Physiological and Proteome Analysis of the Effects of Chitosan Oligosaccharides on Salt Tolerance of Rice Seedlings
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of COS on Rice Seedlings under Salt Stress
2.1.1. Growth and Morphological Characteristics of Rice Seedlings
2.1.2. Biochemical Indicators of Rice Seedlings
2.2. Label-Free Quantitative Proteomics Analysis
2.3. GO Annotation Analysis
2.4. KEGG Metabolic Pathway Analysis
2.4.1. Glycolysis Pathway
2.4.2. Photosynthesis Pathway
3. Materials and Methods
3.1. Plant Materials and Rice Culture
3.2. Determination of the Phenotypic Shape and Physiological Indicators
3.3. Protein Extraction, Proteolysis and Desalination
3.4. LC-MS/MS Analysis
3.5. Label-Free Quantitative Proteomic Analysis
3.6. GO Enrichment Analysis, Functional Annotation
3.7. KEGG Pathway Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Kim, W.Y.; Yun, D.J. A new insight of salt stress signaling in plant. Mol. Cells 2016, 39, 447. [Google Scholar] [CrossRef] [PubMed]
- Mondal, M.; Puteh, A.; Malek, M.; Rafii, M. Salinity induced morpho-physiological characters and yield attributes in rice genotypes. J. Food Agric. Environ. 2013, 11, 610–614. [Google Scholar]
- Kumar, G.; Kushwaha, H.R.; Panjabi-Sabharwal, V.; Kumari, S.; Joshi, R.; Karan, R.; Mittal, S.; Pareek, S.L.S.; Pareek, A. Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-P confers multiple abiotic stress tolerance in tobacco via ROS scavenging. BMC Plant Biol. 2012, 12, 107. [Google Scholar] [CrossRef]
- Liu, S.P.; Zheng, L.Q.; Xue, Y.H.; Zhang, Q.; Wang, L.; Shou, H.X. Overexpression of OsVP1 and OsNHX1 increases tolerance to drought and salinity in rice. J. Plant Biol. 2010, 53, 444–452. [Google Scholar] [CrossRef]
- Mondal, T.K.; Rawal, H.C.; Chowrasia, S.; Varshney, D.; Panda, A.K.; Mazumdar, A.; Kaur, H.; Gaikwad, K.; Sharma, T.R.; Singh, N.K. Draft genome sequence of first monocot-halophytic species Oryza coarctata reveals stress-specific genes. Sci. Rep. 2018, 8, 13698. [Google Scholar] [CrossRef] [PubMed]
- Pearson, G.A.; Bernstein, L. Salinity effects at several growth stages of rice. Agron. J. 1959, 51, 654–657. [Google Scholar] [CrossRef]
- Zheng, L.; Shannon, M.C.; Lesch, S.M. Timing of salinity stress affecting rice growth and yield components. Agric. Water Manag. 2001, 48, 191–206. [Google Scholar] [CrossRef]
- Zou, P.; Yang, X.; Wang, J.; Li, Y.F.; Yu, H.L.; Zhang, Y.X.; Liu, G.Y. Advances in characterisation and biological activities of chitosan and chitosan oligosaccharides. Food Chem. 2016, 190, 1174–1181. [Google Scholar] [CrossRef]
- Jung, W.J.; Park, R.D. Bioproduction of chitooligosaccharides: Present and perspectives. Mar. Drugs 2014, 12, 5328–5356. [Google Scholar] [CrossRef]
- Liaqat, F.; Eltem, R. Chitooligosaccharides and their biological activities: A comprehensive review. Carbohydr. Polym. 2018, 184, 243–259. [Google Scholar] [CrossRef] [PubMed]
- Hao, W.; Li, K.; Li, P. Advances in preparation of chitooligosaccharides with heterogeneous sequences and their bioactivity. Carbohydr. Polym. 2021, 252, 117206. [Google Scholar] [CrossRef] [PubMed]
- El Hadrami, A.; Adam, L.R.; El Hadrami, I.; Daayf, F. Chitosan in plant protection. Mar. Drugs 2010, 8, 968–987. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, S.; Karibe, H.; Hamada, T.; Rakwal, R. Phosphorylation upon cold stress in rice (Oryza sativa L.) seedlings. Theor. Appl. Genet. 1999, 98, 1304–1310. [Google Scholar] [CrossRef]
- Xu, J.; Li, Y.; Sun, J.; Du, L.; Zhang, Y.; Yu, Q.; Liu, X. Comparative physiological and proteomic response to abrupt low temperature stress between two winter wheat cultivars differing in low temperature tolerance. Plant Biol. 2013, 15, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Majumder, A.L. Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: A physiological and proteomic approach. Planta 2009, 229, 911–929. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.W.; Hsu, Y.K.; Cheng, Y.H.; Yen, H.C.; Wu, Y.P.; Wang, C.S.; Lai, C.C. Proteomic analysis of salt-responsive ubiquitin-related proteins in rice roots. Rapid Commun. Mass Spectrom. 2012, 26, 1649–1660. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Wu, J.Z.; Itoh, T.; Numa, H.; Antonio, B.; Sasaki, T. The Nipponbare genome and the next-generation of rice genomics research in Japan. Rice 2016, 9, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Yan, Y.; Liu, T.; Chen, J.; Huang, M.X.; Wang, L.; Chen, M.Q.; Li, X.Y. Data-independent acquisition proteomic analysis of biochemical factors in rice seedlings following treatment with chitosan oligosaccharides. Pestic. Biochem. Physiol. 2020, 170, 104681. [Google Scholar] [CrossRef]
- Yang, A.; Yu, L.; Chen, Z.; Zhang, S.X.; Shi, J.; Zhao, X.Z.; Yang, Y.Y.; Hu, D.Y.; Song, B.A. Label-free quantitative proteomic analysis of chitosan oligosaccharide-treated rice infected with southern rice black-streaked dwarf virus. Viruses 2017, 9, 115. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, B.X.; Li, J.; Song, Z.Q.; Lu, B.G.; Chi, M.; Yang, B.; Liu, J.B.; Lam, Y.W.; Li, J.X. Salt-response analysis in two rice cultivars at seedling stage. Acta Physiol. Plant. 2017, 39, 215. [Google Scholar] [CrossRef] [PubMed]
- Mostek, A.; Börner, A.; Badowiec, A.; Weidner, S. Alterations in root proteome of salt-sensitive and tolerant barley lines under salt stress conditions. J. Plant Physiol. 2015, 174, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Liu, J.; Jiao, W.; Sa, R.; Zhang, N.; Jia, R.Z. Proteomic analysis of salt-responsive proteins in oat roots (Avena sativa L.). J. Sci. Food Agric. 2016, 96, 3867–3875. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.W.; Chang, T.S.; Hsu, Y.K.; Wang, A.Z.; Yen, H.C.; Wu, Y.P.; Wang, C.S.; Lai, C.C. Comparative proteomic analysis of early salt stress responsive proteins in roots and leaves of rice. Proteomics 2014, 14, 1759–1775. [Google Scholar] [CrossRef] [PubMed]
- Sobhanian, H.; Aghaei, K.; Komatsu, S. Changes in the plant proteome resulting from salt stress: Toward the creation of salt-tolerant crops? J. Proteom. 2011, 74, 1323–1337. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, F.M.; Komatsu, S. A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteomics 2004, 4, 2072–2081. [Google Scholar] [CrossRef] [PubMed]
- Du, C.X.; Fan, H.F.; Guo, S.R.; Tezuka, T.F.; Li, J. Proteomic analysis of cucumber seedling roots subjected to salt stress. Phytochemistry 2010, 71, 1450–1459. [Google Scholar] [CrossRef]
- Subramanian, S.; Souleimanov, A.; Smith, D.L. Proteomic studies on the effects of lipo-chitooligosaccharide and thuricin 17 under unstressed and salt stressed conditions in Arabidopsis thaliana. Front. Plant Sci. 2016, 7, 1314. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.W.; Rakwal, R.; Agrawal, G.K.; Jung, Y.H.; Shibato, J.; Jwa, N.S.; Iwahashi, Y.; Iwahashi, H.; Kim, D.H.; Shim, I.S. A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis 2005, 26, 4521–4539. [Google Scholar] [CrossRef]
- Martino, C.D.; Delfine, S.; Pizzuto, R.; Loreto, F.; Fuggi, A. Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress. New Phytol 2003, 158, 455–463. [Google Scholar] [CrossRef]
- Frukh, A.; Siddiqi, T.O.; Khan, M.I.R.; Ahmad, A. Modulation in growth, biochemical attributes and proteome profile of rice cultivars under salt stress. Plant Physiol. Biochem. 2020, 146, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Pang, Q.Y.; Chen, S.X.; Dai, S.J.; Chen, Y.Z.; Wang, Y.; Yan, X.F. Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. J. Proteome Res. 2010, 9, 2584–2599. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Tang, Z.; Su, W.; Sun, W. Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 2005, 5, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Qi, Y.; Zhu, Q.; Chen, X.; Wang, N.; Zhao, X.; Chen, H.; Cui, X.; Xu, L.; Zhang, W. New changes in the plasma-membrane-associated proteome of rice roots under salt stress. Proteomics 2009, 9, 3100–3114. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Lan, H.; Fang, H.; Huang, X.; Zhang, H.; Huang, J. Quantitative proteomic analysis of the rice (Oryza sativa L.) salt response. PLoS ONE 2015, 10, e0120978. [Google Scholar] [CrossRef] [PubMed]
- Almeida, D.M.; Almadanim, M.C.; Lourenço, T.; Abreu, I.A.; Saibo, N.J.; Oliveira, M.M. Screening for abiotic stress tolerance in rice: Salt, cold, and drought. Environ. Responses Plants Methods Protoc. 2016, 1398, 155–182. [Google Scholar]
- Chang, T.S.; Liu, C.W.; Lin, Y.L.; Li, C.Y.; Wang, A.Z.; Chien, M.W.; Wang, C.S.; Lai, C.C. Mapping and comparative proteomic analysis of the starch biosynthetic pathway in rice by 2D PAGE/MS. Plant Mol. Biol. 2017, 95, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Li, P.; Ni, R.-J.; Ritchie, M.; Yang, C.-P.; Liu, G.-F.; Ma, W.; Liu, G.-J.; Ma, L.; Li, S.-J. Label-free quantitative proteomics analysis of etiolated maize seedling leaves during greening. Mol. Cell. Proteom. 2009, 8, 2443–2460. [Google Scholar] [CrossRef]
- Song, S.Y.; Chen, Y.; Chen, J.; Dai, X.Y.; Zhang, W.H. Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta 2011, 234, 331–345. [Google Scholar] [CrossRef]
- Meng, C.; Zhang, S.; Deng, Y.S.; Wang, G.D.; Kong, F.Y. Overexpression of a tomato flavanone 3-hydroxylase-like protein gene improves chilling tolerance in tobacco. Plant Physiol. Biochem. 2015, 96, 388–400. [Google Scholar] [CrossRef]
- Xiangdong, Y.; Mengyu, F.; Luqiong, C.; Shengchun, Y. Determination of the Contents of Total Amino Acids in Parts of Orchidaceae Plants in Yunnan. J. Dali Univ. 2016, 1, 20. [Google Scholar]
- Sun, Z.Y.; Chen, Y.Q.; Schaefer, V.; Liang, H.M.; Li, W.H.; Huang, S.Q.; Peng, C.L. Responses of the Hybrid between Sphagneticola trilobata and Sphagneticola calendulacea to Low Temperature and Weak Light Characteristic in South China. Sci. Rep. 2015, 5, 16906. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.H.; Juan, J.X.; Gao, Z.L.; Zhang, Y.; Li, W.Y.; Jiang, X.M. Cloning and transformation of INDUCER of CBF EXPRESSION1 (ICE1) in tomato. Genet. Mol. Res. 2015, 14, 13131–13143. [Google Scholar] [CrossRef] [PubMed]
- Ling, L.; Jiangang, L.; Minchong, S.; Chunlei, Z.; Yuanhua, D. Cold plasma treatment enhances oilseed rape seed germination under drought stress. Sci. Rep. 2015, 5, 13033. [Google Scholar] [CrossRef] [PubMed]
Normal | Stress | Recovery | |||||
---|---|---|---|---|---|---|---|
CK | COS | CK | COS | CK | COS | ||
Plant height(cm) | root length | 6.71 ± 0.95 | 6.82 ± 0.80 | 6.90 ± 1.03 | 8.47 ± 1.34 ** | 8.23 ± 1.22 | 9.61 ± 1.53 ** |
leaf length | 11.06 ± 2.09 | 12.17 ± 2.38 | 12.75 ± 2.51 | 15.48 ± 1.76 ** | 18.70 ± 2.11 | 20.65 ± 1.41 ** | |
overall length | 19.09 ± 2.03 | 19.54 ± 2.61 | 21.34 ± 2.35 | 24.53 ± 1.48 ** | 29.42 ± 2.40 | 32.10 ± 2.42 ** | |
leaf width | 0.29 ± 0.04 | 0.32 ± 0.03 * | 0.30 ± 0.03 | 0.32 ± 0.02 | 0.24 ± 0.05 | 0.29 ± 0.03 ** | |
Fresh weight(g) | roots | 0.237 ± 0.015 | 0.290 ± 0.017 * | 0.290 ± 0.020 | 0.310 ± 0.030 | 0.270 ± 0.010 | 0.290 ± 0.010 |
stems | 0.453 ± 0.021 | 0.503 ± 0.012 * | 0.487 ± 0.085 | 0.573 ± 0.035 | 0.520 ± 0.010 | 0.593 ± 0.021 ** | |
leaves | 0.210 ± 0.017 | 0.227 ± 0.015 | 0.353 ± 0.035 | 0.367 ± 0.038 | 0.377 ± 0.00 | 0.390 ± 0.010 | |
Dry weight(g) | roots | 0.021 ± 0.002 | 0.024 ± 0.004 | 0.023 ± 0.003 | 0.025 ± 0.002 | 0.020 ± 0.003 | 0.021 ± 0.001 |
stems | 0.145 ± 0.002 | 0.153 ± 0.003 * | 0.144 ± 0.005 | 0.158 ± 0.003 ** | 0.102 ± 0.004 | 0.134 ± 0.007 ** | |
leaves | 0.038 ± 0.001 | 0.041 ± 0.001 * | 0.069 ± 0.008 | 0.069 ± 0.006 | 0.079 ± 0.008 | 0.080 ± 0.002 |
Position | Normal | Stress | Recover | |||
---|---|---|---|---|---|---|
CK | COS | CK | COS | CK | COS | |
Leaf | 2326 | 2618 | 2711 | 2795 | 2712 | 2794 |
2371 | 2605 | 2675 | 2785 | 2687 | 2752 | |
2394 | 2593 | 2681 | 2784 | 2680 | 2781 | |
Stem | 2012 | 2948 | 2122 | 2913 | 2185 | 2645 |
1976 | 2863 | 1990 | 2900 | 2099 | 2673 | |
2004 | 2824 | 1948 | 2852 | 1963 | 2612 | |
Root | 1997 | 2380 | 2549 | 2271 | 2100 | 2079 |
1987 | 2316 | 2515 | 2189 | 2045 | 2065 | |
1990 | 2353 | 2505 | 2087 | 2023 | 2054 |
Position | Condition | Stage | SPs | DEPs | UP | DOWN |
---|---|---|---|---|---|---|
Leaf | CK | S/N | 2285 | 1221 | 1067 | 154 |
R/N | 2206 | 1725 | `1156 | 569 | ||
R/S | 2378 | 1672 | 1039 | 633 | ||
COS | S/N | 2427 | 1476 | 1006 | 470 | |
R/N | 2236 | 1650 | 1060 | 590 | ||
R/S | 1460 | 1687 | 1027 | 660 | ||
Stem | CK | S/N | 2599 | 1684 | 928 | 756 |
R/N | 1437 | 966 | 589 | 377 | ||
R/S | 1555 | 841 | 576 | 265 | ||
COS | S/N | 3227 | 1857 | 1082 | 775 | |
R/N | 2853 | 1897 | 922 | 975 | ||
R/S | 2976 | 1806 | 829 | 977 | ||
Root | CK | S/N | 2110 | 940 | 198 | 742 |
R/N | 495 | 384 | 186 | 198 | ||
R/S | 527 | 382 | 181 | 201 | ||
COS | S/N | 1595 | 1252 | 435 | 817 | |
R/N | 1084 | 855 | 258 | 597 | ||
R/S | 1316 | 778 | 335 | 443 |
Position | Name | KO | Abundance | Description | |||
---|---|---|---|---|---|---|---|
N | S | R | |||||
Leaf | 5.3.1.9 | K0180 | CK | 105.4 | 92.9 | 101.8 | glucose-6-beta-phosphate isomerase |
COS | 89.3 | 115.3 | 95.4 | ||||
4.1.2.13 | K01623 | CK | 68 | 95 | 136.9 | fructose-bisphosphate aldolase | |
COS | 68.4 | 95 | 136.6 | ||||
1.2.1.12 | K00134 | CK | 50.3 | 77.4 | 172.3 | glyceraldehyde 3-phosphate dehydrogenase (phosphorylating) | |
COS | 70.7 | 109.6 | 119.7 | ||||
1.2.1.9 | K00131 | CK | 80.1 | 99.5 | 120.4 | glyceraldehyde-3-phosphate dehydrogenase (NADP+) | |
COS | 78.7 | 110 | 111.3 | ||||
4.2.1.11 | K01689 | CK | 78.5 | 113.4 | 108.0 | enolase | |
COS | 66.7 | 124.3 | 108.9 | ||||
2.7.1.40 | K00873 | CK | 46.7 | 63.8 | 166.1 | pyruvate kinase | |
COS | 67.2 | 109.1 | 123.8 | ||||
2.7.9.1 | K01006 | CK | 78.6 | 87.9 | 133.5 | pyruvate, orthophosphate dikinase | |
COS | 60.8 | 104.5 | 134.6 | ||||
1.2.4.1 | K00163 | CK | 77.3 | 92.3 | 130.3 | pyruvate dehydrogenase E1 component | |
COS | 70.6 | 106.2 | 123.2 | ||||
2.3.1.12 | K00627 | CK | 80.6 | 103.9 | 115.6 | pyruvate dehydrogenase E2 component | |
COS | 82.6 | 106.8 | 110.7 | ||||
1.8.1.4 | K00382 | CK | 87.9 | 89.8 | 122.4 | dihydrolipoyl dehydrogenase | |
COS | 75.7 | 111.4 | 112.9 | ||||
1.2.1.3 | K00128 | CK | 63.4 | 82.8 | 153.9 | aldehyde dehydrogenase | |
COS | 74.1 | 103.8 | 122.3 | ||||
1.1.1.1 | K13951 | CK | 34.9 | 70.9 | 194.2 | alcohol dehydrogenase | |
COS | 44.9 | 76.6 | 178.5 | ||||
Stem | 4.1.2.13 | K01623 | CK | 101.2 | 88.2 | 110.6 | fructose-bisphosphate aldolase |
COS | 91.3 | 89.5 | 119.3 | ||||
5.4.2.12 | K15633 | CK | 140 | 71.9 | 88 | 2,3-bisphosphoglycerate-independent phosphoglycerate mutase | |
COS | 142.6 | 98.9 | 58.5 | ||||
2.7.1.40 | K00873 | CK | 158.3 | 65.7 | 76.1 | pyruvate kinase | |
COS | 122.6 | 73.9 | 103.4 | ||||
2.7.9.1 | K01006 | CK | 76.1 | 116.6 | 107.3 | orthophosphate dikinase | |
COS | 76.8 | 112.7 | 110.5 | ||||
1.2.4.1 | K00163 | CK | 90.8 | 92.0 | 117.3 | pyruvate dehydrogenase E1 component | |
COS | 99.6 | 96.2 | 104.2 | ||||
1.1.1.1 | K13951 | CK | 78.4 | 114.0 | 120.9 | alcohol dehydrogenase | |
COS | 78.8 | 107.3 | 113.9 | ||||
Root | 2.7.1.90 | K00895 | CK | 102.7 | 130.9 | 66.4 | diphosphate-dependent phosphofructokinase |
COS | 143.4 | 80.4 | 76.3 | ||||
4.1.2.13 | K01623 | CK | 123.8 | 62.3 | 127.9 | fructose-bisphosphate aldolase | |
COS | 128.9 | 89.2 | 82.1 | ||||
2.7.2.3 | K00927 | CK | 148.8 | 82.1 | 69 | phosphoglycerate kinase | |
COS | 170.2 | 61.5 | 68.3 | ||||
5.4.2.12 | K15633 | CK | 160 | 104.8 | 35.2 | 2,3-bisphosphoglycerate-independent phosphoglycerate mutase | |
COS | 153.3 | 72.8 | 73.9 | ||||
2.7.1.40 | K00873 | CK | 102.8 | 116.5 | 80.7 | pyruvate kinase | |
COS | 152.8 | 82.7 | 64.6 | ||||
1.8.1.4 | K00382 | CK | 83.6 | 48.4 | 168 | dihydrolipoyl dehydrogenase | |
COS | 112.7 | 107.8 | 79.5 | ||||
1.2.1.3 | K00128 | CK | 70.7 | 111.9 | 102.8 | aldehyde dehydrogenase | |
COS | 87.2 | 84.0 | 128.9 | ||||
1.1.1.1 | K13951 | CK | 59.2 | 124.2 | 116.7 | alcohol dehydrogenase | |
COS | 68.2 | 117.9 | 113.9 |
Position | S/N | R/N | ||||
---|---|---|---|---|---|---|
Name | KO | Accession | Name | KO | Accession | |
Leaf | 1.1.1.2 | K00002 | A0A0D9WH90 | 1.1.1.2 | K00002 | B9F274 |
5.4.2.2 | K01835 | A0A0E0D5L5 | 1.1.1.2 | K00002 | A0A0D9WH90 | |
2.7.1.1 | K00844 | A0A0E0A1S8 | 4.1.1.49 | K01610 | A0A0E0CY82 | |
3.1.3.11 | K03841 | Q9SDL8 | 6.2.1.1 | K01895 | Q7F8W1 | |
5.3.1.1 | K01803 | A0A0E0B5S4 | 5.4.2.12 | K15633 | B8AZB8 | |
5.3.1.1 | K01803 | P48494 | 5.4.2.12 | K15633 | A0A0E0FUX9 | |
5.4.2.12 | K15633 | A0A0E0FUX9 | ||||
4.1.1.49 | K01610 | A0A0E0CY82 | ||||
Stem | 2.7.1.1 | K00844 | A0A0D3G422 | |||
2.7.1.1 | K00844 | A0A0E0DZ42 | ||||
5.1.3.3 | K01785 | Q33AZ5 | ||||
5.1.3.3 | K01785 | A0A0P0WB27 | ||||
5.1.3.15 | K01792 | A2YZX3 | ||||
2.7.1.90 | K00895 | I1P3K4 | ||||
2.7.1.90 | K00895 | A0A0E0PVR9 | ||||
4.1.1.49 | K01610 | A0A0E0CY82 | ||||
6.2.1.1 | K01895 | Q7F8W1 | ||||
1.8.1.4 | K00382 | B9FMK1 | ||||
1.8.1.4 | K00382 | A0A0D9V0H3 | ||||
Root | 5.4.2.2 | K01835 | A0A0E0D5L3 | 2.7.1.1 | K00844 | A0A0D9YES9 |
2.7.1.1 | K00844 | Q5W676 | 5.3.1.9 | K01810 | A0A0E0M263 | |
2.7.1.1 | K00844 | A0A0D3ETH5 | 5.1.3.3 | K01785 | A0A0E0HWM4 | |
3.1.3.11 | K03841 | A0A0D3G850 | 2.7.1.11 | K24182 | A0A0D9Y4F5 | |
2.7.1.11 | K24182 | J3N2I3 | 4.2.1.11 | K01689 | I1QSV0 | |
2.7.1.11 | K24182 | A0A0D9Y4F5 | 4.2.1.11 | K01689 | B8AK24 | |
2.7.1.11 | K24182 | A0A0P0WBF4 | 4.2.1.11 | K01689 | A0A0E0B2A0 | |
1.2.1.12 | K00134 | A0A0D9YMY6 | 1.2.4.1 | K00163 | A0A0E0QTJ9 | |
1.2.1.12 | K00134 | B8AF09 | 4.1.1.1 | K01568 | A0A0D3FH89 | |
1.2.1.9 | K00131 | Q8S4Y9 | 2.3.1.12 | K00627 | A0A0D3GPZ8 | |
4.1.1.49 | K01610 | A3AG67 | 1.8.1.4 | K00382 | B9FMK1 | |
4.1.1.1 | K01568 | A0A0D3FH89 |
Position | Name | KO | Abundance | Description | |||
---|---|---|---|---|---|---|---|
N | S | R | |||||
Leaf | PsbQ | K02713 | CK | 115.1 | 47.6 | 58.8 | photosystem II PsbL protein |
COS | 193.5 | 74.2 | 110.7 | ||||
PsbO | K02716 | CK | 118.7 | 124.6 | 113.6 | photosystem II oxygen-evolving enhancer protein 1 | |
COS | 153.6 | 89.0 | 57.5 | ||||
PsbP | K02717 | CK | 56.6 | 75.4 | 148.1 | photosystem II oxygen-evolving enhancer protein 2 | |
COS | 75.7 | 77.1 | 147.3 | ||||
Psb28 | K08903 | CK | 48.2 | 70.1 | 181.7 | photosystem II 13kDa protein | |
COS | 48.2 | 105.2 | 146.6 | ||||
PsaB | K02690 | CK | 64.8 | 82.7 | 152.6 | photosystem I P700 chlorophyll a apoprotein A2 | |
COS | 79.7 | 88.1 | 132.2 | ||||
PsaC | K02691 | CK | 95.5 | 120.2 | 84.3 | photosystem I subunit VII | |
COS | 83.5 | 112 | 104.5 | ||||
PsaE | K02693 | CK | 36.5 | 70.5 | photosystem I subunit IV | ||
COS | 80.8 | 109.6 | 109.6 | ||||
PsaG | K08905 | CK | 85 | 89 | 125.9 | photosystem I subunit V | |
COS | 80.1 | 113 | 106.9 | ||||
PsaK | K02698 | CK | 48.5 | 72.5 | 178.9 | photosystem I subunit X | |
COS | 52.2 | 84.8 | 163.1 | ||||
PsaL | K02699 | CK | 61 | 76.7 | 162.3 | photosystem I subunit XI | |
COS | 72.3 | 91.3 | 136.5 | ||||
PetF | K02639 | CK | 142.8 | 122.4 | 34.9 | ferredoxin | |
COS | 148.4 | 102.3 | 49.2 | ||||
PetH | K02641 | CK | 115.4 | 113.7 | 70.9 | ferredoxin--NADP+ reductase | |
COS | 61.8 | 95 | 143.3 | ||||
PetH | K02641 | CK | 20.6 | 58.1 | 221.3 | ferredoxin--NADP+ reductase | |
COS | 19.5 | 111.8 | 168.6 | ||||
Stem | PsbO | K02716 | CK | 82.6 | 110.7 | 106.7 | photosystem II oxygen-evolving enhancer protein 1 |
COS | 84.2 | 97.8 | 117.9 | ||||
PsbP | K02717 | CK | 92.8 | 104.9 | 102.4 | photosystem II oxygen-evolving enhancer protein 2 | |
COS | 95.3 | 107.1 | 97.6 | ||||
PsbS | K03542 | CK | 123.4 | 114.9 | 61.7 | photosystem II 22kDa protein | |
COS | 75.8 | 103.7 | 120.5 | ||||
PsaG | K08905 | CK | 74.1 | 145.5 | 80.5 | photosystem I subunit V | |
COS | 82.5 | 119.8 | 97.6 | ||||
PsaN | K02701 | CK | 128.8 | 77.9 | 93.3 | photosystem I subunit PsaN | |
COS | 105 | 65.4 | 129.6 | ||||
PetF | K02639 | CK | 102 | 137.6 | 60.5 | ferredoxin | |
COS | 71 | 135.3 | 93.6 | ||||
PetH | K02641 | CK | 66 | 82.2 | 151.8 | ferredoxin—NADP+ reductase | |
COS | 141.3 | 80.5 | 78.2 |
Position | S/N | R/N | ||||
---|---|---|---|---|---|---|
Name | KO | Accession | Name | KO | Accession | |
Leaf | alpha | K02111 | Q8S7T5 | PsbE | K02707 | E9KIX2 |
K02113 | Q6Z8K7 | PsaJ | K02697 | A0A1W5HPA3 | ||
a | K02108 | A0A0E0EPX3 | PetB | K02635 | A0A0H3V867 | |
b | K02109 | A0A0E0CYU2 | gamma | K02115 | I1QB20 | |
PsbA | K02703 | C5MRL2 | a | K02108 | A0A0E0EPX3 | |
PsaH | K02695 | A2Y7D9 | b | K02109 | A0A0E0CYU2 | |
PetB | K02635 | A0A0H3V867 | ||||
PetD | K02637 | A0A172GFK2 | ||||
Stem | PsbB | K02704 | A0A0H3V867 | beta | K02112 | Q2QW50 |
PsbE | K02707 | E9KIX2 | beta | K02112 | A0A172GDI6 | |
PsbH | K02709 | E9KJ46 | a | K02108 | A0A0E0EPX3 | |
Psb28 | K08903 | A0A0D3EYG3 | b | K02109 | A0PJ32 | |
PsaL | K02699 | Q2QSR5 | b | K02109 | A0A0E0CYU2 | |
PetE | K02638 | A0A0D3GBR0 | alpha | K02111 | Q8S7T5 | |
PsbD | K02706 | E9KJ14 | ||||
PsbB | K02704 | A0A1W5HNT3 | ||||
PsbB | K02704 | A0A0H3V867 | ||||
PsbE | K02707 | E9KIX2 | ||||
PsbF | K02708 | E9KIQ3 | ||||
PsbH | K02709 | E9KJ46 | ||||
PsbR | K03541 | A0A0E0E7C7 | ||||
PsaB | K02690 | E9KIP0 | ||||
PsaD | K02692 | A0A0E0AYY8 | ||||
PsaE | K02693 | A0A0E0LJV8 | ||||
PetB | K02635 | A0A0H3V867 | ||||
PetE | K02638 | A0A0D3GBR0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, X.; He, Y.; Zhang, L.; Li, X.; Tang, W. Physiological and Proteome Analysis of the Effects of Chitosan Oligosaccharides on Salt Tolerance of Rice Seedlings. Int. J. Mol. Sci. 2024, 25, 5953. https://doi.org/10.3390/ijms25115953
Qian X, He Y, Zhang L, Li X, Tang W. Physiological and Proteome Analysis of the Effects of Chitosan Oligosaccharides on Salt Tolerance of Rice Seedlings. International Journal of Molecular Sciences. 2024; 25(11):5953. https://doi.org/10.3390/ijms25115953
Chicago/Turabian StyleQian, Xiangyu, Yaqing He, Lu Zhang, Xianzhen Li, and Wenzhu Tang. 2024. "Physiological and Proteome Analysis of the Effects of Chitosan Oligosaccharides on Salt Tolerance of Rice Seedlings" International Journal of Molecular Sciences 25, no. 11: 5953. https://doi.org/10.3390/ijms25115953
APA StyleQian, X., He, Y., Zhang, L., Li, X., & Tang, W. (2024). Physiological and Proteome Analysis of the Effects of Chitosan Oligosaccharides on Salt Tolerance of Rice Seedlings. International Journal of Molecular Sciences, 25(11), 5953. https://doi.org/10.3390/ijms25115953