Missing Wedge Completion via Unsupervised Learning with Coordinate Networks
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. Forward Model
3.2. Reconstruction Algorithm
3.3. Data
3.4. Experimental Setup
3.5. Baselines
3.6. Image Evaluation
3.6.1. Directional Fourier Shell Correlation (FSC)
3.6.2. Voxel-Based Metrics
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
Abbreviations
CryoET | Cryogenic electron tomography |
3D | Three-dimensional |
STA | Subtomogram averaging |
TEM | Transmission electron microscopy |
2D | Two-dimensional |
WBP | Weighted back-projection |
CNN | Convolutional neural network |
CN | Coordinate network |
FSC | Fourier shell correlation |
PSNR | Peak signal-to-noise ratio |
SSIM | Structural similarity index |
VIF | Visual information fidelity |
CTF | Contrast transfer function |
Appendix A
References
- Eisenstein, M. The field that came in from the cold. Nat. Methods 2016, 13, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Crowther, R.A. The Resolution Revolution: Recent Advances in cryoEM; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Shen, P.S. The 2017 Nobel Prize in Chemistry: Cryo-EM comes of age. Anal. Bioanal. Chem. 2018, 410, 2053–2057. [Google Scholar] [CrossRef] [PubMed]
- de la Cruz, M.J.; Eng, E.T. Scaling up cryo-EM for biology and chemistry: The journey from niche technology to mainstream method. Structure 2023, 31, 1487–1498. [Google Scholar] [CrossRef]
- Saibil, H.R. Cryo-EM in molecular and cellular biology. Mol. Cell 2022, 82, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Lučić, V.; Rigort, A.; Baumeister, W. Cryo-electron tomography: The challenge of doing structural biology in situ. J. Cell Biol. 2013, 202, 407–419. [Google Scholar] [CrossRef] [PubMed]
- Cope, J.; Heumann, J.; Hoenger, A. Cryo-Electron Tomography for Structural Characterization of Macromolecular Complexes. Curr. Protoc. Protein Sci. 2011, 65, 17.13. [Google Scholar] [CrossRef] [PubMed]
- Asano, S.; Fukuda, Y.; Beck, F.; Aufderheide, A.; Förster, F.; Danev, R.; Baumeister, W. A molecular census of 26 S proteasomes in intact neurons. Science 2015, 347, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Shahmoradian, S.H.; Galaz-Montoya, J.G.; Schmid, M.F.; Cong, Y.; Ma, B.; Spiess, C.; Frydman, J.; Ludtke, S.J.; Chiu, W. TRiC’s tricks inhibit huntingtin aggregation. eLife 2013, 2, e00710. [Google Scholar] [CrossRef] [PubMed]
- Darrow, M.C.; Sergeeva, O.A.; Isas, J.M.; Galaz-Montoya, J.G.; King, J.A.; Langen, R.; Schmid, M.F.; Chiu, W. Structural mechanisms of mutant huntingtin aggregation suppression by the synthetic chaperonin-like CCT5 complex explained by cryoelectron tomography. J. Biol. Chem. 2015, 290, 17451–17461. [Google Scholar] [CrossRef] [PubMed]
- Bäuerlein, F.J.; Saha, I.; Mishra, A.; Kalemanov, M.; Martínez-Sánchez, A.; Klein, R.; Dudanova, I.; Hipp, M.S.; Hartl, F.U.; Baumeister, W.; et al. In situ architecture and cellular interactions of PolyQ inclusions. Cell 2017, 171, 179–187. [Google Scholar] [CrossRef]
- Guo, Q.; Lehmer, C.; Martínez-Sánchez, A.; Rudack, T.; Beck, F.; Hartmann, H.; Pérez-Berlanga, M.; Frottin, F.; Hipp, M.S.; Hartl, F.U.; et al. In situ structure of neuronal C9orf72 poly-GA aggregates reveals proteasome recruitment. Cell 2018, 172, 696–705. [Google Scholar] [CrossRef] [PubMed]
- Trinkaus, V.A.; Riera-Tur, I.; Martínez-Sánchez, A.; Bäuerlein, F.J.; Guo, Q.; Arzberger, T.; Baumeister, W.; Dudanova, I.; Hipp, M.S.; Hartl, F.U.; et al. In situ architecture of neuronal α-Synuclein inclusions. Nat. Commun. 2021, 12, 2110. [Google Scholar] [CrossRef] [PubMed]
- Galaz-Montoya, J.G.; Shahmoradian, S.H.; Shen, K.; Frydman, J.; Chiu, W. Cryo-electron tomography provides topological insights into mutant huntingtin exon 1 and polyQ aggregates. Commun. Biol. 2021, 4, 849. [Google Scholar] [CrossRef]
- Liu, C.; Mendonça, L.; Yang, Y.; Gao, Y.; Shen, C.; Liu, J.; Ni, T.; Ju, B.; Liu, C.; Tang, X.; et al. The architecture of inactivated SARS-CoV-2 with postfusion spikes revealed by cryo-EM and cryo-ET. Structure 2020, 28, 1218–1224. [Google Scholar] [CrossRef] [PubMed]
- Englmeier, R.; Förster, F. Cryo-electron tomography for the structural study of mitochondrial translation. Tissue Cell 2019, 57, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Weiner, E.; Pinskey, J.M.; Nicastro, D.; Otegui, M.S. Electron microscopy for imaging organelles in plants and algae. Plant Physiol. 2022, 188, 713–725. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.Y.; Segev-Zarko, L.a.; Pintilie, G.D.; Kim, C.Y.; Staggers, S.R.; Schmid, M.F.; Egan, E.S.; Chiu, W.; Boothroyd, J.C. Cryogenic electron tomography reveals novel structures in the apical complex of Plasmodium falciparum. Mbio 2024, 15, e0286423. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.H.; Smith-Geater, C.; Galaz-Montoya, J.G.; Gu, Y.; Gupte, S.R.; Aviner, R.; Mitchell, P.G.; Hsu, J.; Miramontes, R.; Wang, K.Q.; et al. CryoET reveals organelle phenotypes in huntington disease patient iPSC-derived and mouse primary neurons. Nat. Commun. 2023, 14, 692. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.E.; Marko, M.; Frank, J.; Mannella, C.A. Electron tomographic analysis of frozen-hydrated tissue sections. J. Struct. Biol. 2002, 138, 63–73. [Google Scholar] [CrossRef]
- Schaffer, M.; Pfeffer, S.; Mahamid, J.; Kleindiek, S.; Laugks, T.; Albert, S.; Engel, B.D.; Rummel, A.; Smith, A.J.; Baumeister, W.; et al. A cryo-FIB lift-out technique enables molecular-resolution cryo-ET within native Caenorhabditis elegans tissue. Nat. Methods 2019, 16, 757–762. [Google Scholar] [CrossRef]
- Gaisin, V.A.; Kooger, R.; Grouzdev, D.S.; Gorlenko, V.M.; Pilhofer, M. Cryo-electron tomography reveals the complex ultrastructural organization of multicellular filamentous Chloroflexota (Chloroflexi) bacteria. Front. Microbiol. 2020, 11, 548235. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhou, H.; Chen, W.; Jiang, Y.; Yan, X.; You, H.; Li, X. CryoFIB milling large tissue samples for cryo-electron tomography. Sci. Rep. 2023, 13, 5879. [Google Scholar] [CrossRef] [PubMed]
- Dudek, N.K.; Galaz-Montoya, J.G.; Shi, H.; Mayer, M.; Danita, C.; Celis, A.I.; Viehboeck, T.; Wu, G.H.; Behr, B.; Bulgheresi, S.; et al. Previously uncharacterized rectangular bacterial structures in the dolphin mouth. Nat. Commun. 2023, 14, 2098. [Google Scholar] [CrossRef] [PubMed]
- Grünewald, K.; Cyrklaff, M. Structure of complex viruses and virus-infected cells by electron cryo tomography. Curr. Opin. Microbiol. 2006, 9, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Bharat, T.A.; Riches, J.D.; Kolesnikova, L.; Welsch, S.; Krähling, V.; Davey, N.; Parsy, M.L.; Becker, S.; Briggs, J.A. Cryo-electron tomography of Marburg virus particles and their morphogenesis within infected cells. PLoS Biol. 2011, 9, e1001196. [Google Scholar] [CrossRef]
- Murata, K.; Zhang, Q.; Gerardo Galaz-Montoya, J.; Fu, C.; Coleman, M.L.; Osburne, M.S.; Schmid, M.F.; Sullivan, M.B.; Chisholm, S.W.; Chiu, W. Visualizing adsorption of cyanophage P-SSP7 onto marine Prochlorococcus. Sci. Rep. 2017, 7, 44176. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Galaz-Montoya, J.G.; Sherman, M.B.; Sun, S.Y.; Goldsmith, C.S.; O’Toole, E.T.; Ackerman, L.; Carlson, L.A.; Weaver, S.C.; Chiu, W.; et al. Neutralizing antibodies inhibit chikungunya virus budding at the plasma membrane. Cell Host Microbe 2018, 24, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.; Cortese, M.; Winter, S.L.; Wachsmuth-Melm, M.; Neufeldt, C.J.; Cerikan, B.; Stanifer, M.L.; Boulant, S.; Bartenschlager, R.; Chlanda, P. SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. Nat. Commun. 2020, 11, 5885. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, L.; Chlanda, P. Cryo-electron tomography of viral infection—From applications to biosafety. Curr. Opin. Virol. 2023, 61, 101338. [Google Scholar] [CrossRef]
- Wang, Y.; Huo, T.; Tseng, Y.J.; Dang, L.; Yu, Z.; Yu, W.; Foulks, Z.; Murdaugh, R.L.; Ludtke, S.J.; Nakada, D.; et al. Using Cryo-ET to distinguish platelets during pre-acute myeloid leukemia from steady state hematopoiesis. Commun. Biol. 2022, 5, 72. [Google Scholar] [CrossRef]
- Galaz-Montoya, J.G. The advent of preventive high-resolution structural histopathology by artificial intelligence-powered cryogenic electron tomography. Front. Mol. Biosci. 2024, 11, 1390858. [Google Scholar] [CrossRef]
- Briggs, J.A. Structural biology in situ—The potential of subtomogram averaging. Curr. Opin. Struct. Biol. 2013, 23, 261–267. [Google Scholar] [CrossRef]
- Galaz-Montoya, J.G.; Ludtke, S.J. The advent of structural biology in situ by single particle cryo-electron tomography. Biophys. Rep. 2017, 3, 17–35. [Google Scholar] [CrossRef] [PubMed]
- Mattei, S.; Glass, B.; Hagen, W.J.; Kräusslich, H.G.; Briggs, J.A. The structure and flexibility of conical HIV-1 capsids determined within intact virions. Science 2016, 354, 1434–1437. [Google Scholar] [CrossRef]
- Himes, B.A.; Zhang, P. emClarity: Software for high-resolution cryo-electron tomography and subtomogram averaging. Nat. Methods 2018, 15, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Sutton, G.; Sun, D.; Fu, X.; Kotecha, A.; Hecksel, C.W.; Clare, D.K.; Zhang, P.; Stuart, D.I.; Boyce, M. Assembly intermediates of orthoreovirus captured in the cell. Nat. Commun. 2020, 11, 4445. [Google Scholar] [CrossRef] [PubMed]
- Tegunov, D.; Xue, L.; Dienemann, C.; Cramer, P.; Mahamid, J. Multi-particle cryo-EM refinement with M visualize ribosome-antibiotic complex at 3.5 Å in cells. Nat. Methods 2021, 18, 186–193. [Google Scholar] [CrossRef]
- Thompson, R.F.; Walker, M.; Siebert, C.A.; Muench, S.P.; Ranson, N.A. An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Methods 2016, 100, 3–15. [Google Scholar] [CrossRef]
- Weis, F.; Hagen, W.J.; Schorb, M.; Mattei, S. Strategies for optimization of cryogenic electron tomography data acquisition. JoVE J. Vis. Exp. 2021, 169, e62383. [Google Scholar]
- Radermacher, M. Weighted back-projection methods. In Electron Tomography: Methods for Three-Dimensional Visualization of Structures in the Cell; Springer: Cham, Switzerland, 2006; pp. 245–273. [Google Scholar]
- Kremer, J.R.; Mastronarde, D.N.; McIntosh, J.R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 1996, 116, 71–76. [Google Scholar] [CrossRef]
- Frangakis, A.S. It’s noisy out there! A review of denoising techniques in cryo-electron tomography. J. Struct. Biol. 2021, 213, 107804. [Google Scholar] [CrossRef] [PubMed]
- Radermacher, M. Three-dimensional reconstruction of single particles from random and nonrandom tilt series. J. Electron Microsc. Tech. 1988, 9, 359–394. [Google Scholar] [CrossRef] [PubMed]
- Mastronarde, D.N. Dual-axis tomography: An approach with alignment methods that preserve resolution. J. Struct. Biol. 1997, 120, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Lanzavecchia, S.; Cantele, F.; Bellon, P.; Zampighi, L.; Kreman, M.; Wright, E.; Zampighi, G. Conical tomography of freeze-fracture replicas: A method for the study of integral membrane proteins inserted in phospholipid bilayers. J. Struct. Biol. 2005, 149, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Moebel, E.; Kervrann, C. A Monte Carlo framework for missing wedge restoration and noise removal in cryo-electron tomography. J. Struct. Biol. X 2020, 4, 100013. [Google Scholar] [CrossRef] [PubMed]
- Paavolainen, L.; Acar, E.; Tuna, U.; Peltonen, S.; Moriya, T.; Soonsawad, P.; Marjomäki, V.; Cheng, R.H.; Ruotsalainen, U. Compensation of missing wedge effects with sequential statistical reconstruction in electron tomography. PloS ONE 2014, 9, e108978. [Google Scholar] [CrossRef]
- Yan, R.; Venkatakrishnan, S.V.; Liu, J.; Bouman, C.A.; Jiang, W. MBIR: A cryo-ET 3D reconstruction method that effectively minimizes missing wedge artifacts and restores missing information. J. Struct. Biol. 2019, 206, 183–192. [Google Scholar] [CrossRef]
- Goris, B.; Van den Broek, W.; Batenburg, K.J.; Mezerji, H.H.; Bals, S. Electron tomography based on a total variation minimization reconstruction technique. Ultramicroscopy 2012, 113, 120–130. [Google Scholar] [CrossRef]
- Deng, Y.; Chen, Y.; Zhang, Y.; Wang, S.; Zhang, F.; Sun, F. ICON: 3D reconstruction with ‘missing-information’restoration in biological electron tomography. J. Struct. Biol. 2016, 195, 100–112. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Part III, Proceedings of the MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Buchholz, T.O.; Jordan, M.; Pigino, G.; Jug, F. Cryo-CARE: Content-aware image restoration for cryo-transmission electron microscopy data. In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 August 2019; pp. 502–506. [Google Scholar]
- Wiedemann, S.; Heckel, R. A Deep Learning Method for Simultaneous Denoising and Missing Wedge Reconstruction in Cryogenic Electron Tomography. arXiv 2023, arXiv:2311.05539. [Google Scholar]
- He, J.; Zhang, Y.; Sun, W.; Yang, G.; Sun, F. IsoVEM: Isotropic Reconstruction for Volume Electron Microscopy Based on Transformer. bioRxiv 2023, 11. [Google Scholar] [CrossRef]
- Antun, V.; Renna, F.; Poon, C.; Adcock, B.; Hansen, A.C. On instabilities of deep learning in image reconstruction and the potential costs of AI. Proc. Natl. Acad. Sci. USA 2020, 117, 30088–30095. [Google Scholar] [CrossRef] [PubMed]
- Laves, M.H.; Tölle, M.; Ortmaier, T. Uncertainty estimation in medical image denoising with bayesian deep image prior. In Proceedings 2, Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis, Proceedings of the Second International Workshop, UNSURE 2020, and Third International Workshop, GRAIL 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, 8 October 2020; Springer: Cham, Switzerland, 2020; pp. 81–96. [Google Scholar]
- Bhadra, S.; Kelkar, V.A.; Brooks, F.J.; Anastasio, M.A. On hallucinations in tomographic image reconstruction. IEEE Trans. Med. Imaging 2021, 40, 3249–3260. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Würfl, T.; Breininger, K.; Liu, L.; Lauritsch, G.; Maier, A. Some investigations on robustness of deep learning in limited angle tomography. In Proceedings Part I, Medical Image Computing and Computer Assisted Intervention–MICCAI 2018, Proceedings of the 21st International Conference, Granada, Spain, 16–20 September 2018; Springer: Cham, Switzerland, 2018; pp. 145–153. [Google Scholar]
- Ader, N.R.; Kukulski, W. triCLEM: Combining high-precision, room temperature CLEM with cryo-fluorescence microscopy to identify very rare events. In Methods in Cell Biology; Elsevier: Amsterdam, The Netherlands, 2017; Volume 140, pp. 303–320. [Google Scholar]
- Kukulski, W.; Schorb, M.; Welsch, S.; Picco, A.; Kaksonen, M.; Briggs, J.A. Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision. J. Cell Biol. 2011, 192, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Deep image prior. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 9446–9454. [Google Scholar]
- Van Veen, D.; Jalal, A.; Soltanolkotabi, M.; Price, E.; Vishwanath, S.; Dimakis, A.G. Compressed sensing with deep image prior and learned regularization. arXiv 2018, arXiv:1806.06438. [Google Scholar]
- Heckel, R.; Hand, P. Deep decoder: Concise image representations from untrained non-convolutional networks. arXiv 2018, arXiv:1810.03982. [Google Scholar]
- Sitzmann, V.; Martel, J.; Bergman, A.; Lindell, D.; Wetzstein, G. Implicit neural representations with periodic activation functions. Adv. Neural Inf. Process. Syst. 2020, 33, 7462–7473. [Google Scholar]
- Tancik, M.; Srinivasan, P.; Mildenhall, B.; Fridovich-Keil, S.; Raghavan, N.; Singhal, U.; Ramamoorthi, R.; Barron, J.; Ng, R. Fourier features let networks learn high frequency functions in low dimensional domains. Adv. Neural Inf. Process. Syst. 2020, 33, 7537–7547. [Google Scholar]
- Lindell, D.B.; Van Veen, D.; Park, J.J.; Wetzstein, G. Bacon: Band-limited coordinate networks for multiscale scene representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 16252–16262. [Google Scholar]
- Shen, L.; Pauly, J.; Xing, L. NeRP: Implicit neural representation learning with prior embedding for sparsely sampled image reconstruction. IEEE Trans. Neural Netw. Learn. Syst. 2022. [Google Scholar] [CrossRef]
- Liu, R.; Sun, Y.; Zhu, J.; Tian, L.; Kamilov, U. Zero-shot learning of continuous 3D refractive index maps from discrete intensity-only measurements. arXiv 2021, arXiv:2112.00002. [Google Scholar]
- Zang, G.; Idoughi, R.; Li, R.; Wonka, P.; Heidrich, W. IntraTomo: Self-supervised learning-based tomography via sinogram synthesis and prediction. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 1960–1970. [Google Scholar]
- Van Veen, D.; Van der Sluijs, R.; Ozturkler, B.; Desai, A.; Bluethgen, C.; Boutin, R.D.; Willis, M.H.; Wetzstein, G.; Lindell, D.; Vasanawala, S.; et al. Scale-agnostic super-resolution in mri using feature-based coordinate networks. arXiv 2022, arXiv:2210.08676. [Google Scholar]
- Wolterink, J.M.; Zwienenberg, J.C.; Brune, C. Implicit neural representations for deformable image registration. In Proceedings of the PMLR International Conference on Medical Imaging with Deep Learning, Zurich, Switzerland, 6–8 July 2022; pp. 1349–1359. [Google Scholar]
- Kunz, J.F.; Ruschke, S.; Heckel, R. Implicit neural networks with fourier-feature inputs for free-breathing cardiac MRI reconstruction. arXiv 2023, arXiv:2305.06822. [Google Scholar]
- Galaz-Montoya, J.G.; Flanagan, J.; Schmid, M.F.; Ludtke, S.J. Single particle tomography in EMAN2. J. Struct. Biol. 2015, 190, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Tu, J.; Liu, J.; Molineux, I. Structural dynamics of bacteriophage P22 infection initiation revealed by cryo-electron tomography. Nat. Microbiol. 2019, 4, 1049–1056. [Google Scholar] [CrossRef] [PubMed]
- Vijay-Kumar, S.; Bugg, C.E.; Cook, W.J. Structure of ubiquitin refined at 1.8 Åresolution. J. Mol. Biol. 1987, 194, 531–544. [Google Scholar] [CrossRef] [PubMed]
- Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic differentiation in pytorch. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Tang, G.; Peng, L.; Baldwin, P.R.; Mann, D.S.; Jiang, W.; Rees, I.; Ludtke, S.J. EMAN2: An extensible image processing suite for electron microscopy. J. Struct. Biol. 2007, 157, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.T.; Zhang, H.; Wang, H.; Tao, C.L.; Bi, G.Q.; Zhou, Z.H. Isotropic reconstruction for electron tomography with deep learning. Nat. Commun. 2022, 13, 6482. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Mettes, P.; Maji, S.; Snoek, C.G. On measuring and controlling the spectral bias of the deep image prior. Int. J. Comput. Vis. 2022, 130, 885–908. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Flynn, J.R.; Ward, S.; Abich, J.; Poole, D. Image quality assessment using the ssim and the just noticeable difference paradigm. In Proceedings Part I 10 of the Engineering Psychology and Cognitive Ergonomics. Understanding Human Cognition, Proceedings of the 10th International Conference, EPCE 2013, Held as Part of HCI International 2013, Las Vegas, NV, USA, 21–26 July 2013; Springer: Cham, Switzerland, 2013; pp. 23–30. [Google Scholar]
- Sheikh, H.R.; Bovik, A.C. A visual information fidelity approach to video quality assessment. In Proceedings of the the First International Workshop on Video Processing and Quality Metrics for Consumer Electronics, Scottsdale, AZ, USA, 23–25 January 2005; Volume 7, pp. 2117–2128. [Google Scholar]
- Mason, A.; Rioux, J.; Clarke, S.E.; Costa, A.; Schmidt, M.; Keough, V.; Huynh, T.; Beyea, S. Comparison of objective image quality metrics to expert radiologists’ scoring of diagnostic quality of MR images. IEEE Trans. Med. Imaging 2019, 39, 1064–1072. [Google Scholar] [CrossRef]
- Akçakaya, M.; Yaman, B.; Chung, H.; Ye, J.C. Unsupervised deep learning methods for biological image reconstruction and enhancement: An overview from a signal processing perspective. IEEE Signal Process. Mag. 2022, 39, 28–44. [Google Scholar] [CrossRef] [PubMed]
- Dimakis, A.G. Deep Generative Models and Inverse Problems. In Mathematical Aspects of Deep Learning; Grohs, P., Kutyniok, G., Eds.; Cambridge University Press: Cambridge, UK, 2022; pp. 400–421. [Google Scholar]
- Dimakis, A.G. Deep Generative Models and Inverse Problems; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Moussavi, F.; Heitz, G.; Amat, F.; Comolli, L.R.; Koller, D.; Horowitz, M. 3D segmentation of cell boundaries from whole cell cryogenic electron tomography volumes. J. Struct. Biol. 2010, 170, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Hecksel, C.W.; Darrow, M.C.; Dai, W.; Galaz-Montoya, J.G.; Chin, J.A.; Mitchell, P.G.; Chen, S.; Jakana, J.; Schmid, M.F.; Chiu, W. Quantifying variability of manual annotation in cryo-electron tomograms. Microsc. Microanal. 2016, 22, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Leschziner, A.E.; Nogales, E. The orthogonal tilt reconstruction method: An approach to generating single-class volumes with no missing cone for ab initio reconstruction of asymmetric particles. J. Struct. Biol. 2006, 153, 284–299. [Google Scholar] [CrossRef] [PubMed]
- Scheres, S.H.; Melero, R.; Valle, M.; Carazo, J.M. Averaging of electron subtomograms and random conical tilt reconstructions through likelihood optimization. Structure 2009, 17, 1563–1572. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.Z.; Baldwin, P.R.; Davis, J.H.; Williamson, J.R.; Potter, C.S.; Carragher, B.; Lyumkis, D. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 2017, 14, 793–796. [Google Scholar] [CrossRef] [PubMed]
- Sorzano, C.O.S.; Semchonok, D.; Lin, S.C.; Lo, Y.C.; Vilas, J.L.; Jiménez-Moreno, A.; Gragera, M.; Vacca, S.; Maluenda, D.; Martínez, M.; et al. Algorithmic robustness to preferred orientations in single particle analysis by CryoEM. J. Struct. Biol. 2021, 213, 107695. [Google Scholar] [CrossRef]
- Kerbl, B.; Kopanas, G.; Leimkühler, T.; Drettakis, G. 3d gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. 2023, 42, 1–14. [Google Scholar] [CrossRef]
- Chen, M.; Ludtke, S.J. Deep learning-based mixed-dimensional Gaussian mixture model for characterizing variability in cryo-EM. Nat. Methods 2021, 18, 930–936. [Google Scholar] [CrossRef]
- Chen, M.; Schmid, M.F.; Chiu, W. Improving resolution and resolvability of single-particle cryoEM structures using Gaussian mixture models. Nat. Methods 2024, 21, 37–40. [Google Scholar] [CrossRef]
- Lehtinen, J.; Munkberg, J.; Hasselgren, J.; Laine, S.; Karras, T.; Aittala, M.; Aila, T. Noise2Noise: Learning image restoration without clean data. arXiv 2018, arXiv:1803.04189. [Google Scholar]
- Moran, N.; Schmidt, D.; Zhong, Y.; Coady, P. Noisier2noise: Learning to denoise from unpaired noisy data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 12064–12072. [Google Scholar]
- Winkler, H.; Taylor, K.A. Focus gradient correction applied to tilt series image data used in electron tomography. J. Struct. Biol. 2003, 143, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, J.; Li, S.; Crowther, R. CTF determination and correction in electron cryotomography. Ultramicroscopy 2006, 106, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Jensen, G.J.; Kornberg, R.D. Defocus-gradient corrected back-projection. Ultramicroscopy 2000, 84, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Galaz-Montoya, J.G.; Hecksel, C.W.; Baldwin, P.R.; Wang, E.; Weaver, S.C.; Schmid, M.F.; Ludtke, S.J.; Chiu, W. Alignment algorithms and per-particle CTF correction for single particle cryo-electron tomography. J. Struct. Biol. 2016, 194, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Tegunov, D.; Cramer, P. Real-time cryo-electron microscopy data preprocessing with Warp. Nat. Methods 2019, 16, 1146–1152. [Google Scholar] [CrossRef] [PubMed]
- Wagner, J.; Schaffer, M.; Fernández-Busnadiego, R. Cryo-electron tomography—The cell biology that came in from the cold. FEBS Lett. 2017, 591, 2520–2533. [Google Scholar] [CrossRef]
- Marx, V. Calling cell biologists to try cryo-ET. Nat. Methods 2018, 15, 575–578. [Google Scholar] [CrossRef]
Dataset | Model | PSNR | SSIM | VIF | Runtime (Min) |
---|---|---|---|---|---|
Spheres | EMAN2 | 26.3 | 0.94 | 0.64 | 2.68 |
IMOD | 27.3 | 0.93 | 0.78 | 0.15 | |
IsoNet | 30.2 | 0.96 | 0.93 | 476 | |
Ours | 31.4 | 0.97 | 0.86 | 168 | |
Shapes | EMAN2 | 25.0 | 0.73 | 0.76 | 2.71 |
IMOD | 25.8 | 0.69 | 0.74 | 0.15 | |
IsoNet | 27.4 | 0.69 | 0.84 | 473 | |
Ours | 31.5 | 0.94 | 0.85 | 172 | |
P22 | EMAN2 | 30.9 | 0.98 | 0.76 | 3.18 |
IMOD | 28.7 | 0.92 | 0.70 | 0.17 | |
IsoNet | 34.2 | 0.95 | 0.90 | 503 | |
Ours | 36.1 | 0.99 | 0.88 | 19.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Veen, D.; Galaz-Montoya, J.G.; Shen, L.; Baldwin, P.; Chaudhari, A.S.; Lyumkis, D.; Schmid, M.F.; Chiu, W.; Pauly, J. Missing Wedge Completion via Unsupervised Learning with Coordinate Networks. Int. J. Mol. Sci. 2024, 25, 5473. https://doi.org/10.3390/ijms25105473
Van Veen D, Galaz-Montoya JG, Shen L, Baldwin P, Chaudhari AS, Lyumkis D, Schmid MF, Chiu W, Pauly J. Missing Wedge Completion via Unsupervised Learning with Coordinate Networks. International Journal of Molecular Sciences. 2024; 25(10):5473. https://doi.org/10.3390/ijms25105473
Chicago/Turabian StyleVan Veen, Dave, Jesús G. Galaz-Montoya, Liyue Shen, Philip Baldwin, Akshay S. Chaudhari, Dmitry Lyumkis, Michael F. Schmid, Wah Chiu, and John Pauly. 2024. "Missing Wedge Completion via Unsupervised Learning with Coordinate Networks" International Journal of Molecular Sciences 25, no. 10: 5473. https://doi.org/10.3390/ijms25105473
APA StyleVan Veen, D., Galaz-Montoya, J. G., Shen, L., Baldwin, P., Chaudhari, A. S., Lyumkis, D., Schmid, M. F., Chiu, W., & Pauly, J. (2024). Missing Wedge Completion via Unsupervised Learning with Coordinate Networks. International Journal of Molecular Sciences, 25(10), 5473. https://doi.org/10.3390/ijms25105473