Evaluation of Whole Genome Sequencing-Based Predictions of Antimicrobial Resistance to TB First Line Agents: A Lesson from 5 Years of Data
Abstract
:1. Introduction
2. Results
2.1. Isoniazid
2.2. Rifampin
2.3. Ethambutol
2.4. Pyrazinamide
3. Discussion
4. Materials and Methods
4.1. Selection of Strains
4.2. First-Line Antimicrobial Susceptibility Testing
4.3. DNA Extraction and Whole Genome Sequencing
4.4. Data Analyses
4.5. Statistical Analysis
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chakaya, J.; Khan, M.; Ntoumi, F.; Aklillu, E.; Fatima, R.; Mwaba, P.; Kapata, N.; Mfinanga, S.; Hasnain, S.E.; Katoto, P.D.M.C.; et al. Global Tuberculosis Report 2020—Reflections on the Global TB burden, treatment and prevention efforts. Int. J. Infect. Dis. 2021, 113 (Suppl. 1), S7–S12. [Google Scholar] [CrossRef] [PubMed]
- Johnston, J.C.; Cooper, R.; Menzies, D. Chapter 5: Treatment of tuberculosis disease. Can. J. Respir. Crit. Care Sleep Med. 2022, 6, 66–76. [Google Scholar] [CrossRef]
- Viney, K.; Mirzayev, F.; Linh, N.N.; Gegea, M.; Zignol, M. New definitions of extensively drug resistant tuberculosis: Update from the World Health Organization. Eur. Respir. J. 2021, 58, OA1599. [Google Scholar] [CrossRef]
- Bagcchi, S. WHO’s Global Tuberculosis Report 2022. Lancet Microbe 2022, 4, e20. [Google Scholar] [CrossRef]
- Greenaway, C.; Diefenbach-Elstob, T.; Schwartzman, K.; Cook, V.J.; Giovinazzo, G.; Njoo, H.; Mounchili, A.; Brooks, J. Chapter 13: Tuberculosis surveillance and tuberculosis infection testing and treatment in migrants. Can. J. Respir. Crit. Care Sleep Med. 2022, 6, 194–204. [Google Scholar] [CrossRef]
- LaFreniere, M.; Hussain, H.; Vachon, J. Tuberculosis Drug Resistance in Canada: 2017. Canada Communicable Disease Report. 2018, Volume 44. Available online: https://www.canada.ca/en/public-health/services/reports-publications/canada-communicable-disease-report-ccdr/monthly-issue/2018-44/issue-11-november-1-2018/article-4-tb-drug-resistance-2017.html (accessed on 2 October 2023).
- Public Health Agency of Canada: Issuing Body. Tuberculosis Surveillance in Canada Summary Report: 2012–2021—Canada.ca. Report. Available online: https://www.canada.ca/en/public-health/services/publications/diseases-conditions/tuberculosis-surveillance-canada-summary-2012-2021.html (accessed on 21 November 2023).
- Sharma, M. Mycobacterium tuberculosis Surveillance in Canada. The Purple Paper. 2011, Volume 24. Available online: https://nccid.ca/publications/mycobacterium-tuberculosis-surveillance-in-canada/ (accessed on 21 November 2023).
- Brode, S.K.; Dwilow, R.; Kunimoto, D.; Menzies, D.; Khan, F.A. Chapter 8: Drug-resistant tuberculosis. Can. J. Respir. Crit. Care Sleep Med. 2022, 6, 109–128. [Google Scholar] [CrossRef]
- National Health Service England. TB Diagnosis, Microbiology and Drug Resistance in England, 2021—GOV.UK. Report. Available online: https://www.gov.uk/government/publications/tuberculosis-in-england-2022-report-data-up-to-end-of-2021/tb-diagnosis-microbiology-and-drug-resistance-in-england-2021 (accessed on 26 November 2023).
- World Health Organization. GLCB-N-S 3. 0 I. In Global Tuberkulosis Report; WHO: Geneva, Switzerland, 2023; ISBN 978-92-4-008385-1. Available online: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023 (accessed on 21 November 2023).
- Petkau, A.; Mabon, P.; Sieffert, C.; Knox, N.C.; Cabral, J.; Iskander, M.; Iskander, M.; Weedmark, K.; Zaheer, R.; Katz, L.S.; et al. SNVPhyl: A single nucleotide variant phylogenomics pipeline for microbial genomic epidemiology. Microb. Genom. 2017, 3, e000116. [Google Scholar] [CrossRef] [PubMed]
- Phelan, J.E.; O’Sullivan, D.M.; Machado, D.; Ramos, J.; Oppong, Y.E.A.; Campino, S.; O’Grady, J.; McNerney, R.; Hibberd, M.L.; Viveiros, M.; et al. Integrating informatics tools and portable sequencing technology for rapid detection of resistance to anti-tuberculous drugs. Genome Med. 2019, 11, 41. [Google Scholar] [CrossRef]
- Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef]
- Labbé, G.; Kruczkiewicz, P.; Robertson, J.; Mabon, P.; Schonfeld, J.; Kein, D.; Rankin, M.A.; Gopez, M.; Hole, D.; Son, D.; et al. Rapid and accurate snp genotyping of clonal bacterial pathogens with biohansel. Microb. Genom. 2021, 7, 000651. [Google Scholar] [CrossRef]
- Bradley, P.; Gordon, N.C.; Walker, T.M.; Dunn, L.; Heys, S.; Huang, B.; Earle, S.; Pankhurst, L.J.; Anson, L.; De Cesare, M.; et al. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat. Commun. 2015, 6, 10063. [Google Scholar] [CrossRef] [PubMed]
- Tyler, A.D.; Randell, E.; Baikie, M.; Antonation, K.; Janella, D.; Christianson, S.; Tyrrell, G.J.; Graham, M.; Van Domselaar, G.; Sharma, M.K. Application of whole genome sequence analysis to the study of Mycobacterium tuberculosis in Nunavut, Canada. PLoS ONE 2017, 12, e0185656. [Google Scholar] [CrossRef] [PubMed]
- Forbes, B.; Miller, M.; Banaei, N.; Brown-Elliot, B.; Das, S.; Salfinger, M.; Sharma, M.; Somoskovi, A.; Tans-Kersten, J.; Tenoer, F.; et al. M48Ed2. In Laboratory Detection and Identification of Mycobacteria, 2nd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018; ISBN 978-1-68440-020-1. [Google Scholar]
- Walker, T.M.; Fowler, P.W.; Knaggs, J.; Hunt, M.; Peto, T.E.; Walker, A.S.; Crook, D.W.; Walker, T.M.; Miotto, P.; Cirillo, D.M.; et al. The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: A genotypic analysis. Lancet Microbe 2022, 3, e265–e273. [Google Scholar] [CrossRef] [PubMed]
- Global Tuberculosis Programme (GTB); WHO. The Use of Next-Generation Sequencing Technologies for the Detection of Mutations Associated with Drug Resistance in Mycobacterium tuberculosis Complex: Technical Guide; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- The CRyPTIC Consortium. Prediction of Susceptibility to First-Line Tuberculosis Drugs by DNA Sequencing. N. Engl. J. Med. 2018, 379, 1403–1415. [Google Scholar] [CrossRef] [PubMed]
- Kadura, S.; King, N.; Nakhoul, M.; Zhu, H.; Theron, G.; Köser, C.U.; Farhat, M. Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid. J. Antimicrob. Chemother. 2020, 75, 2031–2043. [Google Scholar] [CrossRef] [PubMed]
- Crook, D.W.; Peto, T.E.A.; Hoosdally, S.J.; Cruz, A.L.G.; Walker, A.S.; Walker, T.M.; Fowler, P.W.; Iqbal, Z.; Cirillo, D.M.; Brankin, A.; et al. A data compendium associating the genomes of 12,289 Mycobacterium tuberculosis isolates with quantitative resistance phenotypes to 13 antibiotics. PLoS Biol. 2022, 20, e3001721. [Google Scholar]
- Hunt, M.; Bradley, P.; Lapierre, S.G.; Heys, S.; Thomsit, M.; Hall, M.B.; Malone, K.M.; Wintringer, P.; Walker, T.M.; Cirillo, D.M.; et al. Antibiotic resistance prediction for Mycobacterium tuberculosis from genome sequence data with mykrobe. Wellcome Open Res. 2019, 4, 191. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.R.; Sharma, M.K.; KhunKhun, R.; Shandro, C.; Sekirov, I.; Tyrrell, G.J.; Soualhine, H. Whole genome sequencing-based identification of human tuberculosis caused by animal-lineage Mycobacterium orygis. J. Clin. Microbiol. 2023, 61, e00260-23. [Google Scholar] [CrossRef] [PubMed]
- Gail, L.; Woods, C. M24Ed3. In Susceptibility Testing of Mycobacteria, Nocardia spp., and Other Aerobic Actinomycetes, 3rd ed.; Clinical Laboartory Standards Institute: Wayne, PA, USA, 2018; ISBN 978-1-68440-026-3. [Google Scholar]
- Bogaerts, B.; Winand, R.; Van Braekel, J.; Hoffman, S.; Roosens, N.H.C.; De Keersmaecker, S.C.J.; Marchal, K.; Vanneste, K. Evaluation of WGS performance for bacterial pathogen characterization with the Illumina technology optimized for time-critical situations. Microb. Genom. 2021, 7, 000699. [Google Scholar] [CrossRef] [PubMed]
- Ellington, M.J.; Ekelund, O.; Aarestrup, F.M.; Canton, R.; Doumith, M.; Giske, C.; Grundman, H.; Hasman, H.; Holden, M.T.G.; Hopkins, K.L.; et al. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: Report from the EUCAST Subcommittee. Clin. Microbiol. Infect. 2017, 23, 2–22. [Google Scholar] [CrossRef]
- Fullman, N.; Yearwood, J.; Abay, S.M.; Abbafati, C.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; Abebe, Z.; Abebo, T.A.; Aboyans, V.; et al. Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: A systematic analysis from the Global Burden of Disease Study 2016. Lancet 2018, 391, 2236–2271. [Google Scholar] [CrossRef] [PubMed]
- Lempens, P.; Meehan, C.J.; Vandelannoote, K.; Fissette, K.; De Rijk, P.; Van Deun, A.; Rigouts, L.; De Jong, B.C. Isoniazid resistance levels of Mycobacterium tuberculosis can largely be predicted by high-confidence resistance-conferring mutations. Sci. Rep. 2018, 8, 3246. [Google Scholar] [CrossRef] [PubMed]
- Machado, D.; Perdigão, J.; Ramos, J.; Couto, I.; Portugal, I.; Ritter, C.; Boettger, E.C.; Viveiros, M. High-level resistance to isoniazid and ethionamide in multidrug-resistant Mycobacterium tuberculosis of the Lisboa family is associated with inhA double mutations. J. Antimicrob. Chemother. 2013, 68, 1728–1732. [Google Scholar] [CrossRef] [PubMed]
- Li, M.C.; Lu, J.; Lu, Y.; Xiao, T.Y.; Liu, H.C.; Lin, S.Q.; Xu, D.; Li, G.L.; Zhao, X.Q.; Liu, Z.G.; et al. rpoB Mutations and Effects on Rifampin Resistance in Mycobacterium tuberculosis. Infect. Drug Resist. 2021, 14, 4119–4128. [Google Scholar] [CrossRef] [PubMed]
- Ullah, I.; Ahmad, W.; Shah, A.A.; Shahzada, A.; Tahir, Z.; Qazi, O.; Hasan, F.; Ayub, N.; Badar, M.; Butt, Z.A.; et al. Detection of rifampicin resistance of Mycobacterium tuberculosis using multiplex allele specific polymerase chain reaction (MAS-PCR) in Pakistan. Infection. Genet. Evol. 2019, 71, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Christianson, S.; Voth, D.; Wolfe, J.; Sharma, M.K. Re-evaluation of the critical concentration for ethambutol antimicrobial sensitivity testing on the MGIT 960. PLoS ONE 2014, 9, e108911. [Google Scholar] [CrossRef] [PubMed]
- Spinato, J.; Boivin, É.; Bélanger-Trudelle, É.; Fauchon, H.; Tremblay, C.; Soualhine, H. Genotypic characterization of drug resistant Mycobacterium tuberculosis in Quebec, 2002–2012. BMC Microbiol. 2016, 16, 164. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.J.; Thibert, L.; Sanchez, T.; Heifets, L.; Zhang, Y. pncA mutations as a major mechanism of pyrazinamide resistance in Mycobacterium tuberculosis: Spread of a monoresistant strain in Quebec, Canada. Antimicrob. Agents Chemother. 2000, 44, 528–532. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Consolidated Guidelines on Tuberculosis: Module 3: Diagnosis: Rapid Diagnostics for Tuberculosis Detection, 3rd ed.; WHO: Geneva, Switzerland, 2024; Available online: https://www.who.int/publications/i/item/9789240089488 (accessed on 4 April 2024).
- World Health Organization. High Priority Target Product Profiles for New Tuberculosis Diagnostics: Report of a Consensus Meeting; WHO: Geneva, Switzerland, 2014; Available online: https://www.who.int/publications/i/item/WHO-HTM-TB-2014.18 (accessed on 26 November 2023).
- Salman, S.; Sabine, R.-G. MGITTM Procedure Manual For BACTECTM MGIT 960TM TB System; Becton Dickinson: Sparks, MD, USA, 2006; Available online: https://www.finddx.org/wp-content/uploads/2023/02/20061101_rep_mgit_manual_FV_EN.pdf (accessed on 23 November 2023).
- Shea, J.; Halse, T.A.; Lapierre, P.; Shudt, M.; Kohlerschmidt, D.; Van Roey, P.; Limberger, R.; Taylor, J.; Escuyer, V.; Musser, K.A. Comprehensive Whole-Genome Sequencing and Reporting of Drug Resistance Profiles on Clinical Cases of Mycobacterium tuberculosis in New York State. J. Clin. Microbiol. 2017, 55, 1871–1882. [Google Scholar] [CrossRef]
- Matthews, T.C.; Bristow, F.R.; Griffiths, E.J.; Petkau, A.; Adam, J.; Dooley, D.; Kruczkiewicz, P.; Curatcha, J.; Cabral, J.; Fornika, D.; et al. The Integrated Rapid Infectious Disease Analysis (IRIDA) Platform. bioRxiv 2018, 381830. [Google Scholar] [CrossRef]
- Afgan, E.; Nekrutenko, A.; Grüning, B.A.; Blankenberg, D.; Goecks, J.; Schatz, M.C.; Ostrovsky, A.E.; Mahmoud, A.; Lonie, A.J.; Syme, A. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res. 2022, 50, W345–W351. [Google Scholar]
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef] [PubMed]
- National Microbiology Laboratory PHA of C. GitHub—Phac-nml/Mykrobe-Parser: R Script to Parse the Results of Mykrobe Predictor and Present Them in a LIMS Compatible Format. Copyright: Government of Canada 2018. Available online: https://github.com/phac-nml/mykrobe-parser (accessed on 27 November 2023).
- Monaghan, T.F.; Rahman, S.N.; Agudelo, C.W.; Wein, A.J.; Lazar, J.M.; Everaert, K.; Dmochowski, R.R. Foundational Statistical Principles in Medical Research: Sensitivity, Specificity, Positive Predictive Value, and Negative Predictive Value. Medicina 2021, 57, 503. [Google Scholar] [CrossRef] [PubMed]
Antimicrobial | Pipeline Used | Total with Phenotypic and Genotypic Results | Phenotypic Resistance | Phenotypic Susceptible | Sensitivity | Specificity | PPV | NPV | ||
---|---|---|---|---|---|---|---|---|---|---|
WGS Predicted Resistant | WGS Predicted Susceptible | WGS Predicted Resistant | WGS Predicted Susceptible | |||||||
Isoniazid | Mykrobe | 1510 | 124 | 19 | 8 | 1359 | 86.71% | 99.41% | 93.94% | 98.62% |
Mykrobe corrected with TB Profiler * | 1510 | 132 | 11 | 5 | 1362 | 92.31% | 99.63% | 96.35% | 99.20% | |
Rifampin | Mykrobe | 1510 | 44 | 0 | 8 | 1458 | 100.00% | 99.45% | 84.62% | 100.00% |
Mykrobe corrected with TB Profiler * | 1510 | 44 | 0 | 8 | 1458 | 100.00% | 99.45% | 84.62% | 100.00% | |
Ethambutol | Mykrobe | 1510 | 14 | 0 | 19 | 1477 | 100.00% | 98.73% | 42.42% | 100.00% |
Mykrobe corrected with TB Profiler * | 1510 | 14 | 0 | 16 | 1480 | 100.00% | 98.93% | 46.67% | 100.00% | |
Pyrazinamide | Mykrobe | 1431 | 43 | 47 | 2 | 1339 | 47.78% | 99.85% | 95.56% | 96.61% |
Mykrobe corrected with TB Profiler * | 1431 | 52 | 38 | 1 | 1340 | 57.78% | 99.93% | 98.11% | 97.24% |
Gene:Nucleotide/Codon Change | Phenotypic Resistant | Phenotypic Susceptible | WGS-Based Isoniazid Prediction |
---|---|---|---|
fabG1:G-17T | 1 | 1 | R |
fabG1:C-15X | 30 | 1 | R |
fabG1:T-8X + katG:S315X | 2 | 0 | R |
fabG1:C-15X + katG:S315X | 4 | 0 | R |
fabG1:C-15X + aphC:G-48A | 1 | 0 | R |
fabG1:C-15X + inhA:I194T | 5 | 0 | R |
fabG1:C-15X + inhA:I21T | 1 | 0 | R |
fabG1:C-15X + inhA:S94A | 2 | 0 | R |
fabG1:CTG607CTA | 6 | 0 | R |
katG:S315X | 72 | 5 | R |
inhA:S94A | 0 | 1 | R |
fabG1, katG, aphC, and inhA: WT* | 19 | 1359 | S |
Gene:Codon Change | Phenotypic Resistant | Phenotypic Susceptible | WGS-Based RIF Predictions |
---|---|---|---|
rpoB:L430X | 0 | 1 | R |
rpoB:Q432X | 1 | 0 | R |
rpoB:D435X | 5 | 0 | R |
rpoB:H445X | 10 | 4 | R |
rpoB:S450X | 28 | 0 | R |
rpoB:L452X | 0 | 2 | R |
rpoB:I491F | 0 | 1 | R |
rpoB: WT* | 0 | 1458 | S |
Gene:Nucleotide/Codon Change | Phenotypic Resistant | Phenotypic Susceptible | WGS-Based Ethambutol Prediction |
---|---|---|---|
embB:M306V | 6 | 5 | R |
embB:M306I | 4 | 5 | R |
embB:M306L | 0 | 1 | R |
embB:G406D | 0 | 5 | R |
embB:G406A | 0 | 1 | R |
embB:Q497R | 3 | 1 | R |
embA:C-12T | 0 | 1 | R |
embA:C-12T + embB:M306V | 1 | 0 | R |
embAB: WT* | 0 | 1477 | S |
Gene:Mutation | Phenotypic Resistant | Phenotypic Susceptible | WGS-Based Prediction |
---|---|---|---|
pncA:A-11G | 1 | 0 | R |
pncA:L27P | 1 | 0 | R |
pncA:D49N | 1 | 0 | R |
pncA:H51Y | 1 | 0 | R |
pncA:H57D | 26 | 1 | R |
pncA:W68R | 1 | 0 | R |
pncA:P69Q | 0 | 1 | R |
pncA:S104R | 1 | 0 | R |
pncA:G108R | 1 | 0 | R |
pncA:G132A | 2 | 0 | R |
pncA:GCA136GCG | 2 | 0 | R |
pncA:V139G | 1 | 0 | R |
pncA:A146E | 1 | 0 | R |
pncA:L151S | 1 | 0 | R |
pncA:V180G | 1 | 0 | R |
pncA:T192TA | 1 | 0 | R |
pncA:TCG490TAG | 1 | 0 | R |
pncA: WT* | 47 | 1339 | S |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, M.K.; Stobart, M.; Akochy, P.-M.; Adam, H.; Janella, D.; Rabb, M.; Alawa, M.; Sekirov, I.; Tyrrell, G.J.; Soualhine, H. Evaluation of Whole Genome Sequencing-Based Predictions of Antimicrobial Resistance to TB First Line Agents: A Lesson from 5 Years of Data. Int. J. Mol. Sci. 2024, 25, 6245. https://doi.org/10.3390/ijms25116245
Sharma MK, Stobart M, Akochy P-M, Adam H, Janella D, Rabb M, Alawa M, Sekirov I, Tyrrell GJ, Soualhine H. Evaluation of Whole Genome Sequencing-Based Predictions of Antimicrobial Resistance to TB First Line Agents: A Lesson from 5 Years of Data. International Journal of Molecular Sciences. 2024; 25(11):6245. https://doi.org/10.3390/ijms25116245
Chicago/Turabian StyleSharma, Meenu Kaushal, Michael Stobart, Pierre-Marie Akochy, Heather Adam, Debra Janella, Melissa Rabb, Mohey Alawa, Inna Sekirov, Gregory J. Tyrrell, and Hafid Soualhine. 2024. "Evaluation of Whole Genome Sequencing-Based Predictions of Antimicrobial Resistance to TB First Line Agents: A Lesson from 5 Years of Data" International Journal of Molecular Sciences 25, no. 11: 6245. https://doi.org/10.3390/ijms25116245
APA StyleSharma, M. K., Stobart, M., Akochy, P. -M., Adam, H., Janella, D., Rabb, M., Alawa, M., Sekirov, I., Tyrrell, G. J., & Soualhine, H. (2024). Evaluation of Whole Genome Sequencing-Based Predictions of Antimicrobial Resistance to TB First Line Agents: A Lesson from 5 Years of Data. International Journal of Molecular Sciences, 25(11), 6245. https://doi.org/10.3390/ijms25116245