Genetic Diversity and Population Structure of Rhodeus uyekii in the Republic of Korea Revealed by Microsatellite Markers from Whole Genome Assembly
Abstract
:1. Introduction
2. Results
2.1. Genome Assembly of R. uyekii
2.2. Annotation of Candidate Genes and Proteins Prediction
2.3. Phylogenetic Inference Orthologous Groups of R. uyekii
2.4. Genetic Diversity and Bottleneck Test
2.5. Population Structure and Genetic Differentiation Analyses
3. Discussion
3.1. The Whole Genome Sequence of R. uyekii Provides a Useful Genetic Resource
3.2. Genetic Diversity and Population Structure of R. uyekii
4. Materials and Methods
4.1. Sample Preparation
4.2. Genome Sequencing and de Novo Assembly
4.3. Genome Annotations and Gene Annotation Analysis
4.4. Phylogenetic Tree Reconstruction
4.5. Analysis of Microsatellite Markers Genotyping
4.6. Genetic Diversity and Population Structure Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, I.S.; Choi, Y.; Lee, C.L.; Lee, Y.J.; Kim, B.Y.; Kim, J.H. Illustrated Book of Korean Fishes; Kyo-Hak Publishing Co., Ltd.: Seoul, Republic of Korea, 2005; p. 613. [Google Scholar]
- Banarescu, P. Zoogeography of Fresh Waters. General Distribution and Dispersal of Freshwater Animals; Aula-Verlag: Wiesbaden, Germany, 1990. [Google Scholar]
- Kim, Y.H. A Study on the Honamkwon (the southwestern region of Korea) Analysis Based on the land price. Locality Glob. 2015, 39, 105–128. [Google Scholar]
- Kim, K.R.; Kwak, Y.H.; Sung, M.S.; Cho, S.J.; Bang, I.C. Population structure and genetic diversity of the endangered fish black shinner Pseudopungtungia nigra (Cyprinidae) in Korea: A wild and restoration population. Sci. Rep. 2023, 13, 9692. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.S.; Yang, H. Acheilognathus majusculus, a new bitterling (Pisces, Cyprinidae) from Korea, with revised key to species of the genus Acheilognathus of Korea. Korean J. Biol. Sci. 1998, 2, 27–31. [Google Scholar] [CrossRef]
- Kim, D.; Conway, K.W.; Jeon, H.B.; Kwon, Y.S.; Won, Y.J. High genetic diversity within the morphologically conservative dwarf loach, Kichulchoia brevifasciata (Teleostei: Cobitidae), an endangered freshwater fish from South Korea. Conserv. Genet. 2013, 14, 757–769. [Google Scholar] [CrossRef]
- Jeon, H.B.; Song, H.Y.; Suk, H.Y.; Bang, I.C. Phylogeography of the Korean endemic Coreoleuciscus (Cypriniformes: Gobionidae): The genetic evidence of colonization through Eurasian continent to the Korean Peninsula during Late Plio-Pleistocene. Genes Genom. 2022, 44, 709–719. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Yun, S.W.; Park, J.Y. A new species of torrent catfish, Liobagrusgeumgangensis (Teleostei, Siluriformes, Amblycipitidae), from Korea. ZooKeys 2023, 1180, 317. [Google Scholar] [CrossRef] [PubMed]
- Frankham, R. Conservation genetics. Annu. Rev. Genet. 1995, 29, 305–327. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.J.; Kim, E.M.; Kim, Y.J.; Lim, S.G.; Sim, D.S.; Kim, Y.H.; Park, I.S. Effect of lidocaine hydrochloride and clove oil as an anaesthetic on Korean rose bitterling, Rhodeus uyekii and oily bittering, Acheilognathus koreensis. J. Aquac. 2005, 18, 272–279. [Google Scholar]
- Kim, K.R.; Choi, H.K.; Lee, T.W.; Lee, H.J.; Yu, J.N. Population Structure and Genetic Diversity of the Spotted Sleeper Odontobutis interrupta (Odontobutidae), a Fish Endemic to Korea. Diversity 2023, 15, 913. [Google Scholar] [CrossRef]
- Yue, G.H.; Wang, L.; Sun, F.; Yang, Z.; Shen, Y.; Meng, Z.; Alfiko, Y. The ornamental fighting fish is the next model organism for genetic studies. Rev. Aquac. 2022, 14, 1966–1977. [Google Scholar] [CrossRef]
- Fan, G.; Chan, J.; Ma, K.; Yang, B.; Zhang, H.; Yang, X.; Wang, Y. Chromosome-level reference genome of the Siamese fighting fish Betta splendens, a model species for the study of aggression. Gigascience 2018, 7, giy087. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.N.; Xiao, G.B.; Li, J.T. Complete mitochondrial genome of the Siamese fighting fish (Betta splendens). Mitochondrial DNA Part A 2016, 27, 4580–4581. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, H.; Brandt, D.Y.; Hu, B.; Sheng, J.; Wang, M.; Hong, Y. The genetic architecture of phenotypic diversity in the betta fish (Betta splendens). Sci. Adv. 2022, 8, eabm4955. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.C.; Kang, T.W.; Kim, M.S.; Kim, C.B. The complete mitogenome of Rhodeus uyekii (Cypriniformes, Cyprinidae) Full-Length Research Paper. DNA Seq. 2006, 17, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.J.; Shin, E.H.; Kong, H.J.; Kim, H.S.; Kim, B.S.; Nam, B.H.; An, C.M. Characterization of novel microsatellite markers derived from Korean rose bitterling (Rhodeus uyekii) genomic library. Genet. Mol. Res. 2014, 13, 8147–8152. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Qiu, Y.; Pan, X.; Zhang, Y.; Wang, X.; Lv, Y.; Shi, Q. Genome assembly for a Yunnan-Guizhou Plateau “3E” fish, Anabarilius grahami (Regan), and its evolutionary and genetic applications. Front. Genet. 2018, 9, 614. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, E.L.; Auger, H.; Jaszczyszyn, Y.; Thermes, C. Ten years of next-generation sequencing technology. Trends Genet. 2014, 30, 418–426. [Google Scholar] [CrossRef]
- Sun, L.; Gao, T.; Wang, F.; Qin, Z.; Yan, L.; Tao, W.; Wang, D. Chromosome-level genome assembly of a cyprinid fish Onychostoma macrolepis by integration of nanopore sequencing, Bionano and Hi-C technology. Mol. Ecol. Resour. 2020, 20, 1361–1371. [Google Scholar] [CrossRef]
- Nguinkal, J.A.; Brunner, R.M.; Verleih, M.; Rebl, A.; de Los Ríos-Pérez, L.; Schäfer, N.; Goldammer, T. The first highly contiguous genome assembly of pikeperch (Sander lucioperca), an emerging aquaculture species in Europe. Genes 2019, 10, 708. [Google Scholar] [CrossRef]
- Liu, H.P.; Xiao, S.J.; Wu, N.; Wang, D.; Liu, Y.C.; Zhou, C.W.; Mou, Z.B. The sequence and de novo assembly of Oxygymnocypris stewartii genome. Sci. Data 2019, 6, 190009. [Google Scholar] [CrossRef]
- Sánchez-Roncancio, C.; García, B.; Gallardo-Hidalgo, J.; Yáñez, J.M. GWAS on Imputed Whole-Genome Sequence Variants Reveal Genes Associated with Resistance to Piscirickettsia salmonis in Rainbow Trout (Oncorhynchus mykiss). Genes 2022, 14, 114. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.S.; Grande, T.C.; Wilson, M.V. Fishes of the World; John Wiley & Sons: Hoboken, NJ, USA, 2016; 752p. [Google Scholar] [CrossRef]
- Hughes, L.C.; Ortí, G.; Huang, Y.; Sun, Y.; Baldwin, C.C.; Thompson, A.W. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. Proc. Natl. Acad. Sci. USA 2018, 115, 6249–6254. [Google Scholar] [CrossRef] [PubMed]
- Davidson, W.S.; Koop, B.F.; Jones, S.J.; Iturra, P.; Vidal, R.; Maass, A. Sequencing the genome of the Atlantic salmon (Salmo salar). Genome Biol. 2010, 11, 403. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Zhang, X.; Wang, X.; Li, J.; Liu, G.; Kuang, Y. Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat. Genet. 2014, 46, 1212–1219. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, S.; Yao, J.; Bao, L.; Zhang, J.; Li, Y. The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts. Nat. Commun. 2016, 7, 11757. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, Y.; Uehara, K.; Ikeya, K.; Nishio, M. Interpopulational and intrapopulational genetic diversity of the endangered Itasenpara bitterling (Acheilognathus longipinnis) with reference to its demographic history. Conserv. Genet. 2020, 21, 55–64. [Google Scholar] [CrossRef]
- Kim, W.J.; Kong, H.J.; Shin, E.H.; Kim, C.H.; Kim, H.S.; Kim, Y.O.; Jung, H.T. Isolation and inheritance of microsatellite loci for the oily bittering (Acheilognathus koreensis): Applications for analysis of genetic diversity of wild populations. Anim. Cells Syst. 2012, 16, 321–328. [Google Scholar] [CrossRef]
- Hong, Y.K.; Kim, K.R.; Kim, K.S.; Bang, I.C. The Impact of Weir Construction in Korea’s Nakdong River on the Population Genetic Variability of the Endangered Fish Species, Rapid Small Gudgeon (Microphysogobio rapidus). Genes 2023, 14, 1611. [Google Scholar] [CrossRef] [PubMed]
- Gilbey, J.; Soshnina, V.A.; Volkov, A.A.; Zelenina, D.A. Comparative genetic variability of pink salmon from different parts of their range: Native Pacific, artificially introduced White Sea and naturally invasive Atlantic Scottish rivers. J. Fish Biol. 2022, 100, 549–560. [Google Scholar] [CrossRef]
- Cornuet, J.M.; Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 1996, 144, 2001–2014. [Google Scholar] [CrossRef]
- Mehar, M.; Mekkawy, W.; McDougall, C.; Benzie, J.A. Fish trait preferences: A review of existing knowledge and implications for breeding programmes. Rev. Aquac. 2020, 12, 1273–1296. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Li, H. Minimap and miniasm: Fast mapping and de novo assembly for noisy long sequences. Bioinformatics 2016, 32, 2103–2110. [Google Scholar] [CrossRef] [PubMed]
- Walker, B.J.; Abeel, T.; Shea, T.; Priest, M.; Abouelliel, A.; Sakthikumar, S.; Cuomo, C.A.; Zeng, Q.; Wortman, J.; Young, S.K.; et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 2014, 9, e112963. [Google Scholar] [CrossRef] [PubMed]
- Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef] [PubMed]
- Majoros, W.H.; Pertea, M.; Salzberg, S.L. TigrScan and GlimmerHMM: Two open source ab initio eukaryotic gene-finders. Bioinformatics 2004, 20, 2878–2879. [Google Scholar] [CrossRef] [PubMed]
- Stanke, M.; Keller, O.; Gunduz, I.; Hayes, A.; Waack, S.; Morgenstern, B. AUGUSTUS: Ab initio prediction of alternative transcripts. Nucleic Acids Res. 2006, 34, W435–W439. [Google Scholar] [CrossRef] [PubMed]
- Holt, C.; Yandell, M. MAKER2: An annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinform. 2011, 12, 491. [Google Scholar] [CrossRef] [PubMed]
- Moriya, Y.; Itoh, M.; Okuda, S.; Yoshizawa, A.C.; Kanehisa, M. KAAS: An automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007, 35, W182–W185. [Google Scholar] [CrossRef] [PubMed]
- Emms, D.M.; Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 2019, 20, 238. [Google Scholar] [CrossRef]
- Mendes, F.K.; Vanderpool, D.; Fulton, B.; Hahn, M.W. CAFE 5 models variation in evolutionary rates among gene families. Bioinformatics 2020, 36, 5516–5518. [Google Scholar] [CrossRef]
- Schuelke, M. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 2000, 18, 233–234. [Google Scholar] [CrossRef] [PubMed]
- Kalinowski, S.T.; Taper, M.L.; Marshall, T.C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 2007, 16, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Van Oosterhout, C.; Hutchinson, W.F.; Wills, D.P.; Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 2004, 4, 535–538. [Google Scholar] [CrossRef]
- Raymond, M.; Rousset, F. Population genetics software for exact test and ecumenicism. J. Hered. 1995, 86, 248–249. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Piry, S.; Luikart, G.; Cornuet, J.M. Computer note. BOTTLENECK: A computer program for detecting recent reductions in the effective size using allele frequency data. J. Hered. 1999, 90, 502–503. [Google Scholar] [CrossRef]
- Maruyama, T.; Fuerst, P.A. Population bottlenecks and nonequilibrium models in population genetics. II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics 1985, 111, 675–689. [Google Scholar] [CrossRef]
- Luikart, G.; Cornuet, J.M. Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv. Biol. 1998, 12, 228–237. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef]
- Earl, D.A.; VonHoldt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef] [PubMed]
Short Reads | Total Reads | Total Reads Length (bp) | Q20 (%) | Q30 (%) |
---|---|---|---|---|
Raw data | 979,241,650 | 147,865,488,978 | 94.16 | 88.24 |
Filtered data | 504,366,512 | 76,000,788,304 | 99.50 | 97.77 |
N50 (bp) | Mean reads | |||
HiFi reads data | 5,573,756 | 43,361,492,973 | 8660 | 7779 |
Assembler | HGAP4 |
---|---|
Contig | 2652 |
Total contig bases (bp) | 894,559,954 |
N50 (bp) | 2,964,661 |
Max length (bp) | 14,422,421 |
Average length (bp) | 337,315 |
K-mer (21) | Minimum | Maximum |
---|---|---|
Heterozygosity (%) | 0.900 | 0.909 |
Genome haploid length | 635,909,967 | 636,773,012 |
Genome repeat length | 76,383,271 | 76,486,937 |
Model fit (%) | 95.52 | 97.02 |
Read error rate (%) | 0.091 | 0.091 |
Status | Parameter |
---|---|
Complete BUSCO (C) | 3259 (97.2%) |
Complete and single-copy BUSCO (S) | 3220 (96.0%) |
Complete and duplicated BUSCO (D) | 39 (1.2%) |
Fragmented BUSCO (F) | 35 (1.0%) |
Missing BUSCO (M) | 60 (1.8%) |
Total BUSCO groups searched | 3354 (100%) |
Numbers of Gene | Total Length (bp) | |
---|---|---|
Predicted proteins | 31,166 | 85,997,067 |
Database | Number | Percent (%) |
EggNOG | 29,896 | 95.93 |
InterPro | 24,820 | 79.64 |
Pfam | 23,354 | 74.93 |
COG | 9704 | 31.14 |
KEGG | 17,614 | 56.52 |
ID | n | NA | HO | HE | PHWE | FIS |
---|---|---|---|---|---|---|
DG | 20 | 7.6 | 0.496 | 0.587 | 0.000 *** | 0.107 ** |
BS | 20 | 8.0 | 0.568 | 0.695 | 0.000 *** | 0.252 *** |
GC | 20 | 9.9 | 0.583 | 0.746 | 0.000 *** | 0.234 *** |
GG | 20 | 8.9 | 0.642 | 0.783 | 0.000 *** | 0.161 *** |
MS | 20 | 8.7 | 0.588 | 0.711 | 0.000 *** | 0.144 *** |
DC | 20 | 8.2 | 0.612 | 0.737 | 0.000 *** | 0.110 * |
Population ID | n | Wilcoxon Sign-Rank Test | |||
---|---|---|---|---|---|
PIAM | PTPM | PSMM | Mode-Shift | ||
DG | 20 | 0.004 ** | 0.367 | 0.822 | L-shaped |
BS | 20 | 0.000 *** | 0.018 * | 0.108 | L-shaped |
GC | 20 | 0.001 ** | 0.620 | 0.804 | L-shaped |
GG | 20 | 0.000 *** | 0.341 | 0.822 | L-shaped |
MS | 20 | 0.000 *** | 0.021 * | 0.216 | L-shaped |
DC | 20 | 0.000 *** | 0.069 | 0.329 | L-shaped |
DG | BS | GC | GG | MS | DC | |
---|---|---|---|---|---|---|
DG | - | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
BS | 0.177 | - | 0.000 | 0.000 | 0.000 | 0.000 |
GC | 0.147 | 0.075 | - | 0.000 | 0.000 | 0.000 |
GG | 0.193 | 0.116 | 0.070 | - | 0.000 | 0.000 |
MS | 0.153 | 0.119 | 0.045 | 0.106 | - | 0.000 |
DC | 0.162 | 0.111 | 0.041 | 0.096 | 0.070 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.-R.; Park, S.Y.; Jeong, J.H.; Hwang, Y.; Kim, H.; Sung, M.-S.; Yu, J.-N. Genetic Diversity and Population Structure of Rhodeus uyekii in the Republic of Korea Revealed by Microsatellite Markers from Whole Genome Assembly. Int. J. Mol. Sci. 2024, 25, 6689. https://doi.org/10.3390/ijms25126689
Kim K-R, Park SY, Jeong JH, Hwang Y, Kim H, Sung M-S, Yu J-N. Genetic Diversity and Population Structure of Rhodeus uyekii in the Republic of Korea Revealed by Microsatellite Markers from Whole Genome Assembly. International Journal of Molecular Sciences. 2024; 25(12):6689. https://doi.org/10.3390/ijms25126689
Chicago/Turabian StyleKim, Kang-Rae, So Young Park, Ju Hui Jeong, Yujin Hwang, Heesoo Kim, Mu-Sung Sung, and Jeong-Nam Yu. 2024. "Genetic Diversity and Population Structure of Rhodeus uyekii in the Republic of Korea Revealed by Microsatellite Markers from Whole Genome Assembly" International Journal of Molecular Sciences 25, no. 12: 6689. https://doi.org/10.3390/ijms25126689
APA StyleKim, K. -R., Park, S. Y., Jeong, J. H., Hwang, Y., Kim, H., Sung, M. -S., & Yu, J. -N. (2024). Genetic Diversity and Population Structure of Rhodeus uyekii in the Republic of Korea Revealed by Microsatellite Markers from Whole Genome Assembly. International Journal of Molecular Sciences, 25(12), 6689. https://doi.org/10.3390/ijms25126689