Hum. Mutat. 2008, 30, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Gezdirici, A.; Teralı, K.; Gülec, E.Y.; Bornaun, H.; Dogan, M.; Eröz, R. An integrated clinical and molecular study of a cohort of Turkish patients with Marfan syndrome harboring known and novel FBN1 variants. J. Hum. Genet. 2021, 66, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Tiecke, F.; Katzke, S.; Booms, P.; Robinson, P.N.; Neumann, L.; Godfrey, M.; Mathews, K.R.; Scheuner, M.; Hinkel, G.K.; Brenner, R.E.; et al. Classic, atypically severe and neonatal Marfan syndrome: Twelve mutations and genotype–phenotype correlations in FBN1 exons 24–40. Eur. J. Hum. Genet. 2001, 9, 13–21. [Google Scholar] [CrossRef]
- Coelho, S.G.; Almeida, A.G. Marfan syndrome revisited: From genetics to clinical practice. Rev. Port. Cardiol. 2020, 39, 215–226. [Google Scholar] [CrossRef]
- Biggin, A.; Holman, K.; Brett, M.; Bennetts, B.; Adès, L. Detection of thirty novel FBN1 mutations in patients with Marfan syndrome or a related fibrillinopathy. Hum. Mutat. 2003, 23, 99. [Google Scholar] [CrossRef]
- Cecchi, A.; Ogawa, N.; Martinez, H.R.; Carlson, A.; Fan, Y.; Penny, D.J.; Guo, D.; Eisenberg, S.; Safi, H.; Estrera, A.; et al. Missense mutations in FBN1 exons 41 and 42 cause Weill–Marchesani syndrome with thoracic aortic disease and Marfan syndrome. Am. J. Med. Genet. Part A 2013, 161, 2305–2310. [Google Scholar] [CrossRef]
- Park, E.-S.; Putnam, E.A.; Chitayat, D.; Child, A.; Milewicz, D.M. Clustering ofFBN2 mutations in patients with congenital contractural arachnodactyly indicates an important role of the domains encoded by exons 24 through 34 during human development. Am. J. Med. Genet. 1998, 78, 350–355. [Google Scholar] [CrossRef]
- Liu, W.; Zhao, N.; Li, X.-F.; Wang, H.; Sui, Y.; Lu, Y.-P.; Feng, W.-H.; Ma, C.; Han, W.-T.; Jiang, M. A novel FBN2 mutation in a Chinese family with congenital contractural arachnodactyly. FEBS Open Bio. 2015, 5, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.A.; Putnam, E.A.; Carmical, S.G.; Kaitila, I.; Steinmann, B.; Child, A.; Danesino, C.; Metcalfe, K.; Berry, S.A.; Chen, E.; et al. Ten novel FBN2 mutations in congenital contractural arachnodactyly: Delineation of the molecular pathogenesis and clinical phenotype: FBN2 Mutations and Phenotype in CCA. Hum. Mutat. 2002, 19, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Robinson, P.N.; Godfrey, M. The molecular genetics of Marfan syndrome and related microfibrillopathies. J. Med. Genet. 2000, 37, 9–25. [Google Scholar] [CrossRef]
- Xu, P.; Li, R.; Huang, S.; Sun, M.; Liu, J.; Niu, Y.; Zou, Y.; Li, J.; Gao, M.; Li, X.; et al. A Novel Splicing Mutation in the FBN2 Gene in a Family With Congenital Contractural Arachnodactyly. Front. Genet. 2020, 11, 143. [Google Scholar] [CrossRef]
- Tunçbilek, E.; Alanay, Y. Congenital contractural arachnodactyly (Beals syndrome). Orphanet J. Rare Dis. 2006, 1, 20. [Google Scholar] [CrossRef]
- Rommel, K.; Karck, M.; Haverich, A.; von Kodolitsch, Y.; Rybczynski, M.; Müller, G.; Singh, K.K.; Schmidtke, J.; Arslan-Kirchner, M. Identification of 29 novel and nine recurrent fibrillin-1 (FBN1) mutations and genotype-phenotype correlations in 76 patients with Marfan syndrome. Hum. Mutat. 2005, 26, 529–539. [Google Scholar] [CrossRef]
- Robinson, P.N.; Booms, P.; Katzke, S.; Ladewig, M.; Neumann, L.; Palz, M.; Pregla, R.; Tiecke, F.; Rosenberg, T. Mutations of FBN1 and genotype-phenotype correlations in Marfan syndrome and related fibrillinopathies. Hum. Mutat. 2002, 20, 153–161. [Google Scholar] [CrossRef]
- Pyeritz, R.E. The Marfan Syndrome. Annu. Rev. Med. 2000, 51, 481–510. [Google Scholar] [CrossRef]
- Rantamäki, T.; Lönnqvist, L.; Karttunen, L.; Kainulainen, K.; Peltonen, L. DNA Diagnostics of the Marfan Syndrome: Application of Amplifîable Polymorphie Markers. Eur. J. Hum. Genet. 1994, 2, 66–75. [Google Scholar] [CrossRef]
- Loeys, B.L.; Dietz, H.C.; Braverman, A.C.; Callewaert, B.L.; De Backer, J.; Devereux, R.B.; Hilhorst-Hofstee, Y.; Jondeau, G.; Faivre, L.; Milewicz, D.M.; et al. The revised Ghent nosology for the Marfan syndrome. J. Med. Genet. 2010, 47, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Deng, Y.; Yang, Y.; Liu, H. A novel fibrillin-1 gene missense mutation associated with neonatal Marfan syndrome: A case report and review of the mutation spectrum. BMC Pediatr. 2016, 16, 60. [Google Scholar] [CrossRef] [PubMed]
- Revencu, N.; Quenum, G.; Detaille, T.; Verellen, G.; De Paepe, A.; Verellen-Dumoulin, C. Congenital diaphragmatic eventration and bilateral uretero-hydronephrosis in a patient with neonatal Marfan syndrome caused by a mutation in exon 25 of the FBN1 gene and review of the literature. Eur. J. Pediatr. 2003, 163, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Shinawi, M.; Boileau, C.; Brik, R.; Mandel, H.; Bentur, L. Splicing mutation in the fibrillin-1 gene associated with neonatal Marfan syndrome and severe pulmonary emphysema with tracheobronchomalacia. Pediatr. Pulmonol. 2005, 39, 374–378. [Google Scholar] [CrossRef] [PubMed]
- Ghandi, Y.; Zanjani, K.S.; Mazhari-Mousavi, S.E.; Parvaneh, N. Neonatal Marfan Syndrome: Report of Two Cases. Iran J. Pediatr. 2013, 23, 113–117. [Google Scholar] [PubMed]
- Solé-Ribalta, A.; Rodríguez-Fanjul, X.; Carretero-Bellon, J.M.; Pascual-Sala, C.; Martorell-Sampol, L.; Bobillo-Pérez, S.; Morillo-Palomo, A.M. Neonatal Marfan Syndrome: A Rare, Severe, and Life-Threatening Genetic Disease. J. Pediatr. 2019, 211, 221–221.e2. [Google Scholar] [CrossRef] [PubMed]
- Strigl, S.; Quagebeur, J.M.; Gersony, W.M. Quadrivalvar Replacement in Infantile Marfan Syndrome. Pediatr. Cardiol. 2007, 28, 403–405. [Google Scholar] [CrossRef] [PubMed]
- Dordoni, C.; Ciaccio, C.; Santoro, G.; Venturini, M.; Cavallari, U.; Ritelli, M.; Colombi, M. Marfan syndrome: Report of a complex phenotype due to a 15q21.1 contiguos gene deletion encompassing FBN1, and literature review. Am. J. Med. Genet. Part A 2016, 173, 200–206. [Google Scholar] [CrossRef]
- Tognato, E.; Perona, A.; Aronica, A.; Bertola, A.; Cimminelli, L.; De Vecchi, S.; Eshraghy, M.R.; Loperfido, B.; Vivenza, C.; Manzoni, P. Neonatal Marfan Syndrome. Am. J. Perinatol. 2019, 36, S74–S76. [Google Scholar] [CrossRef]
- Kainulainen, K.; Karttunen, L.; Puhakka, L.; Sakai, L.; Peltonen, L. Mutations in the fibrillin gene responsible for dominant ectopia lentis and neonatal Marfan syndrome. Nat. Genet. 1994, 6, 64–69. [Google Scholar] [CrossRef]
- Jacobs, A.M.; Toudjarska, I.; Racine, A.; Tsipouras, P.; Kilpatrick, M.W.; Shanske, A. A Recurring FBN1 Gene Mutation in Neonatal Marfan Syndrome. Arch. Pediatr. Adolesc. Med. 2002, 156, 1081–1085. [Google Scholar] [CrossRef] [PubMed]
- Mátyás, G.; Alonso, S.; Patrignani, A.; Marti, M.; Arnold, E.; Magyar, I.; Henggeler, C.; Carrel, T.; Steinmann, B.; Berger, W. Large genomic fibrillin-1 (FBN1) gene deletions provide evidence for true haploinsufficiency in Marfan syndrome. Hum. Genet. 2007, 122, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Ardhanari, M.; Barbouth, D.; Swaminathan, S. Early-Onset Marfan Syndrome: A Case Series. J. Pediatr. Genet. 2019, 08, 086–090. [Google Scholar] [CrossRef] [PubMed]
- Carande, E.J.; Bilton, S.J.; Adwani, S. A Case of Neonatal Marfan Syndrome: A Management Conundrum and the Role of a Multidisciplinary Team. Case Rep. Pediatr. 2017, 2017, 8952428. [Google Scholar] [CrossRef] [PubMed]
- Klemenzdottir, E.O.; Arnadottir, G.A.; Jensson, B.O.; Jonasdottir, A.; Katrinardottir, H.; Fridriksdottir, R.; Jonasdottir, A.; Sigurdsson, A.; Gudjonsson, S.A.; Jonsson, J.J.; et al. A population-based survey of FBN1 variants in Iceland reveals underdiagnosis of Marfan syndrome. Eur. J. Hum. Genet. 2023, 32, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Colovati, M.E.; da Silva, L.R.; Takeno, S.S.; Mancini, T.I.; Dutra, A.R.N.; Guilherme, R.S.; de Mello, C.B.; Melaragno, M.I.; A Perez, A.B. Marfan syndrome with a complex chromosomal rearrangement including deletion of the FBN1 gene. Mol. Cytogenet. 2012, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- Hilhorst-Hofstee, Y.; Hamel, B.C.; Verheij, J.B.; Rijlaarsdam, M.E.; Mancini, G.M.; Cobben, J.M.; Giroth, C.; AL Ruivenkamp, C.; Hansson, K.B.; Timmermans, J.; et al. The clinical spectrum of complete FBN1 allele deletions. Eur. J. Hum. Genet. 2010, 19, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Adès, L.; Sullivan, K.; Biggin, A.; Haan, E.; Brett, M.; Holman, K.; Dixon, J.; Robertson, S.; Holmes, A.; Rogers, J.; et al. FBN1, TGFBR1, and the Marfan-craniosynostosis/mental retardation disorders revisited. Am. J. Med. Genet. Part A 2006, 140A, 1047–1058. [Google Scholar] [CrossRef]
- Callewaert, B. Congenital Contractural Arachnodactyly; University of Washington, Seattle: Seattle, WA, USA, 2022. [Google Scholar]
- Sun, L.; Huang, Y.; Zhao, S.; Zhong, W.; Shi, J.; Guo, Y.; Zhao, J.; Xiong, G.; Yin, Y.; Chen, Z.; et al. Identification of Novel FBN2 Variants in a Cohort of Congenital Contractural Arachnodactyly. Front. Genet. 2022, 13, 804202. [Google Scholar] [CrossRef]
- Li, A.-L.; He, J.-Q.; Zeng, L.; Hu, Y.-Q.; Wang, M.; Long, J.-Y.; Chang, S.-H.; Jin, J.-Y.; Xiang, R. Case report: Identification of novel fibrillin-2 variants impacting disulfide bond and causing congenital contractural arachnodactyly. Front. Genet. 2023, 14, 1035887. [Google Scholar] [CrossRef]
- Kloth, K.; Neu, A.; Rau, I.; Hülsemann, W.; Kutsche, K.; Volk, A.E. Severe congenital contractural arachnodactyly caused by biallelic pathogenic variants in FBN2. Eur. J. Med. Genet. 2021, 64, 104161. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Clericuzio, C.L.; Godfrey, M. Familial occurenece of typical and severe lethal congenital contractural aracnodactyly caused by missplicing of exon 34 of fibrillin-2. Am. J. Hum. Genet. 1996, 59, 1027–1034. [Google Scholar] [PubMed]
- Gupta, P.A.; Wallis, D.D.; Chin, T.O.; Northrup, H.; Tran-Fadulu, V.T.; Towbin, J.A.; Milewicz, D.M. FBN2 mutation associated with manifestations of Marfan syndrome and congenital contractural arachnodactyly. J. Med. Genet. 2004, 41, e56. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Watanabe, A.; Migita, M.; Gocho, Y.; Hayakawa, J.; Ogawa, S.I.; Shimada, T.; Fukunaga, Y. Transient Cardiomyopathy in a Patient with Congenital Contractural Arachnodactyly (Beals Syndrome). J Nippon Med Sch. 2006, 73, 285–288. [Google Scholar] [CrossRef] [PubMed]
- Takeda, N.; Morita, H.; Fujita, D.; Inuzuka, R.; Taniguchi, Y.; Imai, Y.; Hirata, Y.; Komuro, I. Congenital contractural arachnodactyly complicated with aortic dilatation and dissection: Case report and review of literature. Am. J. Med. Genet. A 2015, 167A, 2382–2387. [Google Scholar] [CrossRef]
- Zhang, C.; Qiao, F.; Cheng, Q.; Luo, C.; Zhang, Q.; Hu, P.; Xu, Z. A Novel Splice Site Mutation in the FBN2 Gene in a Chinese Family with Congenital Contractural Arachnodactyly. Biochem. Genet. 2023. [Google Scholar] [CrossRef] [PubMed]
- Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; Del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ data to high confidence variant calls: The Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.1–11.10.33. [Google Scholar] [CrossRef] [PubMed]
- Goswami, C.; Chattopadhyay, A.; Chuang, E.Y. Rare variants: Data types and analysis strategies. Ann. Transl. Med. 2021, 9, 961. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Robinson, J.T.; Thorvaldsdóttir, H.; Turner, D.; Mesirov, J.P. igv.js: An embeddable JavaScript implementation of the Integrative Genomics Viewer (IGV). Bioinformatics 2023, 39, btac830. [Google Scholar] [CrossRef]
Gene | Disorder | MOI | Skeletal Features | Cardiovascular Features | Ophthalmological Features | Other Features |
---|---|---|---|---|---|---|
FBN1 | MFS | AD | Tall stature, arachnodactyly, brachydactyly, scoliosis, pectus, deformities, joint stiffness, contractures, hypermobility of joints, muscle hypoplasia, pes planus, toe walking, muscular build, early-onset carpal tunnel syndrome | Thoracic aortic aneurysms & dissections, mitral/tricuspid valve prolapse | Ectopia lentils Myopia | Pneumothorax, skin striae, long narrow face, malar hypoplasia, micrognathia, retrognathia |
FBN2 | CCA | AD | Arachnodactyly, (kypho)scoliosis, pectus deformities, contractures of knees and ankles, muscle hypoplasia, long, slender fingers & toes, crumpled ears with folded upper helix | Mild cardiovascular involvement | Long narrow face, highly arched palate, micrognathia, crumpled external ears |
Gene | Chromosome | Exons Deleted | Interpretation |
---|---|---|---|
FBN1 | 15q21 | Exon 7-30 | 107kb interstitial deletion resulting in haploinsufficiency, most likely de novo |
Gene | Genomic Position (Hg19) | Nucleotide Change | Transcript | Protein Change | Molecular Consequence | Inheritance | Zygosity | Interpretation | Minor Allele Frequency |
---|---|---|---|---|---|---|---|---|---|
FBN2 | 5:127863579 | c.518C>T | NM_001999.3 | Thr173IIe | Missense | Mother | Heterozygous | Uncertain significance | <0.01 |
FBN2 | 5:127597562 | c.8230T>G | NM_001999.3 | Tyr2744Asp | Missense | Father | Heterozygous | Uncertain significance | <0.01 |
Gene | Age at Diagnosis | Nucleotide/Protein Change | Effect | Exon/ Intron | Inheritance | Cardiac Abnormalities & Others | Diagnosis | Reference |
---|---|---|---|---|---|---|---|---|
FBN2 | 34 weeks female | A>T Transversion | Splice variant | Exon 34 | NA | Type-B interrupted aortic arch, large ventricular septal defect, moderate atrial septal defect Duodenal atresia intestinal malrotation, single umbilical artery, vertebral anomalies, arachnodactyly, contractures of elbows & knees | CCA | [44] |
FBN2 | 5 yrs | G>C Transversion | Splice variant | Exon 31 | De novo | Dilated aortic root, prolapsed mitral valve Congenital contractures, arachnodactyly, crumpled helices, scoliosis | CCA | [12] |
FBN2 | At birth | C1239R | NA | Exon 28 | NA | Enlarged aortic root Congenital contractures, crumpled ears, arachnodactyly | CCA | [14] |
FBN1&2 | 12 yrs female | G>A Transversion | Splice variant | Intron 32 | NA | Aortic root dilatation Crumpled appearance to the helix of the ear, contractures of multiple joints, dolichostonomelia, scoliosis, pectus carinatum, striae, highly arched palate | CCA with manifestations of MFS | [45] |
FBN2 | 38 weeks 5 days male | NA | NA | NA | NA | Left ventricular noncompaction Arachnodactyly, dolichostenomelia, metatarsus varus, contraction of the elbows & knees, thin extremities & ears with flattered helices, crumpled antihelices | CCA | [46] |
FBN2 | 51 yrs male | G>A | Splice variant | Exon 32 | NA | Aortic dilatation and/or dissection, Contractures, scoliosis, crumpled appearance to the helices of the ear | CCA | [47] |
FBN2 | NA | A>G | Splice variant | Exon 27 | Paternal | Ventricular septal defect Right humerus and bilateral ulnar radius curvature, continuous clenched hands, elongated limbs, finger contracture | CCA | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zodanu, G.K.E.; Hwang, J.H.; Mehta, Z.; Sisniega, C.; Barsegian, A.; Kang, X.; Biniwale, R.; Si, M.-S.; Satou, G.M.; Halnon, N.; et al. High-Throughput Genomics Identify Novel FBN1/2 Variants in Severe Neonatal Marfan Syndrome and Congenital Heart Defects. Int. J. Mol. Sci. 2024, 25, 5469. https://doi.org/10.3390/ijms25105469
Zodanu GKE, Hwang JH, Mehta Z, Sisniega C, Barsegian A, Kang X, Biniwale R, Si M-S, Satou GM, Halnon N, et al. High-Throughput Genomics Identify Novel FBN1/2 Variants in Severe Neonatal Marfan Syndrome and Congenital Heart Defects. International Journal of Molecular Sciences. 2024; 25(10):5469. https://doi.org/10.3390/ijms25105469
Chicago/Turabian StyleZodanu, Gloria K. E., John H. Hwang, Zubin Mehta, Carlos Sisniega, Alexander Barsegian, Xuedong Kang, Reshma Biniwale, Ming-Sing Si, Gary M. Satou, Nancy Halnon, and et al. 2024. "High-Throughput Genomics Identify Novel FBN1/2 Variants in Severe Neonatal Marfan Syndrome and Congenital Heart Defects" International Journal of Molecular Sciences 25, no. 10: 5469. https://doi.org/10.3390/ijms25105469
APA StyleZodanu, G. K. E., Hwang, J. H., Mehta, Z., Sisniega, C., Barsegian, A., Kang, X., Biniwale, R., Si, M. -S., Satou, G. M., Halnon, N., UCLA Congenital Heart Defect BioCore Faculty, Grody, W. W., Van Arsdell, G. S., Nelson, S. F., & Touma, M. (2024). High-Throughput Genomics Identify Novel FBN1/2 Variants in Severe Neonatal Marfan Syndrome and Congenital Heart Defects. International Journal of Molecular Sciences, 25(10), 5469. https://doi.org/10.3390/ijms25105469