Arrhythmogenic Ventricular Remodeling by Next-Generation Bruton’s Tyrosine Kinase Inhibitor Acalabrutinib
Abstract
:1. Introduction
2. Results
2.1. Effects of IBR and ABR Treatment on VA Vulnerability and Characteristics
2.2. Effects of IBR and ABR on Ventricular Electrophysiology
2.3. Effects of IBR and ABR on Ventricular Calcium Dynamics
2.4. Effects of IBR and ABR on Calcium-Handling and Metabolic Regulatory Proteins
3. Discussion
3.1. Acalabrutinib and Ventricular Arrhythmia
3.2. Acalabrutinib and Ventricular Membrane Voltage
3.3. Acalabrutinib and Ventricular Calcium Cycling
3.4. Acalabrutinib and Cardiac Metabolic Regulation
3.5. Possible Mechanisms Contributing to the Different Arrhythmogenic Effects of IBR and ABR
3.6. Study Limitations
4. Materials and Methods
4.1. Animal Model
4.2. Langendorff-Perfused Rat Hearts
4.3. Epicardial Optical Imaging
4.4. Determination of Ventricular Arrhythmia Vulnerability and Characteristics
4.5. Immunoblotting
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hillmen, P.; Pitchford, A.; Bloor, A.; Broom, A.; Young, M.; Kennedy, B.; Walewska, R.; Furtado, M.; Preston, G.; Neilson, J.R.; et al. Ibrutinib and rituximab versus fludarabine, cyclophosphamide, and rituximab for patients with previously untreated chronic lymphocytic leukaemia (FLAIR): Interim analysis of a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2023, 24, 535–552. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Yan, Y.; Zeng, X.; Lin, N.; Tan, B. Ibrutinib-Associated Cardiotoxicity: From the Pharmaceutical to the Clinical. Drug Des. Dev. Ther. 2022, 16, 3225–3239. [Google Scholar] [CrossRef] [PubMed]
- Quartermaine, C.; Ghazi, S.M.; Yasin, A.; Awan, F.T.; Fradley, M.; Wiczer, T.; Kalathoor, S.; Ferdousi, M.; Krishan, S.; Habib, A.; et al. Cardiovascular Toxicities of BTK Inhibitors in Chronic Lymphocytic Leukemia: JACC: CardioOncology State-of-the-Art Review. JACC Cardio Oncol. 2023, 5, 570–590. [Google Scholar] [CrossRef] [PubMed]
- Mato, A.R.; Nabhan, C.; Thompson, M.C.; Lamanna, N.; Brander, D.M.; Hill, B.; Howlett, C.; Skarbnik, A.; Cheson, B.D.; Zent, C.; et al. Toxicities and outcomes of 616 ibrutinib-treated patients in the United States: A real-world analysis. Haematologica 2018, 103, 874–879. [Google Scholar] [CrossRef] [PubMed]
- Lampson, B.L.; Yu, L.; Glynn, R.J.; Barrientos, J.C.; Jacobsen, E.D.; Banerji, V.; Jones, J.A.; Walewska, R.; Savage, K.J.; Michaud, G.F.; et al. Ventricular arrhythmias and sudden death in patients taking ibrutinib. Blood 2017, 129, 2581–2584. [Google Scholar] [CrossRef] [PubMed]
- Guha, A.; Derbala, M.H.; Zhao, Q.; Wiczer, T.E.; Woyach, J.A.; Byrd, J.C.; Awan, F.T.; Addison, D. Ventricular Arrhythmias Following Ibrutinib Initiation for Lymphoid Malignancies. J. Am. Coll. Cardiol. 2018, 72, 697–698. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Salem, J.E.; Clauss, S.; Hanley, A.; Bapat, A.; Hulsmans, M.; Iwamoto, Y.; Wojtkiewicz, G.; Cetinbas, M.; Schloss, M.J.; et al. Ibrutinib-Mediated Atrial Fibrillation Attributable to Inhibition of C-Terminal Src Kinase. Circulation 2020, 142, 2443–2455. [Google Scholar] [CrossRef]
- Barf, T.; Covey, T.; Izumi, R.; van de Kar, B.; Gulrajani, M.; van Lith, B.; van Hoek, M.; de Zwart, E.; Mittag, D.; Demont, D.; et al. Acalabrutinib (ACP-196): A Covalent Bruton Tyrosine Kinase Inhibitor with a Differentiated Selectivity and In Vivo Potency Profile. J. Pharmacol. Exp. Ther. 2017, 363, 240–252. [Google Scholar] [CrossRef] [PubMed]
- Byrd, J.C.; Hillmen, P.; Ghia, P.; Kater, A.P.; Chanan-Khan, A.; Furman, R.R.; O’Brien, S.; Yenerel, M.N.; Illés, A.; Kay, N.; et al. Acalabrutinib Versus Ibrutinib in Previously Treated Chronic Lymphocytic Leukemia: Results of the First Randomized Phase III Trial. J. Clin. Oncol. 2021, 39, 3441–3452. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.; Balakrishnan, K.; Bibikova, E.; Ayres, M.; Keating, M.J.; Wierda, W.G.; Gandhi, V. Comparison of Acalabrutinib, a Selective Bruton Tyrosine Kinase Inhibitor, with Ibrutinib in Chronic Lymphocytic Leukemia Cells. Clin. Cancer Res. 2017, 23, 3734–3743. [Google Scholar] [CrossRef] [PubMed]
- McMullen, J.R.; Boey, E.J.; Ooi, J.Y.; Seymour, J.F.; Keating, M.J.; Tam, C.S. Ibrutinib increases the risk of atrial fibrillation, potentially through inhibition of cardiac PI3K-Akt signaling. Blood 2014, 124, 3829–3830. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Li, L.; Ruan, Y.; Zuo, S.; Wu, X.; Zhao, Q.; Xing, Y.; Zhao, X.; Xia, S.; Bai, R.; et al. Ibrutinib promotes atrial fibrillation by inducing structural remodeling and calcium dysregulation in the atrium. Heart Rhythm. 2019, 16, 1374–1382. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.A.; Gambril, J.A.; Azali, L.; Chen, S.T.; Rosen, L.; Palettas, M.; Wiczer, T.; Kalathoor, S.; Zhao, Q.; Rogers, K.A.; et al. Ventricular Arrhythmias and Sudden Death Events following Acalabrutinib initiation. Blood 2022, 140, 2142–2145. [Google Scholar] [CrossRef] [PubMed]
- Boriani, G.; Menna, P.; Morgagni, R.; Minotti, G.; Vitolo, M. Ibrutinib and Bruton’s tyrosine kinase inhibitors in chronic lymphocytic leukemia: Focus on atrial fibrillation and ventricular tachyarrhythmias/sudden cardiac death. Chemotherapy 2023, 68, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Chakraborty, P.; Azam, M.A.; Massé, S.; Lai, P.F.H.; Niri, A.; Si, D.; Thavendiranathan, P.; Abdel-Qadir, H.; Billia, F.; et al. Acute Effects of Ibrutinib on Ventricular Arrhythmia in Spontaneously Hypertensive Rats. JACC Cardio Oncol. 2020, 2, 614–629. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Du, B.; Chakraborty, P.; Denham, N.; Massé, S.; Lai, P.F.H.; Azam, M.A.; Billia, F.; Thavendiranathan, P.; Abdel-Qadir, H.; et al. Impaired Cardiac AMPK and Ca2+-Handling, and Action Potential Duration Heterogeneity in Ibrutinib-Induced Ventricular Arrhythmia Vulnerability. J. Am. Heart Assoc. in press.
- Salem, J.E.; Manouchehri, A.; Bretagne, M.; Lebrun-Vignes, B.; Groarke, J.D.; Johnson, D.B.; Yang, T.; Reddy, N.M.; Funck-Brentano, C.; Brown, J.R.; et al. Cardiovascular Toxicities Associated with Ibrutinib. J. Am. Coll. Cardiol. 2019, 74, 1667–1678. [Google Scholar] [CrossRef] [PubMed]
- Tuomi, J.M.; Xenocostas, A.; Jones, D.L. Increased Susceptibility for Atrial and Ventricular Cardiac Arrhythmias in Mice Treated with a Single High Dose of Ibrutinib. Can. J. Cardiol. 2018, 34, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Fazal, M.; Gomez, S.; Cheng, P.; Rhee, J.-W.; Baykaner, T. Tyrosine Kinase Inhibitor Associated Polymorphic Ventricular Tachycardia. JACC Cardio Oncol. 2022, 4 (Suppl. S1), S4–S5. [Google Scholar] [CrossRef]
- Chinyere, I.R.; Moukabary, T.; Hutchinson, M.D.; Lancaster, J.J.; Juneman, E.; Goldman, S. Progression of infarct-mediated arrhythmogenesis in a rodent model of heart failure. Am. J. Physiol. Heart Circ. Physiol. 2021, 320, H108–H116. [Google Scholar] [CrossRef] [PubMed]
- Tomcsányi, J.; Nényei, Z.; Mátrai, Z.; Bózsik, B. Ibrutinib, an Approved Tyrosine Kinase Inhibitor as a Potential Cause of Recurrent Polymorphic Ventricular Tachycardia. JACC. Clin. Electrophysiol. 2016, 2, 847–849. [Google Scholar] [CrossRef] [PubMed]
- Beyer, A.; Ganti, B.; Majkrzak, A.; Theyyunni, N. A Perfect Storm: Tyrosine Kinase Inhibitor-Associated Polymorphic Ventricular Tachycardia. J. Emerg. Med. 2017, 52, e123–e127. [Google Scholar] [CrossRef] [PubMed]
- Fazal, M.; Wei, C.; Chuy, K.L.; Hussain, K.; Gomez, S.E.; Ba, S.S.; Pietrasik, G.; Yadav, N.; Ghazizadeh, Z.; Kapoor, R.; et al. Tyrosine kinase inhibitor-associated ventricular arrhythmias: A case series and review of literature. J. Interv. Card. Electrophysiol. 2023, 66, 1165–1175. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.; Weiss, J.N. Cardiac Alternans: From Bedside to Bench and Back. Circ. Res. 2023, 132, 127–149. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Kim, T.Y.; Huang, X.; Liu, M.B.; Koren, G.; Choi, B.R.; Qu, Z. Mechanisms linking T-wave alternans to spontaneous initiation of ventricular arrhythmias in rabbit models of long QT syndrome. J. Physiol. 2018, 596, 1341–1355. [Google Scholar] [CrossRef] [PubMed]
- Lukas, A.; Antzelevitch, C. Phase 2 reentry as a mechanism of initiation of circus movement reentry in canine epicardium exposed to simulated ischemia. Cardiovasc. Res. 1996, 32, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Tse, G.; Chan, Y.W.; Keung, W.; Yan, B.P. Electrophysiological mechanisms of long and short QT syndromes. Int. J. Cardiol. Heart Vasc. 2017, 14, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Extramiana, F.; Antzelevitch, C. Amplified transmural dispersion of repolarization as the basis for arrhythmogenesis in a canine ventricular-wedge model of short-QT syndrome. Circulation 2004, 110, 3661–3666. [Google Scholar] [CrossRef] [PubMed]
- Schalij, M.J.; Boersma, L.; Huijberts, M.; Allessie, M.A. Anisotropic reentry in a perfused 2-dimensional layer of rabbit ventricular myocardium. Circulation 2000, 102, 2650–2658. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zahid, S.; Khoshknab, M.; Moss, J.; Berger, R.D.; Chrispin, J.; Callans, D.; Marchlinski, F.E.; Zimmerman, S.L.; Han, Y.; et al. Conduction Velocity Dispersion Predicts Postinfarct Ventricular Tachycardia Circuit Sites and Associates with Lipomatous Metaplasia. JACC Clin. Electrophysiol. 2023, 9, 1464–1474. [Google Scholar] [CrossRef] [PubMed]
- Anter, E.; Tschabrunn, C.M.; Buxton, A.E.; Josephson, M.E. High-Resolution Mapping of Postinfarction Reentrant Ventricular Tachycardia: Electrophysiological Characterization of the Circuit. Circulation 2016, 134, 314–327. [Google Scholar] [CrossRef] [PubMed]
- Landstrom, A.P.; Dobrev, D.; Wehrens, X.H.T. Calcium Signaling and Cardiac Arrhythmias. Circ. Res. 2017, 120, 1969–1993. [Google Scholar] [CrossRef] [PubMed]
- Shaw, R.M.; Rudy, Y. Ionic Mechanisms of Propagation in Cardiac Tissue. Circ. Res. 1997, 81, 727–741. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.N.; Blatter, L.A. Cardiac alternans and intracellular calcium cycling. Clin. Exp. Pharmacol. Physiol. 2014, 41, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Sikkel, M.B.; Hayward, C.; MacLeod, K.T.; Harding, S.E.; Lyon, A.R. SERCA2a gene therapy in heart failure: An anti-arrhythmic positive inotrope. Br. J. Pharmacol. 2014, 171, 38–54. [Google Scholar] [CrossRef] [PubMed]
- Prunier, F.; Kawase, Y.; Gianni, D.; Scapin, C.; Danik, S.B.; Ellinor, P.T.; Hajjar, R.J.; del Monte, F. Prevention of Ventricular Arrhythmias with Sarcoplasmic Reticulum Ca2+ ATPase Pump Overexpression in a Porcine Model of Ischemia Reperfusion. Circulation 2008, 118, 614–624. [Google Scholar] [CrossRef]
- Kerkela, R.; Woulfe, K.C.; Durand, J.B.; Vagnozzi, R.; Kramer, D.; Chu, T.F.; Beahm, C.; Chen, M.H.; Force, T. Sunitinib-induced cardiotoxicity is mediated by off-target inhibition of AMP-activated protein kinase. Clin. Transl. Sci. 2009, 2, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Harada, M.; Nattel, S.N.; Nattel, S. AMP-activated protein kinase: Potential role in cardiac electrophysiology and arrhythmias. Circ. Arrhythm. Electrophysiol. 2012, 5, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Harada, M.; Tadevosyan, A.; Qi, X.; Xiao, J.; Liu, T.; Voigt, N.; Karck, M.; Kamler, M.; Kodama, I.; Murohara, T.; et al. Atrial Fibrillation Activates AMP-Dependent Protein Kinase and its Regulation of Cellular Calcium Handling: Potential Role in Metabolic Adaptation and Prevention of Progression. J. Am. Coll. Cardiol. 2015, 66, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Turdi, S.; Fan, X.; Li, J.; Zhao, J.; Huff, A.F.; Du, M.; Ren, J. AMP-activated protein kinase deficiency exacerbates aging-induced myocardial contractile dysfunction. Aging Cell 2010, 9, 592–606. [Google Scholar] [CrossRef] [PubMed]
- Tuomi, J.M.; Bohne, L.J.; Dorey, T.W.; Jansen, H.J.; Liu, Y.; Jones, D.L.; Rose, R.A. Distinct Effects of Ibrutinib and Acalabrutinib on Mouse Atrial and Sinoatrial Node Electrophysiology and Arrhythmogenesis. J. Am. Heart Assoc. 2021, 10, e022369. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Sun, Y.; Liu, X.; Li, H.; Lu, C.; Yang, R.; Yang, C.; Li, B. SY-1530, a highly selective BTK inhibitor, effectively treats B-cell malignancies by blocking B-cell activation. Cancer Biol. Med. 2021, 19, 995–1007. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, I.; Li, Y.; Sharma, A.; Zhu, H.; Bodo, J.; Xu, W.; Hsi, E.D.; Hill, B.T.; Almasan, A. Resistance to BTK inhibition by ibrutinib can be overcome by preventing FOXO3a nuclear export and PI3K/AKT activation in B-cell lymphoid malignancies. Cell Death Dis. 2019, 10, 924. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.; Wu, Z.; Li, X.; Yan, J.; Zhao, L.; Yang, C.; Lu, J.; Deng, J.; Chen, M. Resveratrol ameliorates cardiac dysfunction induced by pressure overload in rats via structural protection and modulation of Ca2+ cycling proteins. J. Transl. Med. 2014, 12, 323. [Google Scholar] [CrossRef] [PubMed]
- Herman, S.E.M.; Montraveta, A.; Niemann, C.U.; Mora-Jensen, H.; Gulrajani, M.; Krantz, F.; Mantel, R.; Smith, L.L.; McClanahan, F.; Harrington, B.K.; et al. The Bruton Tyrosine Kinase (BTK) Inhibitor Acalabrutinib Demonstrates Potent On-Target Effects and Efficacy in Two Mouse Models of Chronic Lymphocytic Leukemia. Clin. Cancer Res. 2017, 23, 2831–2841. [Google Scholar] [CrossRef] [PubMed]
- Jaimes, R.; Walton, R.D.; Pasdois, P.; Bernus, O.; Efimov, I.R.; Kay, M.W. A technical review of optical mapping of intracellular calcium within myocardial tissue. Am. J. Physiol. Heart Circ. Physiol. 2016, 310, H1388–H1401. [Google Scholar] [CrossRef] [PubMed]
- Si, D.; Azam, M.A.; Lai, P.F.H.; Zamiri, N.; Kichigina, G.; Asta, J.; Massé, S.; Bokhari, M.M.; Porta-Sánchez, A.; Labos, C.; et al. Essential role of ryanodine receptor 2 phosphorylation in the effect of azumolene on ventricular arrhythmia vulnerability in a rabbit heart model. J. Cardiovasc. Electrophysiol. 2018, 29, 1707–1715. [Google Scholar] [CrossRef] [PubMed]
- Bayly, P.V.; KenKnight, B.H.; Rogers, J.M.; Hillsley, R.E.; Ideker, R.E.; Smith, W.M. Estimation of conduction velocity vector fields from epicardial mapping data. IEEE Trans. Biomed. Eng. 1998, 45, 563–571. [Google Scholar] [CrossRef]
- Massé, S.; Farid, T.; Dorian, P.; Umapathy, K.; Nair, K.; Asta, J.; Ross, H.; Rao, V.; Sevaptsidis, E.; Nanthakumar, K. Effect of global ischemia and reperfusion during ventricular fibrillation in myopathic human hearts. Am. J. Physiol. Heart Circ. Physiol. 2009, 297, H1984–H1991. [Google Scholar] [CrossRef] [PubMed]
- Umapathy, K.; Masse, S.; Sevaptsidis, E.; Asta, J.; Ross, H.; Thavandiran, N.; Nair, K.; Farid, T.; Cusimano, R.; Rogers, J.; et al. Regional frequency variation during human ventricular fibrillation. Med. Eng. Phys. 2009, 31, 964–970. [Google Scholar] [CrossRef] [PubMed]
- Azam, M.A.; Zamiri, N.; Massé, S.; Kusha, M.; Lai, P.F.; Nair, G.K.; Tan, N.S.; Labos, C.; Nanthakumar, K. Effects of Late Sodium Current Blockade on Ventricular Refibrillation in a Rabbit Model. Circ. Arrhythm. Electrophysiol. 2017, 10, e004331. [Google Scholar] [CrossRef] [PubMed]
- Zamiri, N.; Massé, S.; Ramadeen, A.; Kusha, M.; Hu, X.; Azam, M.A.; Liu, J.; Lai, P.F.; Vigmond, E.J.; Boyle, P.M.; et al. Dantrolene improves survival after ventricular fibrillation by mitigating impaired calcium handling in animal models. Circulation 2014, 129, 875–885. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Chakraborty, P.; Tomassetti, J.; Subha, T.; Massé, S.; Thavendiranathan, P.; Billia, F.; Lai, P.F.H.; Abdel-Qadir, H.; Nanthakumar, K. Arrhythmogenic Ventricular Remodeling by Next-Generation Bruton’s Tyrosine Kinase Inhibitor Acalabrutinib. Int. J. Mol. Sci. 2024, 25, 6207. https://doi.org/10.3390/ijms25116207
Zhao Y, Chakraborty P, Tomassetti J, Subha T, Massé S, Thavendiranathan P, Billia F, Lai PFH, Abdel-Qadir H, Nanthakumar K. Arrhythmogenic Ventricular Remodeling by Next-Generation Bruton’s Tyrosine Kinase Inhibitor Acalabrutinib. International Journal of Molecular Sciences. 2024; 25(11):6207. https://doi.org/10.3390/ijms25116207
Chicago/Turabian StyleZhao, Yanan, Praloy Chakraborty, Julianna Tomassetti, Tasnia Subha, Stéphane Massé, Paaladinesh Thavendiranathan, Filio Billia, Patrick F. H. Lai, Husam Abdel-Qadir, and Kumaraswamy Nanthakumar. 2024. "Arrhythmogenic Ventricular Remodeling by Next-Generation Bruton’s Tyrosine Kinase Inhibitor Acalabrutinib" International Journal of Molecular Sciences 25, no. 11: 6207. https://doi.org/10.3390/ijms25116207
APA StyleZhao, Y., Chakraborty, P., Tomassetti, J., Subha, T., Massé, S., Thavendiranathan, P., Billia, F., Lai, P. F. H., Abdel-Qadir, H., & Nanthakumar, K. (2024). Arrhythmogenic Ventricular Remodeling by Next-Generation Bruton’s Tyrosine Kinase Inhibitor Acalabrutinib. International Journal of Molecular Sciences, 25(11), 6207. https://doi.org/10.3390/ijms25116207