Stage-Specific Alteration and Prognostic Relationship of Serum Fumarate Hydratase Autoantibodies in Gastric Cancer
Abstract
:1. Introduction
2. Results
2.1. Comparison of s-FH-Ab Levels between Patients with Gastric Cancer and Healthy Donors and the Setting of Cutoff Values
2.2. Comparison of s-FH-Ab Levels by Stage
2.3. Correlation between Clinicopathological Factors and s-FH-Ab Levels
2.4. Logistic Regression Analysis of Clinicopathological Factors Associated with s-FH-Ab Levels
2.5. Effect of High s-FH-Abs on Overall Survival
2.6. FH-mRNA Expression Levels at Each Stage and the Impact on Overall Survival
2.7. Univariate and Multivariate Analyses of the Prognostic Effect of Clinicopathological Factors
3. Discussion
4. Materials and Methods
4.1. Ethical Approval and Informed Consent
4.2. Participants and Sera
4.3. Purification of Recombinant Proteins
4.4. Measurement of s-FH-Ab Levels and Conventional Serum Markers
4.5. The Cancer Genome Atlas Program (TCGA) Data-Based Analysis in Gastric Cancer
4.6. Comparison of Overall Survivals between High FH mRNA Expression Group and Low FH mRNA Expression Group
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer Statistics for the Year 2020: An Overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef]
- Repetto, O.; Vettori, R.; Steffan, A.; Cannizzaro, R.; De Re, V. Circulating Proteins as Diagnostic Markers in Gastric Cancer. Int. J. Mol. Sci. 2023, 24, 16931. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, Y.; Shimada, H.; Hatanaka, Y.; Kinoshita, I.; Ikarashi, D.; Nakatsura, T.; Kitano, S.; Naito, Y.; Tanaka, T.; Yamashita, K.; et al. Clinical Practice Guidelines for Molecular Tumor Markers, 2nd Edition Review Part 1. Int. J. Clin. Oncol. 2024, 29, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Zhao, Y.; Zhu, H. Predictive Biomarkers for Immunotherapy in Gastric Cancer: Current Status and Emerging Prospects. Int. J. Mol. Sci. 2023, 24, 15321. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Yamashita, H.; Kobayashi, Y.; Nagaoka, K.; Hisayoshi, T.; Kawahara, T.; Kuroda, A.; Saito, N.; Iwata, R.; Okumura, Y.; et al. Alterations in Intratumoral Immune Response before and during Early-On Nivolumab Treatment for Unresectable Advanced or Recurrent Gastric Cancer. Int. J. Mol. Sci. 2023, 24, 16602. [Google Scholar] [CrossRef] [PubMed]
- Anderson, N.M.; Mucka, P.; Kern, J.G.; Feng, H. The Emerging Role and Targetability of the TCA Cycle in Cancer Metabolism. Protein Cell 2018, 9, 216–237. [Google Scholar] [CrossRef]
- Fukushi, A.; Kim, H.-D.; Chang, Y.-C.; Kim, C.-H. Revisited Metabolic Control and Reprogramming Cancers by Means of the Warburg Effect in Tumor Cells. Int. J. Mol. Sci. 2022, 23, 10037. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, K.; Wakazaki, M.; Matsuzaki, A.; Matsumoto, T.; Yamamoto, N.; Noma, T.; Takami, T. Adenylate Kinase Isozyme 3 Regulates Mitochondrial Energy Metabolism and Knockout Alters HeLa Cell Metabolism. Int. J. Mol. Sci. 2022, 23, 4316. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Y.; Guo, Y.; Shi, X.; Chen, X.; Feng, W.; Wu, L.-L.; Zhang, J.; Yu, S.; Wang, Y.; et al. An Overview: The Diversified Role of Mitochondria in Cancer Metabolism. Int. J. Biol. Sci. 2023, 19, 897–915. [Google Scholar] [CrossRef]
- Schmidt, C.; Sciacovelli, M.; Frezza, C. Mitochondrial Metabolites: Undercover Signalling Molecules. Interface Focus 2017, 7, 20160100. [Google Scholar] [CrossRef]
- Schmidt, C.; Sciacovelli, M.; Frezza, C. Fumarate hydratase in cancer: A multifaceted tumour suppressor. Semin. Cell Dev. Biol. 2020, 98, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Vadhan, A.; Yang, Y.-F.; Wang, Y.-M.; Chen, P.-Y.; Tzou, S.-C.; Cheng, K.-H.; Hu, S.; Cheng, T.-L.; Wang, Y.-Y.; Yuan, S.-S. Fumarate Hydratase Inhibits Non-small Cell Lung Cancer Metastasis via Inactivation of AMPK and Upregulation of DAB2. Oncol. Lett. 2022, 25, 42. [Google Scholar] [CrossRef] [PubMed]
- Giallongo, S.; Costa, F.; Longhitano, L.; Giallongo, C.; Ferrigno, J.; Tropea, E.; Vicario, N.; Li Volti, G.; Parenti, R.; Barbagallo, I.; et al. The Pleiotropic Effects of Fumarate: From Mitochondrial Respiration to Epigenetic Rewiring and DNA Repair Mechanisms. Metabolites 2023, 13, 880. [Google Scholar] [CrossRef] [PubMed]
- O’Flaherty, L.; Adam, J.; Heather, L.C.; Zhdanov, A.V.; Chung, Y.-L.; Miranda, M.X.; Croft, J.; Olpin, S.; Clarke, K.; Pugh, C.W.; et al. Dysregulation of Hypoxia Pathways in Fumarate Hydratase-Deficient Cells Is Independent of Defective Mitochondrial Metabolism. Hum. Mol. Genet. 2010, 19, 3844–3851. [Google Scholar] [CrossRef] [PubMed]
- Adam, J.; Yang, M.; Bauerschmidt, C.; Kitagawa, M.; O’Flaherty, L.; Maheswaran, P.; Özkan, G.; Sahgal, N.; Baban, D.; Kato, K.; et al. A Role for Cytosolic Fumarate Hydratase in Urea Cycle Metabolism and Renal Neoplasia. Cell Rep. 2013, 3, 1440–1448. [Google Scholar] [CrossRef] [PubMed]
- Ueki, A.; Sugano, K.; Misu, K.; Aimono, E.; Nakamura, K.; Tanishima, S.; Tanaka, N.; Mikami, S.; Hirasawa, A.; Ando, M.; et al. Germline Whole-Gene Deletion of FH Diagnosed from Tumor Profiling. Int. J. Mol. Sci. 2021, 22, 7962. [Google Scholar] [CrossRef]
- Hewitson, K.S.; Liénard, B.M.R.; McDonough, M.A.; Clifton, I.J.; Butler, D.; Soares, A.S.; Oldham, N.J.; McNeill, L.A.; Schofield, C.J. Structural and Mechanistic Studies on the Inhibition of the Hypoxia-Inducible Transcription Factor Hydroxylases by Tricarboxylic Acid Cycle Intermediates. J. Biol. Chem. 2007, 282, 3293–3301. [Google Scholar] [CrossRef] [PubMed]
- Papandreou, I.; Cairns, R.A.; Fontana, L.; Lim, A.L.; Denko, N.C. HIF-1 Mediates Adaptation to Hypoxia by Actively Downregulating Mitochondrial Oxygen Consumption. Cell Metab. 2006, 3, 187–197. [Google Scholar] [CrossRef]
- Frezza, C.; Zheng, L.; Folger, O.; Rajagopalan, K.N.; MacKenzie, E.D.; Jerby, L.; Micaroni, M.; Chaneton, B.; Adam, J.; Hedley, A.; et al. Haem Oxygenase Is Synthetically Lethal with the Tumour Suppressor Fumarate Hydratase. Nature 2011, 477, 225–228. [Google Scholar] [CrossRef]
- Yang, Y.; Lane, A.N.; Ricketts, C.J.; Sourbier, C.; Wei, M.-H.; Shuch, B.; Pike, L.; Wu, M.; Rouault, T.A.; Boros, L.G.; et al. Metabolic Reprogramming for Producing Energy and Reducing Power in Fumarate Hydratase Null Cells from Hereditary Leiomyomatosis Renal Cell Carcinoma. PLoS ONE 2013, 8, e72179. [Google Scholar] [CrossRef]
- Pollard, P.; Wortham, N.; Barclay, E.; Alam, A.; Elia, G.; Manek, S.; Poulsom, R.; Tomlinson, I. Evidence of Increased Microvessel Density and Activation of the Hypoxia Pathway in Tumours from the Hereditary Leiomyomatosis and Renal Cell Cancer Syndrome. J. Pathol. 2005, 205, 41–49. [Google Scholar] [CrossRef]
- Koukourakis, M.I.; Giatromanolaki, A.; Simopoulos, C.; Polychronidis, A.; Sivridis, E. Lactate Dehydrogenase 5 (LDH5) Relates to up-Regulated Hypoxia Inducible Factor Pathway and Metastasis in Colorectal Cancer. Clin. Exp. Metastasis 2005, 22, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Park, J.W.; Chun, Y.S. Jumonji histone demethylases as emerging therapeutic targets. Pharmacol. Res. 2016, 105, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Sciacovelli, M.; Gonçalves, E.; Johnson, T.I.; Zecchini, V.R.; Da Costa, A.S.H.; Gaude, E.; Drubbel, A.V.; Theobald, S.J.; Abbo, S.R.; Tran, M.G.B.; et al. Fumarate Is an Epigenetic Modifier That Elicits Epithelial-to-Mesenchymal Transition. Nature 2016, 537, 544–547. [Google Scholar] [CrossRef] [PubMed]
- Brabletz, T.; Kalluri, R.; Nieto, M.A.; Weinberg, R.A. EMT in Cancer. Nat. Rev. Cancer 2018, 18, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Puisieux, A.; Brabletz, T.; Caramel, J. Oncogenic Roles of EMT-Inducing Transcription Factors. Nat. Cell Biol. 2014, 16, 488–494. [Google Scholar] [CrossRef]
- Valcarcel-Jimenez, L.; Frezza, C. Fumarate Hydratase (FH) and Cancer: A Paradigm of Oncometabolism. Br. J. Cancer 2023, 129, 1546–1557. [Google Scholar] [CrossRef]
- Wang, K.; Qiu, C.; Xing, M.; Li, M.; Wang, B.; Ye, H.; Shi, J.; Dai, L.; Wang, X.; Wang, P. Association of Elevated Autoantibody to High Expression of GNAS in Hepatocellular Carcinoma. Heliyon 2023, 9, e22627. [Google Scholar] [CrossRef]
- The Human Protein Atlas. Available online: https://www.proteinatlas.org/ENSG00000091483-FH/pathology/stomach+cancer (accessed on 7 May 2024).
- The Japanese Gastric Cancer Association. Japanese Gastric Cancer Association, 14th ed.; Kanehara: Tokyo, Japan, 2010; pp. 5–17. [Google Scholar]
- Wang, H.; Lu, H.; Zhang, X.-M.; Goto, K.; Kobayashi, E.; Yoshida, Y.; Adachi, A.; Matsutani, T.; Iwadate, Y.; Mine, S.; et al. Association of Serum Levels of Antibodies against ALDOA and FH4 with Transient Ischemic Attack and Cerebral Infarction. BMC Neurol. 2021, 21, 274. [Google Scholar] [CrossRef]
- Kagaya, A.; Shimada, H.; Shiratori, T.; Kuboshima, M.; Nakashima-Fujita, K.; Yasuraoka, M.; Nishimori, T.; Kurei, S.; Hachiya, T.; Murakami, A.; et al. Identification of a Novel SEREX Antigen Family, ECSA, in Esophageal Squamous Cell Carcinoma. Proteome Sci. 2011, 9, 31. [Google Scholar] [CrossRef]
- Sumazaki, M.; Shimada, H.; Ito, M.; Shiratori, F.; Kobayashi, E.; Yoshida, Y.; Adachi, A.; Matsutani, T.; Iwadate, Y.; Mine, S.; et al. Serum anti-LRPAP1 Is a Common Biomarker for Digestive Organ Cancers and Atherosclerotic Diseases. Cancer Sci. 2020, 111, 4453–4464. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Oshima, Y.; Yajima, S.; Suzuki, T.; Nanami, T.; Shiratori, F.; Funahashi, K.; Shimada, H. Diagnostic Impact of High Serum Midkine Level in Patients with Gastric Cancer. Ann. Gastroent. Surg. 2019, 3, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Uhlen, M.; Zhang, C.; Lee, S.; Sjöstedt, E.; Fagerberg, L.; Bidkhori, G.; Benfeitas, R.; Arif, M.; Liu, Z.; Edfors, F.; et al. A Pathology Atlas of the Human Cancer Transcriptome. Science 2017, 357, eaan2507. [Google Scholar] [CrossRef] [PubMed]
- Kanda, Y. Investigation of the Freely Available Easy-to-Use Software ‘EZR’ for Medical Statistics. Bone Marrow Transplant. 2013, 48, 452–458. [Google Scholar] [CrossRef] [PubMed]
Variables | High s-FH-Ab Group ≥ 26,861 n = 63 (%) | Low s-FH-Ab Group < 26,861 n = 53 (%) | p Value * |
---|---|---|---|
Age | >0.99 | ||
<65 | 26 (41.3) | 21 (39.6) | |
≥65 | 37 (58.7) | 32 (60.4) | |
Sex | 0.24 | ||
Female | 17 (27.0) | 20 (37.7) | |
Male | 46 (73.0) | 33 (62.3) | |
Tumor depth | 0.26 | ||
T1 | 30 (47.6) | 19 (35.8) | |
T2/T3/T4 | 33 (52.4) | 34 (64.2) | |
Nodal status | 0.05 | ||
Negative | 45 (71.4) | 28 (52.8) | |
Positive | 18 (28.6) | 25 (47.2) | |
Distant metastasis | 0.01 | ||
Negative | 60 (95.2) | 42 (79.2) | |
Positive | 3 (4.8) | 11 (20.8) | |
Peritoneal metastasis | <0.05 | ||
Negative | 62 (98.4) | 47 (88.7) | |
Positive | 1 (1.6) | 6 (11.3) | |
Intraoperative peritoneal lavage cytology | 0.57 | ||
CY0 | 57 (90.5) | 46 (86.8) | |
CY1/X | 6 (9.5) | 7 (13.2) | |
Stage | 0.71 | ||
I | 35 (55.6) | 27 (50.9) | |
II/III/IV | 28 (44.4) | 26 (49.1) | |
Histology | 0.10 | ||
Differentiated | 34 (54.0) | 20 (37.7) | |
Undifferentiated | 29 (46.0) | 33 (62.3) | |
CEA (ng/mL) | >0.99 | ||
<5.0 | 52 (82.5) | 43 (81.1) | |
≥5.0 | 11 (17.5) | 10 (18.9) | |
CA19-9 (U/mL) | 0.14 | ||
<37 | 61 (96.8) | 47 (88.7) | |
≥37 | 2 (3.2) | 6 (11.3) |
Variables | Odds Ratio | 95% Confidence Interval | p Value * |
---|---|---|---|
Nodal status | |||
Negative/Positive | 1.63 | 0.25–3.96 | 0.28 |
Distant metastasis | |||
Negative/Positive | 2.29 | 0.67–14.10 | 0.37 |
Peritoneal metastasis | |||
Negative/Positive | 2.06 | 0.37–30.50 | 0.60 |
Histology | |||
Differentiated/Poor | 1.66 | 0.75–3.65 | 0.21 |
Variables | Univariate p Value * | Multivariate Analysis | ||
---|---|---|---|---|
Hazards Ratio | 95% Confidence Interval | p Value ** | ||
Age | 0.83–4.79 | 0.12 | ||
≥65 | 0.02 | 2.00 | ||
<65 | ||||
Sex | ||||
Male | 0.12 | |||
Female | ||||
Tumor depth | 1.42–12.56 | <0.01 | ||
T2/T3/T4 | <0.01 | 4.22 | ||
T1 | ||||
Nodal status | 0.29–2.08 | 0.61 | ||
Positive | 0.02 | 0.77 | ||
Negative | ||||
Distant metastasis | 0.84–6.54 | 0.10 | ||
Positive | <0.01 | 2.35 | ||
Negative | ||||
Histology | ||||
Poor | 0.60 | |||
Differentiated | ||||
CEA (ng/mL) | ||||
≥5.0 | 0.41 | |||
<5.0 | ||||
CA19-9 (U/mL) | ||||
≥37 | 0.10 | |||
<37 | ||||
s-FH-Ab | 1.36–6.71 | <0.01 | ||
<26,861 | <0.01 | 3.02 | ||
≥26,861 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasajima, N.; Sumazaki, M.; Oshima, Y.; Ito, M.; Yajima, S.; Takizawa, H.; Wang, H.; Li, S.-Y.; Zhang, B.-S.; Yoshida, Y.; et al. Stage-Specific Alteration and Prognostic Relationship of Serum Fumarate Hydratase Autoantibodies in Gastric Cancer. Int. J. Mol. Sci. 2024, 25, 5470. https://doi.org/10.3390/ijms25105470
Sasajima N, Sumazaki M, Oshima Y, Ito M, Yajima S, Takizawa H, Wang H, Li S-Y, Zhang B-S, Yoshida Y, et al. Stage-Specific Alteration and Prognostic Relationship of Serum Fumarate Hydratase Autoantibodies in Gastric Cancer. International Journal of Molecular Sciences. 2024; 25(10):5470. https://doi.org/10.3390/ijms25105470
Chicago/Turabian StyleSasajima, Natsuko, Makoto Sumazaki, Yoko Oshima, Masaaki Ito, Satoshi Yajima, Hirotaka Takizawa, Hao Wang, Shu-Yang Li, Bo-Shi Zhang, Yoichi Yoshida, and et al. 2024. "Stage-Specific Alteration and Prognostic Relationship of Serum Fumarate Hydratase Autoantibodies in Gastric Cancer" International Journal of Molecular Sciences 25, no. 10: 5470. https://doi.org/10.3390/ijms25105470
APA StyleSasajima, N., Sumazaki, M., Oshima, Y., Ito, M., Yajima, S., Takizawa, H., Wang, H., Li, S. -Y., Zhang, B. -S., Yoshida, Y., Hiwasa, T., & Shimada, H. (2024). Stage-Specific Alteration and Prognostic Relationship of Serum Fumarate Hydratase Autoantibodies in Gastric Cancer. International Journal of Molecular Sciences, 25(10), 5470. https://doi.org/10.3390/ijms25105470