The Impact of the Combined Effect of Inhalation Anesthetics and Iron Dextran on Rats’ Systemic Toxicity
Abstract
:1. Introduction
2. Results
2.1. Effect of Chronic Administration of Inhalation Anesthetics and Fe-Dextran on the Osmotic Fragility of Erythrocytes
2.2. Concentrations of Essential Metals in Peripheral Tissues of Rats Treated with Chronic Administration of Inhalation Anesthetics and Fe-Dextran
2.3. Toxic Metal Concentrations in Peripheral Tissues of Rats Treated with Chronic Administration of Inhalation Anesthetics and Fe-Dextran
2.4. Changes in the Hepcidin–Ferritin Level after Chronic Administration of Inhalation Anesthetics and Iron Dextran
2.5. MMP-2 and MMP-9 Concentrations in Rat Serum after Chronic Administration of Inhalation Anesthetics and Iron Dextran
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Iron Dextran Solution
4.3. Animals and Ethics Statement
4.4. Experimental Design
4.5. Blood Sampling
4.6. The Osmotic Fragility Test of Erythrocytes
4.7. Analysis of Essential and Toxic Metals by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
4.7.1. Standards and Chemicals
4.7.2. Sampling and Sample Preparation for ICP-MS
4.7.3. Metal Analysis
4.8. Measurement of Hepcidin and Ferritin Levels in Serum
4.9. Determination of the Concentration of Matrix Metalloproteinase 2 (MMP-2) and 9 (MMP-9)
4.10. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nair, A.S. Pharmacogenomics of inhalational anesthetic agents. Med. Gas Res. 2019, 9, 52–53. [Google Scholar] [CrossRef]
- Türkan, H.; Aydin, A.; Sayal, A. Effect of volatile anesthetics on oxidative stress due to occupational exposure. World J. Surg. 2005, 29, 540–5422. [Google Scholar] [CrossRef]
- Soubhia, A.F.; Lauz, S.; Montero, E.F.D.S.; Menezes, A.; Mespaque, L.B.; Facin, E. O efeito dos anestésicos inalatórios halotano e sevoflurano em um modelo experimental de lesão hepática. Rev. Bras. Anestesiol. 2011, 61, 597–603. [Google Scholar] [CrossRef]
- Manatpon, P.; Kofke, W.A. Toxicity of inhaled agents after prolonged administration. J. Clin. Monit. Comput. 2018, 32, 651–666. [Google Scholar] [CrossRef]
- Braz, M.G.; Karahalil, B. Genotoxicity of Anesthetics Evaluated In Vivo (Animals). Biomed. Res. Int. 2015, 2015, 280802. [Google Scholar] [CrossRef]
- Khan, K.S.; Hayes, I.; Buggy, D.J. Pharmacology of anaesthetic agents I: Intravenous anaesthetic agents. Contin. Educ. Anaesth. Crit. Care Pain 2014, 14, 100–105. [Google Scholar] [CrossRef]
- Brozović, G.; Oršolić, N.; Rozgaj, R.; Knežević, F.; Knežević, A.H.; Maričić, M.; Krsnik, D.; Benković, V. Sevoflurane and isoflurane genotoxicity in kidney cells of mice. Arh. Hig. Rada Toksikol. 2017, 68, 228–235. [Google Scholar] [CrossRef]
- Neal, A.P.; Guilarte, T.R. Mechanisms of lead and manganese neurotoxicity. Toxicol. Res. 2013, 2, 99–114. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. In Molecular, Clinical and Environmental Toxicology; Experientia Supplementum; Springer: Basel, Switzerland, 2012; Volume 101, pp. 133–164. [Google Scholar]
- Kim, J.J.; Kim, Y.S.; Kumar, V. Heavy metal toxicity: An update of chelating therapeutic strategies. J. Trace Elem. Med. Biol. 2019, 54, 226–231. [Google Scholar] [CrossRef]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef]
- Jomova, K.; Makova, M.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Rhodes, C.J.; Valko, M. Essential metals in health and disease. Chem. Biol. Interact. 2022, 367, 110173. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Mitra, S.; Jyoti Chakraborty, A.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud Univ. Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Jan, A.T.; Azam, M.; Siddiqui, K.; Ali, A.; Choi, I.; Haq, Q.M. Heavy Metals and Human Health: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. Int. J. Mol. Sci. 2015, 16, 29592–29630. [Google Scholar] [CrossRef]
- Shander, A.; Berth, U.; Betta, J.; Javidroozi, M. Iron overload and toxicity: Implications for anesthesiologists. J. Clin. Anesth. 2012, 5, 419–425. [Google Scholar] [CrossRef]
- Silva, B.; Faustino, P. An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochim. Biophys. Acta 2015, 1852, 1347–1359. [Google Scholar] [CrossRef]
- Nemeth, E.; Ganz, T. Hepcidin and Iron in Health and Disease. Annu. Rev. Med. 2023, 74, 261–277. [Google Scholar] [CrossRef]
- Rauf, A.; Shariati, M.A.; Khalil, A.A.; Bawazeer, S.; Heydari, M.; Plygun, S.; Laishevtcev, A.; Hussain, M.B.; Alhumaydhi, F.A.; Aljohani, A.S.M. Hepcidin, an overview of biochemical and clinical properties. Steroids 2020, 160, 108661. [Google Scholar] [CrossRef]
- Correnti, M.; Gammella, E.; Cairo, G.; Recalcati, S. Iron Absorption: Molecular and Pathophysiological Aspects. Metabolites 2024, 14, 228. [Google Scholar] [CrossRef]
- Roth, M.P.; Meynard, D.; Coppin, H. Regulators of hepcidin expression. Vitam. Horm. 2019, 110, 101–129. [Google Scholar]
- Uranga, R.M.; Salvador, G.A. Unraveling the Burden of Iron in Neurodegeneration: Intersections with Amyloid Beta Peptide Pathology. Oxid. Med. Cell Longev. 2018, 2018, 2850341. [Google Scholar] [CrossRef]
- Kaomongkolgit, R.; Cheepsunthorn, P.; Pavasant, P.; Sanchavanakit, N. Iron increases MMP-9 expression through activation of AP-1 via ERK/Akt pathway in human head and neck squamous carcinoma cells. Oral Oncol. 2008, 44, 587–594. [Google Scholar] [CrossRef]
- Imam, M.U.; Zhang, S.; Ma, J.; Wang, H.; Wang, F. Antioxidants Mediate Both Iron Homeostasis and Oxidative Stress. Nutrients 2017, 9, 671. [Google Scholar] [CrossRef]
- Wu, J.; Yang, J.J.; Cao, Y.; Li, H.; Zhao, H.; Yang, S.; Li, K. Iron overload contributes to general anaesthesia-induced neurotoxicity and cognitive deficits. J. Neuroinflamm. 2020, 17, 110. [Google Scholar] [CrossRef]
- Vayenas, D.V.; Repanti, M.; Vassilopoulos, A.; Papanastasiou, D.A. Influence of iron overload on manganese, zinc, and copper concentration in rat tissues in vivo: Study of liver, spleen, and brain. Int. J. Clin. Lab. Res. 1998, 28, 183–186. [Google Scholar] [CrossRef]
- Ye, Q.; Park, J.E.; Gugnani, K.; Betharia, S.; Pino-Figueroa, A.; Kim, J. Influence of iron metabolism on manganese transport and toxicity. Metallomics 2017, 9, 1028–1046. [Google Scholar] [CrossRef]
- Liu, P.; Yuan, J.; Feng, Y.; Chen, X.; Wang, G.; Zhao, L. Ferroptosis contributes to isoflurane-induced neurotoxicity and learning and memory impairment. Cell Death Discov. 2021, 7, 72. [Google Scholar] [CrossRef]
- Odeh, D.; Oršolić, N.; Adrović, E.; Gaćina, L.; Perić, P.; Odeh, S.; Balta, V.; Lesar, N.; Kukolj, M. Effects of Volatile Anaesthetics and Iron Dextran on Chronic Inflammation and Antioxidant Defense System in Rats. Antioxidants 2022, 11, 708. [Google Scholar] [CrossRef]
- Mancuso, C.; Barone, E. The heme oxygenase/biliverdin reductase pathway in drug research and development. Curr. Drug Metab. 2009, 10, 579–594. [Google Scholar] [CrossRef]
- Badria, F.A.; Ibrahim, A.S.; Badria, A.F.; Elmarakby, A.A. Curcumin Attenuates Iron Accumulation and Oxidative Stress in the Liver and Spleen of Chronic Iron-Overloaded Rats. PLoS ONE 2015, 10, e0134156. [Google Scholar] [CrossRef]
- Barañano, D.E.; Wolosker, H.; Bae, B.I.; Barrow, R.K.; Snyder, S.H.; Ferris, C.D. A mammalian iron ATPase induced by iron. J. Biol. Chem. 2000, 275, 15166–15173. [Google Scholar] [CrossRef]
- Campbell, N.K.; Fitzgerald, H.K.; Dunne, A. Regulation of inflammation by the antioxidant haem oxygenase 1. Nat. Rev. Immunol. 2021, 21, 411–425. [Google Scholar] [CrossRef]
- Arici, S.; Karaman, S.; Dogru, S.; Arici, A.; Karaman, T.; Tapar, H.; Suren, M.; Kaya, Z. Effects of Isoflurane in an intoxication model: Experimental study. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 1738–1743. [Google Scholar]
- Molliex, S.; Crestani, B.; Dureuil, B.; Rolland, C.; Aubier, M.; Desmonts, J.M. Differential effects of Isoflurane and i.v. anaesthetic agents on metabolism of alveolar type II cells. Br. J. Anaesth. 1999, 82, 767–769. [Google Scholar] [CrossRef]
- Yang, T.; Li, Y.; Liu, Q.; Tao, J.; Wu, W.; Huang, H. Isoflurane aggravates the decrease of phosphatidycholine synthesis in alveolar type II cells induced by hydrogen peroxide. Drug Metabol. Drug Interact. 2001, 18, 243–249. [Google Scholar] [CrossRef]
- Li, Y.; Yang, T.; Liu, Q.; Tao, J.; Wu, W.; Huang, H. Effect of Isoflurane on proliferation and Na+, K+-ATPase activity of alveolar type II cells injured by hydrogen peroxide. Drug Metabol. Drug Interact. 2004, 20, 175–183. [Google Scholar] [CrossRef]
- Zhang, L.; Dai, X.; Wang, L.; Cai, J.; Shen, J.; Shen, Y.; Li, X.; Zhao, Y. Iron overload accelerated lipid metabolism disorder and liver injury in rats with non-alcoholic fatty liver disease. Front. Nutr. 2022, 9, 961892. [Google Scholar] [CrossRef]
- Agoro, R.; Taleb, M.; Quesniaux, V.F.J.; Mura, C. Cell iron status influences macrophage polarization. PLoS ONE 2018, 13, e0196921. [Google Scholar] [CrossRef]
- Pahl, M.V.; Vaziri, N.D. Immune Function in Chronic Kidney Disease. In Chronic Renal Disease, 2nd ed.; Kimmel, P.L., Rosenberg, M.E., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 503–519. [Google Scholar]
- Rostoker, G.; Vaziri, N.D.; Fishbane, S. Iatrogenic Iron Overload in Dialysis Patients at the Beginning of the 21st Century. Drugs 2016, 76, 741–757. [Google Scholar] [CrossRef]
- Song, Y.; Yang, N.; Si, H.; Liu, T.; Wang, H.; Geng, H.; Qin, Q.; Guo, Z. Iron overload impairs renal function and is associated with vascular calcification in rat aorta. Biometals 2022, 35, 1325–1339. [Google Scholar] [CrossRef]
- Yeung, C.K.; Zhu, L.; Glahn, R.P.; Miller, D.D. Tissue iron distribution and adaptation of iron absorption in rats exposed to a high dietary level of NaFeEDTA. J. Agric. Food Chem. 2005, 53, 8087–8091. [Google Scholar] [CrossRef]
- Kell, D.B.; Pretorius, E. Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Metallomics 2014, 6, 748–773. [Google Scholar] [CrossRef]
- Pigeon, C.; Ilyin, G.; Courselaud, B.; Leroyer, P.; Turlin, B.; Brissot, P.; Loréal, O. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J. Biol. Chem. 2001, 276, 7811–7819. [Google Scholar] [CrossRef]
- Nicolas, G.; Viatte, L.; Bennoun, M.; Beaumont, C.; Kahn, A.; Vaulont, S. Hepcidin, a new iron regulatory peptide. Blood Cells Mol. Dis. 2002, 29, 327–335. [Google Scholar] [CrossRef]
- Vu’o’ng Lê, B.; Khorsi-Cauet, H.; Villegier, A.S.; Bach, V.; Gay-Quéheillard, J. New rat models of iron sucrose-induced iron overload. Exp. Biol. Med. 2011, 236, 790–799. [Google Scholar] [CrossRef]
- Anderson, E.R.; Shah, Y.M. Iron homeostasis in the liver. Compr. Physiol. 2013, 3, 315–330. [Google Scholar]
- Mohanty, J.G.; Nagababu, E.; Rifkind, J.M. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front. Physiol. 2014, 5, 84. [Google Scholar] [CrossRef]
- Sousa, L.; Garcia, I.J.; Costa, T.G.; Silva, L.N.; Renó, C.O.; Oliveira, E.; Tilelli, C.Q.; Santos, L.L.; Cortes, V.F.; Santos, H.L.; et al. Effects of Iron Overload on the Activity of Na,K-ATPase and Lipid Profile of the Human Erythrocyte Membrane. PLoS ONE 2015, 10, e0132852. [Google Scholar] [CrossRef]
- Nairz, M.; Haschka, D.; Demetz, E.; Weiss, G. Iron at the interface of immunity and infection. Front. Pharmacol. 2014, 5, 152. [Google Scholar] [CrossRef]
- Otogawa, K.; Ogawa, T.; Shiga, R.; Nakatani, K.; Ikeda, K.; Nakajima, Y.; Kawada, N. Attenuation of acute and chronic liver injury in rats by iron-deficient diet. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 294, R311–R320. [Google Scholar] [CrossRef]
- Wang, L.; Harrington, L.; Trebicka, E.; Shi, H.N.; Kagan, J.C.; Hong, C.C.; Lin, H.Y.; Babitt, J.L.; Cherayil, B.J. Selective modulation of TLR4-activated inflammatory responses by altered iron homeostasis in mice. J. Clin. Investig. 2009, 119, 3322–3328. [Google Scholar] [CrossRef]
- Bonaccorsi-Riani, E.; Danger, R.; Lozano, J.J.; Martinez-Picola, M.; Kodela, E.; Mas-Malavila, R.; Bruguera, M.; Collins, H.L.; Hider, R.C.; Martinez-Llordella, M.; et al. Iron Deficiency Impairs Intra-Hepatic Lymphocyte Mediated Immune Response. PLoS ONE 2015, 10, e0136106. [Google Scholar]
- Wise-Faberowski, L.; Raizada, M.K.; Sumners, C. Desflurane and Sevoflurane attenuate oxygen and glucose deprivation-induced neuronal cell death. J. Neurosurg. Anesthesiol. 2003, 15, 193–199. [Google Scholar] [CrossRef]
- Bouwman, R.A.; van’t Hof, F.N.; de Ruijter, W.; van Beek-Harmsen, B.J.; Musters, R.J.; de Lange, J.J.; Boer, C. The mechanism of Sevoflurane-induced cardioprotection is independent of the applied ischaemic stimulus in rat trabeculae. Br. J. Anaesth. 2006, 97, 307–314. [Google Scholar] [CrossRef]
- Dal Molin, S.Z.; Kruel, C.R.; de Fraga, R.S.; Alboim, C.; de Oliveira, J.R.; Alvares-da-Silva, M.R. Differential protective effects of anaesthesia with Sevoflurane or isoflurane: An animal experimental model simulating liver transplantation. Eur. J. Anaesthesiol. 2014, 31, 695–700. [Google Scholar] [CrossRef]
- Reifen, R.; Matas, Z.; Zeidel, L.; Berkovitch, Z.; Bujanover, Y. Iron supplementation may aggravate inflammatory status of colitis in a rat model. Dig. Dis. Sci. 2000, 45, 394–397. [Google Scholar] [CrossRef]
- Lee, T.; Clavel, T.; Smirnov, K.; Schmidt, A.; Lagkouvardos, I.; Walker, A.; Lucio, M.; Michalke, B.; Schmitt-Kopplin, P.; Fedorak, R.; et al. Oral versus intravenous iron replacement therapy distinctly alters the gut microbiota and metabolome in patients with IBD. Gut 2017, 66, 863–871. [Google Scholar] [CrossRef]
- Gozzelino, R.; Jeney, V.; Soares, M.P. Mechanisms of cell protection by heme oxygenase-1. Annu. Rev. Pharmacol. Toxicol. 2010, 50, 323–354. [Google Scholar] [CrossRef]
- Motterlini, R.; Gonzales, A.; Foresti, R.; Clark, J.E.; Green, C.J.; Winslow, R.M. Heme oxygenase-1-derived carbon monoxide contributes to the suppression of acute hypertensive responses in vivo. Circ. Res. 1998, 83, 568–577. [Google Scholar] [CrossRef]
- Chauveau, C.; Bouchet, D.; Roussel, J.C.; Mathieu, P.; Braudeau, C.; Renaudin, K.; Tesson, L.; Soulillou, J.P.; Iyer, S.; Buelow, R.; et al. Gene transfer of heme oxygenase-1 and carbon monoxide delivery inhibit chronic rejection. Am. J. Transplant. 2002, 2, 581–592. [Google Scholar] [CrossRef]
- Motterlini, R.; Otterbein, L.E. The therapeutic potential of carbon monoxide. Nat. Rev. Drug Discov. 2010, 9, 728–743. [Google Scholar] [CrossRef]
- Cheng, P.Y.; Lee, Y.M.; Shih, N.L.; Chen, Y.C.; Yen, M.H. Heme oxygenase-1 contributes to the cytoprotection of alpha-lipoic acid via activation of p44/42 mitogen-activated protein kinase in vascular smooth muscle cells. Free Radic. Biol. Med. 2006, 40, 1313–1322. [Google Scholar] [CrossRef]
- Weis, N.; Weigert, A.; von Knethen, A.; Brüne, B. Heme oxygenase-1 contributes to an alternative macrophage activation profile induced by apoptotic cell supernatants. Mol. Biol. Cell. 2009, 20, 1280–1288. [Google Scholar] [CrossRef]
- Semenza, G.L. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci. STKE 2007, 2007, cm8. [Google Scholar] [CrossRef]
- Flierl, M.A.; Rittirsch, D.; Nadeau, B.A.; Chen, A.J.; Sarma, J.V.; Zetoune, F.S.; McGuire, S.R.; List, R.P.; Day, D.E.; Hoesel, L.M.; et al. Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature 2007, 449, 721–725. [Google Scholar] [CrossRef]
- Kharasch, E.D.; Hankins, D.C.; Cox, K. Clinical isoflurane metabolism by cytochrome P450 2E1. Anesthesiology 1999, 90, 766–771. [Google Scholar] [CrossRef]
- Teschke, R. Hemochromatosis: Ferroptosis, ROS, Gut Microbiome, and Clinical Challenges with Alcohol as Confounding Variable. Int. J. Mol. Sci. 2024, 25, 2668. [Google Scholar] [CrossRef]
- Teschke, R.; Eickhoff, A. Wilson Disease: Copper-Mediated Cuproptosis, Iron-Related Ferroptosis, and Clinical Highlights, with Comprehensive and Critical Analysis Update. Int. J. Mol. Sci. 2024, 25, 4753. [Google Scholar] [CrossRef]
- Bourdi, M.; Chen, W.; Peter, R.M.; Martin, J.L.; Buters, J.T.; Nelson, S.D.; Pohl, L.R. Human cytochrome P450 2E1 is a major autoantigen associated with halothane hepatitis. Chem. Res. Toxicol. 1996, 9, 1159–1166. [Google Scholar] [CrossRef]
- Batistaki, C.; Michalopoulos, G.; Matsota, P.; Nomikos, T.; Kalimeris, K.; Riga, M.; Nakou, M.; Kostopanagiotou, G. CYP2E1 immunoglobulin G4 subclass antibodies after desflurane anesthesia. World J. Hepatol. 2014, 6, 340–346. [Google Scholar] [CrossRef]
- Narodne, N. Zakon o Zaštiti Životinja (Law on Animal Welfare); Narodne Novine: Zagreb, Croatia, 2017; p. 102/17. [Google Scholar]
- Narodne, N. Zakon o Izmjenama i Dopunama Zakona o Zaštiti Životinja (Law on Amendments to the Law on Animal Welfare); Narodne Novine: Zagreb, Croatia, 2013; p. 37/13. [Google Scholar]
- Narodne, N. Pravilnik o Zaštiti Životnja Koje se Koriste u Znanstvene Svrhe (Regulation on the Protection of Animals Used for Scientific Purposes); Narodne Novine: Zagreb, Croatia, 2013; p. 55/13. [Google Scholar]
- National Research Council. Guide for the Care and Use of Laboratory Animals, 8th ed.; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Clinical Laboratory Standards Institute. Procedures for the Collection of Diagnostic Blood Specimens by Venipuncture–CLSI: H3-A6, 6th ed.; Clinical and Laboratory Standards Institute: Pennsylvania, PA, USA, 2007. [Google Scholar]
- World Health Organization. Guidelines on Drawing blood: Best Practices in Phlebotomy, 1st ed.; World Health Organization Press: Geneva, Switzerland, 2010. [Google Scholar]
- Bilandžić, N.; Sedak, M.; Đokić, M.; Gross Bošković, A.; Florijančić, T.; Bošković, I.; Kovačić, M.; Puškadija, Z.; Hruškar, M. Element content in ten Croatian honey types from different geographical regions during three seasons. J. Food Compos. Anal. 2019, 84, 103305. [Google Scholar] [CrossRef]
Groups a | Iron (mg/kg) (Mean ± SE) | |||
---|---|---|---|---|
Liver | Kidney | Lungs | Spleen | |
Cont. | 409.78 ± 6.86 | 68.35 ± 1.18 | 70.19 ± 3.17 | 1651.57 ± 44.18 |
Sevo. | 761.72 ± 27.82 | 75.89 ± 0.38 | 83.23 ± 1.80 | 2712.07 ± 32.59 |
Iso. | 262.63 ± 2.97 | 85.31 ± 3.10 | 116.56 ± 5.64 | 1312.69 ± 38.23 |
Fe-dex. | 7797.16 ± 88.12 *∆∆ | 173.87 ± 2.74 * | 218.00 ± 8.37 * | 11,069.39 ± 161.33 *∆∆ |
Fe-dex. + Sevo. | 10,945.52 ± 11.14 **■∆∆∆ | 218.23 ± 6.07 ** | 314.09 ± 4.68 **■ | 13,371.78 ± 100.13 **■∆∆∆ |
Fe-dex. + Iso. | 3813.77 ± 3.94 ∆ | 346.43 ± 4.89 ***■■∆ | 397.20 ± 2.28 ***■■∆ | 6440.82 ± 126.14 ∆ |
Groups a | Essential Metals (mg/kg)—Mean ± SE Liver | |||
---|---|---|---|---|
Manganese | Copper | Zinc | Selenium | |
Cont. | 2.51 ± 0.04 | 5.03 ± 0.19 | 16.13 ± 0.38 | 1.46 ± 0.03 |
Sevo. | 2.78 ± 0.09 | 4.88 ± 0.05 | 14.26 ± 0.19 | 1.40 ± 0.02 |
Iso. | 2.93 ± 0.08 | 4.65 ± 0.09 ∇∇ | 31.90 ± 1.15 **■■■ | 1.24 ± 0.07 |
Fe-dex. | 5.17 ± 0.06 * | 5.07 ± 0.04 | 28.02 ± 0.16 ■ | 1.35 ± 0.02 |
Fe-dex. + Sevo. | 5.68 ± 0.18 ** | 7.14 ± 0.12 | 29.91 ± 0.63 *■■ | 1.32 ± 0.02 |
Fe-dex. + Iso. | 0.27 ± 0.00 ###∇∇∇ | 1.95 ± 0.03 *#∇∇∇ | 18.27 ± 0.13 | 0.41 ± 0.01 ***■ |
Groups a | Kidney | |||
Manganese | Copper | Zinc | Selenium | |
Cont. | 0.96 ± 0.01 | 12.65 ± 0.19 | 12.32 ± 0.03 | 1.40 ± 0.02 |
Sevo. | 0.91 ± 0.02 | 8.17 ± 0.54 | 11.11 ± 0.27 | 1.42 ± 0.03 |
Iso. | 1.02 ± 0.04 | 7.79 ± 0.31 | 22.08 ± 0.12 **■■■♦ | 1.34 ± 0.02 |
Fe-dex. | 0.93 ± 0.03 | 6.82 ± 0.09 ** | 20.08 ± 0.37 ■ | 1.34 ± 0.02 |
Fe-dex. + Sevo. | 1.00 ± 0.02 | 7.21 ± 0.06 | 20.98 ± 0.20 ■■ | 1.18 ± 0.00 *■ |
Fe-dex. + Iso. | 0.51 ± 0.02 *∆∆∇∇ | 2.93 ± 0.03 ***■ | 13.27 ± 0.52 | 0.15 ± 0.00 **■■■# |
Groups a | Lungs | |||
Manganese | Copper | Zinc | Selenium | |
Cont. | 0.22 ± 0.00 | 2.15 ± 0.06 | 10.04 ± 0.12 | 0.42 ± 0.01 |
Sevo. | 0.21 ± 0.00 | 1.86 ± 0.02 ∇∇ | 9.20 ± 0.15 | 0.39 ± 0.01 |
Iso. | 0.29 ± 0.01 | 2.04 ± 0.10 | 17.87 ± 0.45 *■■■ | 0.45 ± 0.01 |
Fe-dex. | 0.23 ± 0.01 | 1.94 ± 0.01 | 16.58 ± 0.03 ■ | 0.39 ± 0.00 |
Fe-dex. + Sevo. | 0.31 ± 0.00 ■ | 3.23 ± 0.05 | 17.67 ± 0.09 **■■■ | 0.36 ± 0.00 *∆∆ |
Fe-dex. + Iso. | 2.47 ± 0.09 ***■■■# | 1.25 ± 0.06 **∇∇∇ | 15.57 ± 0.15 | 0.56 ± 0.02 ■##∇∇∇ |
Groups a | Spleen | |||
Manganese | Copper | Zinc | Selenium | |
Cont. | 0.28 ± 0.01 | 1.59 ± 0.02 | 10.42 ± 0.08 | 0.60 ± 0.01 |
Sevo. | 0.58 ± 0.02 | 1.50 ± 0.03 | 9.83 ± 0.04 | 0.61 ± 0.01 |
Iso. | 0.17 ± 0.01 | 1.20 ± 0.02 | 16.49 ± 0.46 | 0.45 ± 0.01 |
Fe-dex. | 2.56 ± 0.04 *∆∆ | 1.58 ± 0.02 | 18.50 ± 0.25 ■ | 0.64 ± 0.02 |
Fe-dex. + Sevo. | 3.22 ± 0.01 **■∆∆∆ | 2.10 ± 0.30 ∆∆ | 21.38 ± 0.50 **■■■ | 0.61 ± 0.00 |
Fe-dex. + Iso. | 1.05 ± 0.00 ∆ | 5.71 ± 0.52 ■■∆∆∆ | 21.31 ± 0.15 *■■■ | 1.38 ± 0.01 ∆∆∆ |
Groups a | Aluminum (mg/kg) (Mean ± SE) | |||
---|---|---|---|---|
Liver | Kidney | Lungs | Spleen | |
Cont. | 0.55 ± 0.03 | 0.44 ± 0.02 | 0.53 ± 0.01 | 0.61 ± 0.01 |
Sevo. | 0.51 ± 0.01 | 0.42 ± 0.02 | 0.55 ± 0.02 | 1.20 ± 0.01 ∆∆ |
Iso. | 0.43 ± 0.02 | 0.57 ± 0.03 | 2.53 ± 0.02 | 0.50 ± 0.02 |
Fe-dex. | 3.67 ± 0.06 ∆∆ | 0.51 ± 0.01 | 0.58 ± 0.02 | 4.73 ± 0.06 *∆∆∆♦♦ |
Fe-dex. + Sevo. | 7.45 ± 0.26 *■■∆∆∆ | 2.95 ± 0.03 *■■♦♦♦ | 3.62 ± 0.12 **■ | 0.74 ± 0.07 |
Fe-dex. + Iso. | 0.63 ± 0.02 | 0.19 ± 0.01 ∆∆# | 3.86 ± 0.09 ***■■# | 0.63 ± 0.12 |
Groups a | Toxic Metals (µg/kg)—Mean ± SE | |||
---|---|---|---|---|
Liver | Kidney | |||
Cadmium | Lead | Cadmium | Lead | |
Cont. | 12.32 ± 0.44 | 1.94 ± 0.07 | 34.04 ± 0.12 | 3.70 ± 0.38 |
Sevo. | 16.75 ± 0.31 | 3.19 ± 0.39 | 38.90 ± 0.99 | 3.60 ± 0.32 |
Iso. | 8.90 ± 0.83 ■■ | 1.95 ± 0.10 | 16.69 ± 0.59 ■■■###♦ | 2.87 ± 0.24 |
Fe-dex. | 13.67 ± 0.85 | 27.11 ± 0.86 *∆ | 39.46 ± 1.76 | 1.23 ± 0.08 |
Fe-dex. + Sevo. | 14.71 ± 0.86 | 250.95 ± 9.83 ***∆∆∆♦ | 28.52 ± 1.18 ■# | 117.54 ± 3.60 ## |
Fe-dex. + Iso. | 0.41 ± 0.03 ■■■∇∇ | 2.31 ± 0.31 | 35.44 ± 0.23 | 0.69 ± 0.04 *■∇∇∇ |
Groups a | Lungs | Spleen | ||
Cadmium | Lead | Cadmium | Lead | |
Cont. | 1.22 ± 0.07 | 1.34 ± 0.05 | 2.26 ± 0.20 | 2.61 ± 0.23 |
Sevo. | 1.27 ± 0.08 | 2.87 ± 0.29 | 2.59 ± 0.15 | 10.07 ± 0.16 |
Iso. | 0.70 ± 0.03 **■■ | 2.35 ± 0.30 | 0.64 ± 0.03 | 0.71 ± 0.07 |
Fe-dex. | 0.83 ± 0.03 | 0.00 ± 0.00 | 1.84 ± 0.15 | 32.80 ± 0.34 **∆∆∆ |
Fe-dex. + Sevo. | 1.48 ± 0.16 ∆∆∆# | 164.07 ± 8.35 **### | 1.84 ± 0.25 | 10.18 ± 1.86 |
Fe-dex. + Iso. | 0.89 ± 0.04 | 30.30 ± 0.72 *## | 29.13 ± 2.12 ∆∆∆#∇ | 15.48 ± 0.19 ∆∆ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odeh, D.; Oršolić, N.; Adrović, E.; Bilandžić, N.; Sedak, M.; Žarković, I.; Lesar, N.; Balta, V. The Impact of the Combined Effect of Inhalation Anesthetics and Iron Dextran on Rats’ Systemic Toxicity. Int. J. Mol. Sci. 2024, 25, 6323. https://doi.org/10.3390/ijms25126323
Odeh D, Oršolić N, Adrović E, Bilandžić N, Sedak M, Žarković I, Lesar N, Balta V. The Impact of the Combined Effect of Inhalation Anesthetics and Iron Dextran on Rats’ Systemic Toxicity. International Journal of Molecular Sciences. 2024; 25(12):6323. https://doi.org/10.3390/ijms25126323
Chicago/Turabian StyleOdeh, Dyana, Nada Oršolić, Emanuela Adrović, Nina Bilandžić, Marija Sedak, Irena Žarković, Nikola Lesar, and Vedran Balta. 2024. "The Impact of the Combined Effect of Inhalation Anesthetics and Iron Dextran on Rats’ Systemic Toxicity" International Journal of Molecular Sciences 25, no. 12: 6323. https://doi.org/10.3390/ijms25126323
APA StyleOdeh, D., Oršolić, N., Adrović, E., Bilandžić, N., Sedak, M., Žarković, I., Lesar, N., & Balta, V. (2024). The Impact of the Combined Effect of Inhalation Anesthetics and Iron Dextran on Rats’ Systemic Toxicity. International Journal of Molecular Sciences, 25(12), 6323. https://doi.org/10.3390/ijms25126323