Wilson Disease: Copper-Mediated Cuproptosis, Iron-Related Ferroptosis, and Clinical Highlights, with Comprehensive and Critical Analysis Update
Abstract
:1. Introduction
2. Copper Homeostasis in Healthy Humans
2.1. Quantitative Aspects of Copper
2.2. Physiological Role of Copper in Humans
2.3. Gastrointestinal Absorption of Copper from Food
2.4. Transfer of Copper from Enterocytes into the Circulation
2.5. Copper in the Liver of Healthy Humans and Genetic Control of Internal Copper Environment
3. Basics of Wilson Disease
3.1. ATP7B Gene Mutation
3.2. Pathophysiology of the Copper Liver Injury
3.2.1. Intestinal Copper Uptake
3.2.2. Copper Transfer from Enterocytes to Hepatocytes
3.2.3. Copper Overload Due to Impaired Biliary Copper Excretion
3.2.4. Role of ROS and Vicious Cycles
3.2.5. Cuproptosis and Ferroptosis
Cuproptosis
Ferroptosis
3.2.6. Cross-Talk of Inflammatory Cytokines
3.2.7. Gut Microbiome and Dysbiosis
3.3. Natural Clinical Course of Wilson Disease
3.4. Differential Diagnosis of Wilson Disease
3.4.1. Acute Copper Poisoning
3.4.2. Prolonged Copper Intoxication
Indian Childhood Cirrhosis
Indian Childhood Cirrhosis-like Disorder
3.5. Symptoms of Wilson Disease
3.6. Clinical Presentation of Wilson Disease
3.7. Diagnostic Approaches
3.7.1. Genetic Screening
3.7.2. Laboratory Data
3.7.3. Diagnostic Algorithm
3.7.4. Imaging of the Liver in Patients with Wilson Disease
Abdominal Ultrasound
Liver Transient Elastography and Shear Wave Elastography
Magnetic Resonance Imaging
Liver Computer Tomography
3.7.5. Liver Histology by Light Microscopy
3.7.6. Liver Ultrastructure
4. Medical Therapy of Wilson Disease
4.1. Dietary Recommendations
4.2. Randomized Controlled Trials
4.3. Drug Therapy in Wilson Disease
4.3.1. First Line Drug Therapy with D-Penicillamine
4.3.2. Rug Therapy with Trientine
4.3.3. Zinc Therapy
4.3.4. Issue of Bis-Choline Tetrathiomolybdate
4.3.5. Experimental Therapies
Human Hepatocyte Transplantation
Transplantation of Bone Marrow Cells
Gene Therapy
Drug Therapeutics
- Methanobactin
- Radical Scavenging Agents
5. Liver Transplantation as Ultima Ratio
6. Outcome of Patients with Wilson Disease
6.1. Causes of Death
6.2. Hepato-Biliary Malignancies
6.2.1. Hepatocellular Carcinoma
6.2.2. Cholangiocarcinoma
7. Future Directions
7.1. Serum Ceruloplasmin
7.2. Serum-Free Copper
7.3. Standardization of Units
7.4. Low Serum ALP Activities
7.5. Zinc
7.6. Iron
7.7. Acute Hepatitis
7.8. Copper and Atherosclerosis
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cowan, J.; Sneden, C. Heavy element synthesis in the oldest stars and the early Universe. Nature 2006, 440, 1151–1156. [Google Scholar] [CrossRef] [PubMed]
- Cowan, J.J.; Thielemann, F.K. R-process nucleosynthesis in Supernovae. Phys. Today 2004, 57, 47–53. [Google Scholar] [CrossRef]
- Burbidge, E.M.; Burbidge, G.R.; Fowler, W.A.; Hoyle, F. Synthesis of the elements in stars. Rev. Mod. Phys. 1957, 29, 547–650. [Google Scholar] [CrossRef]
- Frebel, A.; Beers, T.C. Some of the universe’s heavier elements are created by neutron star collisions. Phys. Today 2018, 71, 30–37. [Google Scholar] [CrossRef]
- Chen, G.; Li, J.; Han, H.; Du, R.; Wang, X. Physiological and molecular mechanisms of plant responses to copper stress. Int. J. Mol. Sci. 2022, 23, 12950. [Google Scholar] [CrossRef] [PubMed]
- Yruela, I. Copper in plants: Acquisition, transport and interactions. Funct. Plant Biol. 2009, 36, 409–430. [Google Scholar] [CrossRef] [PubMed]
- Perea-García, A.; Andrés-Bordería, A.; Mayo de Andrés, S.; Sanz, A.; Davis, A.M.; Davis, S.J.; Huijser, P.; Peñarrubia, L. Modulation of copper deficiency responses by diurnal and circadian rhythms in Arabidopsis thaliana. J. Exp. Bot. 2016, 67, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.X.; Wang, Z.H.; Sun, Y.D.; Wang, L.L.; Li, M.; Liu, Y.T.; Zhang, H.M.; Jing, P.W.; Shi, Q.F.; Yu, Y.H. Molecular mechanism of plant response to copper stress: A review. Environ. Exp. Botany 2024, 218, 105590. [Google Scholar] [CrossRef]
- Collins, J.F. Copper nutrition and biochemistry and human (patho)physiology. Adv. Food Nutr. Res. 2021, 96, 311–364. [Google Scholar] [CrossRef]
- Iakovidis, I.; Delimaris, I.; Piperakis, S.M. Copper and its complexes in medicine: A biochemical approach. Mol. Biol. Int. 2011, 2011, 594529. [Google Scholar] [CrossRef]
- Dyer, F.F.; Leddicotte, G.W. The radiochemistry of copper. In National Research Council; The Radiochemistry of Copper; The National Academies Press: Washington, DC, USA, 1961. [Google Scholar] [CrossRef]
- Burkhead, J.L.; Collins, J.F. Nutrition information brief-copper. Adv. Nutr. 2022, 13, 681–683. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.L.; Mohiuddin, S.S. Biochemistry, Nutrients. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK554545/ (accessed on 19 January 2024).
- Henriksen, C.; Arnesen, E. Copper—A scoping review for Nordic nutrition recommendations 2023. Food Nutr. Res. 2023, 67. [Google Scholar] [CrossRef]
- Tsang, T.; Davis, C.I.; Brady, D.G. Copper biology. Curr. Biol. 2021, 31, PR421–PR427. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Min, J.; Wang, F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct. Target. Ther. 2022, 7, 378. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, L.M.; Libedinsky, A.; Elorza, A.A. Role of copper on mitochondrial function and metabolism. Front. Mol. Biosci. 2021, 8, 711227. [Google Scholar] [CrossRef] [PubMed]
- Møller, L.B.; Mogensen, M.; Horn, N. Molecular diagnosis of Menkes disease: Genotype-phenotype correlation. Biochimie 2009, 91, 1273–1277. [Google Scholar] [CrossRef] [PubMed]
- Ramani, P.K.; Parayil Sankaran, B. Menkes disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK560917/ (accessed on 19 January 2024).
- Fujikawa, H.; Haruta, J. Copper deficiency: An overlooked diagnosis. Cureus 2023, 15, e49139. [Google Scholar] [CrossRef] [PubMed]
- Moon, N.; Aryan, M.; Westerveld, D.; Nathoo, S.; Glover, S.; Kamel, A.Y. Clinical manifestations of copper deficiency: A case report and review of the literature. Nutr. Clin. Pract. 2021, 36, 1080–1085. [Google Scholar] [CrossRef]
- Wazir, S.M.; Ghobrial, I. Copper deficiency, a new triad: Anemia, leucopenia, and myeloneuropathy. J. Community Hosp. Intern. Med. Perspect. 2017, 7, 265–268. [Google Scholar] [CrossRef]
- Türmer, Z.; Møller, L.B. Menkes disease. Eur. J. Hum. Genet. 2010, 18, 511–518. [Google Scholar] [CrossRef]
- Lenartowicz, M.; Starzyński, R.; Wieczerzak, K.; Krzeptowski, W.; Lipiński, P.; Styrna, J. Alterations in the expression of the Atp7a gene in the early postnatal development of the mosaic mutant mice (Atp7a mo-ms)—An animal model for Menkes disease. Gene Expr. Patterns 2011, 11, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, H.S.; Anilkumar, A.C. Wilson Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK441990/ (accessed on 10 January 2024).
- Chen, J.; Jiang, Y.; Shi, H.; Peng, Y.; Fan, X.; Li, C. The molecular mechanisms of copper metabolism and its roles in human diseases. Pflug. Arch. 2020, 472, 1415–1429. [Google Scholar] [CrossRef] [PubMed]
- Zhalsanova, I.Z.; Fonova, E.A.; Zhigalina, D.I.; Skryabin, N.A. The ATOX1 gene role in copper metabolism and the pathogenesis of copper-induced diseases. Russ. J. Genet. 2023, 59, 242–250. [Google Scholar] [CrossRef]
- Nose, Y.; Thiele, D.J. Mechanism and regulation of intestinal copper absorption. Genes Nutr. 2020, 5 (Suppl. S1), S11–S14. [Google Scholar] [CrossRef]
- Yang, D.; Xiao, P.; Qiu, B.; Yu, H.F.; Teng, C.B. Copper chaperone antioxidant 1: Multiple roles and a potential therapeutic target. J. Mol. Med. 2023, 101, 527–542. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.H.; Yang, N.; Bothe, J.; Tonelli, M.; Nokhrin, S.; Dolgova, N.V.; Braiterman, L.; Lutsenko, S.; Dmitriev, O.Y. The metal chaperone Atox1 regulates the activity of the human copper transporter ATP7B by modulating domain dynamics. J. Biol. Chem. 2017, 292, 18169–18177. [Google Scholar] [CrossRef] [PubMed]
- La Fontaine, S.; Ackland, M.L.; Mercer, J.F. Mammalian copper-transporting P-type ATPases, ATP7A and ATP7B: Emerging roles. Int. J. Biochem. Cell Biol. 2010, 42, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Lutsenko, S.; Barnes, N.L.; Bartee, M.Y.; Dmitriev, O.Y. Function and regulation of human copper-transporting ATPases. Physiol. Rev. 2007, 87, 1011–1046. [Google Scholar] [CrossRef] [PubMed]
- Lutsenko, S. Copper trafficking to the secretory pathway. Metallomics 2016, 8, 840–852. [Google Scholar] [CrossRef] [PubMed]
- Lutsenko, S.; Bhattacharjee, A.; Hubbard, A.L. Copper handling machinery of the brain. Metallomics 2010, 2, 596–608. [Google Scholar] [CrossRef]
- Csiszar, K. Lysyl oxidases: A novel multifunctional amine oxidase family. In Progress in Nucleic Acid Research and Molecular Biology; Elsevier: Amsterdam, The Netherlands, 2001; Volume 70, pp. 1–32. [Google Scholar] [CrossRef]
- Bull, P.C.; Thomas, G.R.; Rommens, J.M.; Forbes, J.R.; Cox, D.W. The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat. Genet. 1993, 5, 27–37, Erratum in Nat. Genet. 1994, 6, 214. [Google Scholar] [CrossRef]
- Tanzi, R.E.; Petrukhin, K.; Chernov, I.; Pellequer, J.L.; Wasco, W.; Ross, B.; Romano, D.M.; Parano, E.; Pavone, L.; Brzustowicz, L.M.; et al. The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat. Genet. 1993, 5, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, Y.; Aoki, T.; Arashima, S.; Ooura, T.; Takada, G.; Kitagawa, T.; Shigematsu, Y.; Shimada, M.; Kobayashi, M.; Itou, M.; et al. Mass screening for Wilson’s disease: Results and recommendations. Pediatr. Int. Off. J. Jpn. Pediatr. Soc. 1999, 41, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Cater, M.A.; La Fontaine, S.; Mercer, J.F. Copper binding to the N-terminal metal-binding sites or the CPC motif is not essential for copper-induced trafficking of the human Wilson protein (ATP7B). Biochem. J. 2007, 401, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.H.; Lee, W.; Nokhrin, S.; Dmitriev, O. The structure of metal binding domain 1 of the copper transporter ATP7B reveals mechanism of a singular Wilson disease mutation. Sci. Rep. 2018, 8, 581. [Google Scholar] [CrossRef] [PubMed]
- Weiss, K.H.; Lozoya, J.C.; Tuma, S.; Gotthardt, D.; Reichert, J.; Ehehalt, R.; Stremmel, W.; Füllekrug, J. Copper-induced translocation of the Wilson disease protein ATP7B independent of Murr1/COMMD1 and Rab7. Am. J. Pathol. 2008, 173, 1783–1794. [Google Scholar] [CrossRef] [PubMed]
- Chang, I.J.; Hahn, S.H. The genetics of Wilson disease. Handb. Clin. Neurol. 2017, 142, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Dzieżyc-Jaworska, K.; Litwin, T.; Członkowska, A. Clinical manifestations of Wilson disease in organs other than the liver and brain. Ann. Transl. Med. 2019, 7 (Suppl. S2), S62. [Google Scholar] [CrossRef] [PubMed]
- Liggi, M.; Murgia, D.; Civolani, A.; Demelia, E.; Sorbello, O.; Demelia, L. The relationship between copper and steatosis in Wilson’s disease. Clin. Res. Hepatol. Gastroenterol. 2013, 37, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Ryan, A.; Twomey, P.J.; Cook, P. Wilson’s disease: Best practice. J. Clin. Pathol. 2023, 76, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Teschke, R.; Xuan, T.D. Heavy metals, halogenated hydrocarbons, phthalates, glyphosate, cordycepin, alcohol, drugs, and herbs, assessed for liver injury and mechanistic steps. Front. Biosci.-Landmark 2022, 27, 314. [Google Scholar] [CrossRef] [PubMed]
- Teschke, R. Aluminum, Arsenic, Beryllium, Cadmium, Chromium, Cobalt, Copper, Iron, Lead, Mercury, Molybdenum, Nickel, Platinum, Thallium, Titanium, Vanadium, and Zinc: Molecular aspects in experimental liver injury. Int. J. Mol. Sci. 2022, 23, 12213. [Google Scholar] [CrossRef] [PubMed]
- Dev, S.; Kruse, R.L.; Hamilton, J.P.; Lutsenko, S. Wilson disease: Update on pathophysiology and treatment. Front. Cell Dev. Biol. 2022, 10, 871877. [Google Scholar] [CrossRef] [PubMed]
- Leung, M.; Aronowitz, P.B.; Medici, V. The present and future challenges of Wilson’s disease diagnosis and treatment. Clin. Liver Dis. 2021, 17, 267–270. [Google Scholar] [CrossRef]
- Lizaola-Mayo, B.C.; Dickson, R.C.; Lam-Himlin, D.M.; Chascsa, D.M. Exogenous copper exposure causing clinical Wilson disease in a patient with copper deficiency. BMC Gastroenterol. 2021, 21, 278. [Google Scholar] [CrossRef] [PubMed]
- Royer, A.; Sharman, T. Copper toxicity. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557456/ (accessed on 19 January 2024).
- Xue, Q.; Kang, R.; Klionsky, D.J.; Tang, D.; Liu, J.; Chen, X. Copper metabolism in cell death and autophagy. Autophagy 2023, 19, 2175–2195. [Google Scholar] [CrossRef] [PubMed]
- Shiono, Y.; Wakusawa, S.; Hayashi, H.; Takikawa, T.; Yano, M.; Okada, T.; Mabuchi, H.; Kono, S.; Miyajima, H. Iron accumulation in the liver of male patients with Wilson’s disease. Am. J. Gastroenterol. 2001, 96, 3147–3151. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, H.; Yano, M.; Fujita, Y.; Wakusawa, S. Compound overload of copper and iron in patients with Wilson’s disease. Med. Mol. Morphol. 2006, 39, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Kadiiska, M.B.; Mason, R.P. In vivo copper mediated free radical production: An ESR spin-trapping study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2002, 58, 1227–1239. [Google Scholar] [CrossRef] [PubMed]
- Pak, K.; Ordway, S.; Sadowski, B.; Canevari, M.; Torres, D. Wilson’s disease and iron overload: Pathophysiology and therapeutic implications. Clin. Liver Dis. 2021, 17, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, L.; Zhou, F. Cuproptosis: A new form of programmed cell death. Cell. Mol. Immunol. 2022, 19, 867–868. [Google Scholar] [CrossRef] [PubMed]
- Tsvetkov, P.; Coy, S.; Petrova, B.; Dreishpoon, M.; Verma, A.; Abdusamad, M.; Rossen, J.; Joesch-Cohen, L.; Humeidi, R.; Spangler, R.D.; et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 2022, 375, 1254–1261, Erratum in Science 2022, 376, eabq4855. [Google Scholar] [CrossRef]
- Tang, D.; Chen, X.; Kroemer, G. Cuproptosis: A copper-triggered modality of mitochondrial cell death. Cell Res. 2022, 32, 417–418. [Google Scholar] [CrossRef] [PubMed]
- Gromadzka, G.; Wierzbicka, D.; Litwin, T.; Przybyłkowski, A. Iron metabolism is disturbed and anti-copper treatment improves but does not normalize iron metabolism in Wilson’s disease. Biometals 2021, 34, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Yang, Y.; Gao, Y.; He, J. Cuproptosis: Mechanisms and links with cancers. Mol. Cancer 2023, 22, 46. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Du, Y.; Zhou, Y.; Chen, Q.; Luo, Z.; Ren, Y.; Chen, X.; Chen, G. Iron and copper: Critical executioners of ferroptosis, cuproptosis and other forms of cell death. Cell Commun. Signal. 2023, 21, 327. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Dong, J.; Cheng, N.; Yang, R.; Han, Y.; Han, Y. Inflammatory cytokines expression in Wilson’s disease. Neurol. Sci. 2019, 40, 1059–1066. [Google Scholar] [CrossRef]
- Kisseleva, T.; Brenner, D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 151–166. [Google Scholar] [CrossRef] [PubMed]
- Merle, U.; Schaefer, M.; Ferenci, P.; Stremmel, W. Clinical presentation, diagnosis and long-term outcome of Wilson’s disease: A cohort study. Gut 2007, 56, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Stremmel, W.; Weiskirchen, R. Therapeutic strategies in Wilson disease: Pathophysiology and mode of action. Ann. Transl. Med. 2021, 9, 732. [Google Scholar] [CrossRef] [PubMed]
- Kelley, D.S.; Daudu, P.A.; Taylor, P.C.; Mackey, B.E.; Turnlund, J.R. Effects of low-copper diets on human immune response. Am. J. Clin. Nutr. 1995, 62, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, R.G.; Failla, M.L. Copper deficiency reduces interleukin-2 (IL-2) production and IL-2 mRNA in human T-lymphocytes. J. Nutr. 1997, 127, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, R.G.; Failla, M.L. Transcriptional regulation of interkeukin-2 gene expression is impaired by copper deficiency in Jurkat T lymphocytes. J. Nutr. 1999, 129, 596–601. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Deng, L.; Ma, X.; Guo, Y.; Feng, Z.; Liu, M.; Guan, Y.; Huang, Y.; Deng, J.; Li, H.; et al. Altered diversity and composition of gut microbiota in Wilson’s disease. Sci. Rep. 2020, 10, 21825. [Google Scholar] [CrossRef]
- Gioilli, B.D.; Kidane, T.Z.; Fieten, H.; Tellez, M.; Dalphin, M.; Nguyen, A.; Nguyen, K.; Linder, M.C. Secretion and uptake of copper via a small copper carrier in blood fluid. Metallomics 2022, 14, mfac006. [Google Scholar] [CrossRef] [PubMed]
- Weiskirchen, S.; Kim, P.; Weiskirchen, R. Determination of copper poisoning in Wilson’s disease using laser ablation inductively coupled plasma mass spectrometry. Ann. Transl. Med. 2019, 7 (Suppl. S2), S72. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shao, N.; Zhang, X.; Chen, H.; Chang, Z.; Xie, D.; Zhang, J. Ferulic acid activates SIRT1-mediated ferroptosis signaling pathway to improve cognition dysfunction in Wilson’s disease. Neuropsychiatr. Dis. Treat. 2023, 19, 2681–2696. [Google Scholar] [CrossRef] [PubMed]
- Letelier, M.E.; Lepe, A.M.; Faúndez, M.; Salazar, J.; Marín, R.; Aracena, P.; Speisky, H. Possible mechanisms underlying copper-induced damage in biological membranes leading to cellular toxicity. Chem. Biol. Interact. 2005, 151, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Letelier, M.E.; Sánchez-Jofré, S.; Peredo-Silva, L.; Cortés-Troncoso, J.; Aracena-Parks, P. Mechanisms underlying iron and copper ions toxicity in biological systems: Pro-oxidant activity and protein-binding effects. Chem. Biol. Interact. 2010, 188, 220–227. [Google Scholar] [CrossRef]
- Lawson, M.K.; Valko, M.; Cronin, M.T.D.; Jomová, C. Chelators in iron and copper toxicity. Curr. Pharmacol. Rep. 2016, 2, 271–280. [Google Scholar] [CrossRef]
- Wu, F.; Wang, J.; Pu, C.; Qiao, L.; Jiang, C. Wilson’s disease: A comprehensive review of the molecular mechanisms. Int. J. Mol. Sci. 2015, 16, 6419–6431. [Google Scholar] [CrossRef] [PubMed]
- Angelé-Martínez, C.; Nguyen, K.V.; Ameer, F.S.; Anker, J.N.; Brumaghim, J.L. Reactive oxygen species generation by copper(II) oxide nanoparticles determined by DNA damage assays and EPR spectroscopy. Nanotoxicology 2017, 11, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Wang, Q.; Sun, Z.; Zhang, Y.; Liu, Q.; Huang, Q.; Ding, G.; Jia, Z. Role of cuproptosis in understanding diseases. Hum. Cell 2023, 36, 1244–1252. [Google Scholar] [CrossRef] [PubMed]
- Macías-Rodríguez, R.U.; Inzaugarat, M.E.; Ruiz-Margáin, A.; Nelson, L.J.; Trautwein, C.; Cubero, F.J. Reclassifying hepatic cell death during liver damage: Ferroptosis—A novel form of non-apoptotic cell death? Int. J. Mol. Sci. 2020, 21, 1651. [Google Scholar] [CrossRef] [PubMed]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef] [PubMed]
- Mehta, K.J.; Farnaud, S.J.; Sharp, P.A. Iron and liver fibrosis: Mechanistic and clinical aspects. World J. Gastroenterol. 2019, 25, 521–538. [Google Scholar] [CrossRef] [PubMed]
- Winterbourn, C.C. Toxicity of iron and hydrogen peroxide: The Fenton reaction. Toxicol. Lett. 1995, 82–83, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Houglum, K.; Ramm, G.A.; Crawford, D.H.; Witztum, J.L.; Powell, L.W.; Chojkier, M. Excess iron induces hepatic oxidative stress and transforming growth factor beta1 in genetic hemochromatosis. Hepatology 1997, 26, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Shizukuda, Y.; Bolan, C.D.; Nguyen, T.T.; Botello, G.; Tripodi, D.J.; Yau, Y.Y.; Waclawiw, M.A.; Leitman, S.F.; Rosing, D.R. Oxidative stress in asymptomatic subjects with hereditary hemochromatosis. Am. J. Hematol. 2007, 82, 249–250. [Google Scholar] [CrossRef]
- Shizukuda, Y.; Tripodi, D.J.; Rosing, D.R. Iron overload or oxidative stress? Insight into a mechanism of early cardiac manifestations of asymptomatic hereditary hemochromatosis subjects with C282Y homozygosity. J. Cardiovasc. Transl. Res. 2016, 9, 400–401. [Google Scholar] [CrossRef] [PubMed]
- Kalita, J.; Kumar, V.; Misra, U.K.; Ranjan, A.; Khan, H.; Konwar, R. A study of oxidative stress, cytokines and glutamate in Wilson disease and their asymptomatic siblings. J. Neuroimmunol. 2014, 274, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Goyal, M.K.; Sinha, S.; Patil, S.A.; Jayalekshmy, V.; Taly, A.B. Do cytokines have any role in Wilson’s disease? Clin. Exp. Immunol. 2008, 154, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Stremmel, W.; Merle, U.; Weiskirchen, R. Clinical features of Wilson disease. Ann. Transl. Med. 2019, 7 (Suppl. S2), S61. [Google Scholar] [CrossRef]
- Fuentealba, I.C.; Aburto, E.M. Animal models of copper-associated liver disease. Comp. Hepatol. 2003, 2, 5. [Google Scholar] [CrossRef] [PubMed]
- Toyokuni, S.; Okada, S.; Hamazaki, S.; Fujioka, M.; Li, J.L.; Midorikawa, O. Cirrhosis of the liver induced by cupric nitrilotriacetate in Wistar rats. An experimental model of copper toxicosis. Am. J. Pathol. 1989, 134, 1263–1274. [Google Scholar]
- Vogel, F.S. The deposition of exogenous copper under experimental conditions with observations on its neurotoxic and nephrotoxic properties in relation to Wilson’s disease. J. Exp. Med. 1959, 110, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Xia, Z.; Wang, F. Zebrafish in the sea of mineral (iron, zinc, and copper) metabolism. Front. Pharmacol. 2014, 5, 33. [Google Scholar] [CrossRef]
- Vijay, A.; Valdes, A.M. Role of the gut microbiome in chronic diseases: A narrative review. Eur. J. Clin. Nutr. 2022, 76, 489–501. [Google Scholar] [CrossRef] [PubMed]
- Teschke, R.; Neuman, M.G.; Liangpunsakul, S.; Seitz, H.K. Alcoholic liver disease and the co-triggering role of MEOS with its CYP 2E1 catalytic cycle and ROS. Arch. Gastroenterol. Res. 2021, 2, 9–25. [Google Scholar]
- Parmanand, B.; Watson, M.; Boland, K.J.; Ramamurthy, N.; Wharton, V.; Morovat, A.; Lund, E.K.; Collier, J.; Le Gall, G.; Kellingray, L.; et al. Systemic iron reduction by venesection alters the gut microbiome in patients with haemochromatosis. JHEP Rep. 2020, 2, 100154. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, B.; Li, H. Gut microbiota and iron: The crucial factors in health and disease. Pharmaceuticals 2018, 11, 98. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, J.A.; Boavida, L.; Ferreira, R.; Favas, C.; Delgado Alves, J. Copper-induced haemolytic anaemia. Eur. J. Case Rep. Intern. Med. 2021, 8, 002785. [Google Scholar] [CrossRef] [PubMed]
- Gamakaranage, C.S.; Rodrigo, C.; Weerasinghe, S.; Gnanathasan, A.; Puvanaraj, V.; Fernando, H. Complications and management of acute copper sulphate poisoning; a case discussion. J. Occup. Med. Toxicol. 2011, 6, 34. [Google Scholar] [CrossRef] [PubMed]
- Jantsch, W.; Kulig, K.; Rumack, B.H. Massive copper sulfate ingestion resulting in hepatotoxicity. J. Toxicol. Clin. Toxicol. 1985, 22, 585–588. [Google Scholar] [CrossRef] [PubMed]
- Sinkovic, A.; Striding, A.; Svensek, F. Severe acute copper sulphate poisoning: A case report. Arch. Ind. Hyg. Toxicol. 2008, 59, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Gaetke, L.M.; Chow-Johnson, H.S.; Chow, C.K. Copper: Toxicological relevance and mechanisms. Arch. Toxicol. 2014, 88, 1929–1938. [Google Scholar] [CrossRef] [PubMed]
- Sonal Sekhar, M.; Rao, M. Clinical toxicology of copper: Source, toxidrome, mechanism of toxicity, and management. In Metal Toxicology Handbook; Bagchi, D., Bagchi, M., Eds.; CRC Press: Boca Raton, FL, USA, 2020; pp. 199–217. [Google Scholar]
- Danan, G.; Teschke, R. RUCAM in drug and herb induced liver injury: The update. Int. J. Mol. Sci. 2016, 17, 14. [Google Scholar] [CrossRef] [PubMed]
- Teschke, R. Aliphatic halogenated hydrocarbons: Liver injury in 60 patients. J. Clin. Transl. Hepatol. 2018, 6, 350. [Google Scholar] [PubMed]
- Teschke, R. Liver injury by carbon tetrachloride intoxication in 16 patients treated with forced ventilation to accelerate toxin removal via the lungs: A clinical report. Toxics 2018, 6, 25. [Google Scholar] [CrossRef] [PubMed]
- Teschke, R. Intoxications by aliphatic halogenated hydrocarbons: Hepatotoxic risks for patients and clinical issues including role of CO2-induced hyperventilation as therapy option. J. Clin. Exp. Toxicol. 2018, 2, 25–29. [Google Scholar]
- Priya, S. Acute copper sulphate poisoning. Ind. J. Med. Spec. 2018, 9, 140–142. [Google Scholar] [CrossRef]
- Chugh, K.S.; Sharma, B.K.; Singhal, P.C.; Das, K.C.; Datta, B.N. Acute renal failure following copper sulphate intoxication. Postgrad. Med. J. 1977, 53, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Araya, M.; Kelleher, S.L.; Arredondo, M.A.; Sierralta, W.; Vial, M.T.; Uauy, R.; Lönnerdal, B. Effects of chronic copper exposure during early life in rhesus monkeys. Am. J. Clin. Nutr. 2005, 81, 1065–1071. [Google Scholar] [CrossRef] [PubMed]
- Araya, M.; Núñez, H.; Pavez, L.; Arredondo, M.; Méndez, M.; Cisternas, F.; Pizarro, F.; Sierralta, W.; Uauy, R.; González, M. Administration of high doses of copper to Capuchin Monkeys does not cause liver damage but induces transcriptional activation of hepatic proliferative responses. J Nutr. 2012, 142, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Xu, M.; Luo, J.; Zhao, L.; Ye, G.; Shi, F.; Lv, C.; Chen, H.; Wang, Y.; Li, Y. Liver toxicity assessments in rats following sub-chronic oral exposure to copper nanoparticles. Environ. Sci. Eur. 2019, 31, 30. [Google Scholar] [CrossRef]
- Stremmel, W. Bis-choline tetrathiomolybdate as old drug in a new design for Wilson’s disease: Good for brain and liver? Hepatology 2019, 69, 901–903. [Google Scholar] [CrossRef] [PubMed]
- Garrido, I.; Marques, M.; Liberal, R.; Cardoso, H.; Lopes, S.; Macedo, G. Wilson disease in Northern Portugal: A long-term follow-up study. Orphanet. J. Rare Dis. 2022, 17, 82. [Google Scholar] [CrossRef] [PubMed]
- Moini, M.; To, U.; Schilsky, M.K. Recent advances in Wilson disease. Trans. Gastroenterol. Hepatol. 2021, 6, 21. [Google Scholar] [CrossRef] [PubMed]
- Pandit, A.; Bhave, S. Present interpretation of the role of copper in Indian childhood cirrhosis. Am. J. Clin. Nutr. 1996, 63, 830S–835S. [Google Scholar] [CrossRef] [PubMed]
- Hamza, I.; Gitlin, J.D. Hepatic copper transport. In Madame Curie Bioscience Database; Landes Bioscience: Austin, TX, USA, 2000–2013. Available online: https://www.ncbi.nlm.nih.gov/books/NBK6381/ (accessed on 19 January 2024).
- Müller, T.; Feichtinger, H.; Berger, H.; Müller, W. Endemic Tyrolean infantile cirrhosis: An ecogenetic disorder. Lancet 1996, 347, 877–880. [Google Scholar] [CrossRef] [PubMed]
- Müller, T.; Müller, W.; Feichtinger, H. Idiopathic copper toxicosis. Am. J. Clin. Nutr. 1998, 67, 1082S–1086S. [Google Scholar] [CrossRef] [PubMed]
- Müller-Höcker, J.; Weiß, M.; Meyer, U.; Schramel, P.; Wiebecke, B.; Belohradsky, B.H.; Hübner, G. Fatal copper storage disease of the liver in a German infant resembling Indian childhood cirrhosis. Virchows Arch. A 1987, 411, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Weiss, M.; Müller-Höcker, J.; Wiebecke, B.; Belohradsky, B.H. First description of “Indian childhood cirrhosis” in a non-Indian infant in Europe. Acta Paediatr. 1989, 78, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Nayak, N.C.; Chitale, A.R. Indian childhood cirrhosis (ICC) and ICC-like diseases: The changing scenario of facts versus notions. Indian J. Med. Res. 2013, 137, 1029–1042. [Google Scholar]
- Horslen, S.P.; Tanner, M.S.; Lyon, T.D.; Fell, G.S.; Lowry, M.F. Copper associated childhood cirrhosis. Gut 1994, 35, 1497–1500. [Google Scholar] [CrossRef] [PubMed]
- Goyal, S.; Singh, A.; Gangwar, S.; Goyal, A.; Sakhuja, P.; Kapoor, S. Indian childhood cirrhosis: A retrospective study-redefining the older myths! J. Clin. Pathol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Scheinberg, I.H.; Sternlieb, I. Wilson disease and idiopathic copper toxicosis. Am. J. Clin. Nut. 1996, 63, 842S–845S. [Google Scholar] [CrossRef] [PubMed]
- Tanner, M.S. Indian childhood cirrhosis and Tyrolean childhood cirrhosis. In Copper Transport and Its Disorders; Leone, A., Mercer, J.F.B., Eds.; Advances in Experimental Medicine and Biology; Springer: Boston, MA, USA, 1999; Volume 448. [Google Scholar] [CrossRef]
- Gaur, K.; Sakhuja, P.; Mandal, R.N.; Kapoor, S. Indian childhood cirrhosis—Down but not out: Report of a rare case with a practical clinicopathological diagnostic approach. J. Postgrad. Med. 2018, 64, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Sandahl, T.D.; Laursen, T.L.; Munk, D.E.; Vilstrup, H.; Weiss, K.H.; Ott, P. The prevalence of Wilson’s disease: An update. Hepatology 2020, 71, 722–732. [Google Scholar] [CrossRef]
- Hayashi, H.; Watanabe, K.; Inui, A.; Kato, A.; Tatsumi, Y.; Okumura, A.; Fujisawa, T.; Kato, K. Alanine aminotransferase as the first test parameter for Wilson’s disease. J. Clin. Transl. Hepatol. 2019, 7, 293–296. [Google Scholar] [CrossRef]
- Hassoun, J.; Hammer, N.; Magini, G.; Ponte, B.; Ongaro, M.; Rougemont, A.L.; Goossens, N.; Frossard, J.L.; Spahr, L. Management of acute Wilsonian hepatitis with severe hemolysis: A successful combination of chelation and MARS dialysis. Case Rep. Hepatol. 2021, 2021, 5583654. [Google Scholar] [CrossRef] [PubMed]
- Berentsen, S.; Barcellini, W. Autoimmune hemolytic anemias. N. Engl. J. Med. 2021, 385, 1407–1419. [Google Scholar] [CrossRef] [PubMed]
- Mohr, I.; Weiss, K.H. Biochemical markers for the diagnosis and monitoring of Wilson disease. Clin. Biochem. Rev. 2019, 40, 59–77. [Google Scholar] [CrossRef] [PubMed]
- Chanpong, A.; Dhawan, A. Wilson disease in children and young adults—State of the art. Saudi J. Gastroenterol. 2022, 28, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Kasztelan-Szczerbinska, B.; Cichoz-Lach, H. Wilson’s disease: An update on the diagnostic workup and management. J. Clin. Med. 2021, 10, 5097. [Google Scholar] [CrossRef] [PubMed]
- EASL. EASL clinical practice guidelines: Wilson’s disease. J. Hepatol. 2012, 56, 671–685. [Google Scholar] [CrossRef] [PubMed]
- Korman, J.D.; Volenberg, I.; Balko, J.; Webster, J.; Schiodt, F.V.; Squires, R.H., Jr.; Fontana, R.J.; Lee, W.M.; Schilsky, M.L.; Pediatric and Adult Acute Liver Failure Study Groups. Screening for Wilson disease in acute liver failure: A comparison of currently available diagnostic tests. Hepatology 2008, 48, 1167–1174. [Google Scholar] [CrossRef] [PubMed]
- Eisenbach, C.; Sieg, O.; Stremmel, W.; Encke, J.; Merle, U. Diagnostic criteria for acute liver failure due to Wilson’s disease. World J. Gastroenterol. 2007, 13, 1711–1714. [Google Scholar] [CrossRef] [PubMed]
- Roberts, E.A.; Schilsky, M.L.; American Association for Study of Liver Diseases (AASLD). Diagnosis and treatment of Wilson disease: An update. Hepatology 2008, 47, 2089–2111. [Google Scholar] [CrossRef] [PubMed]
- Mbala, J.; Belmalih, A.; Guillaud, O.; Lachaux, A.; Couchonnal Bedoya, E. Evaluation of vitamin B6 supplementation in Wilson’s disease patients treated with D-penicillamine. BMJ Open Gastroenterol. 2023, 10, e001211. [Google Scholar] [CrossRef] [PubMed]
- Antczak-Kowalska, M.; Członkowska, A.; Eyileten, C.; Palejko, A.; Cudna, A.; Wolska, M.; Piechal, A.; Litwin, T. Autoantibodies in Wilson disease: Impact on clinical course. JIMD Rep. 2022, 63, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Teschke, R. Editorial. DILI, HILI, RUCAM algorithm, and AI, the Artificial Intelligence: Provocative issues, progress, and proposals. Arch. Gastroenterol. Res. 2020, 1, 4–11. [Google Scholar]
- Danan, G.; Bénichou, C. Causality assessment of adverse reactions to drugs—I. A novel method based on the conclusions of international consensus meetings: Application to drug-induced liver injuries. J. Clin. Epidemiol. 1993, 46, 1323–1330. [Google Scholar] [CrossRef] [PubMed]
- Bénichou, C.; Danan, G.; Flahault, A. Causality assessment of adverse reactions of drugs—II. An original model for validation of drug causality assessment methods: Case reports with positive rechallenge. J. Clin. Epidemiol. 1993, 46, 1331–1336. [Google Scholar] [CrossRef] [PubMed]
- Teschke, R.; Danan, G. Worldwide use of RUCAM for causality assessment in 81,856 idiosyncratic DILI and 14,029 HILI cases published 1993—Mid 2020: A comprehensive analysis. Medicines 2020, 7, 62. [Google Scholar] [CrossRef] [PubMed]
- Hennes, E.M.; Zeniya, M.; Czaja, A.J.; Parés, A.; Dalekos, G.N.; Krawitt, E.L.; Bittencourt, P.L.; Porta, G.; Boberg, K.M.; Hofer, H.; et al. Simplified criteria for the diagnosis of autoimmune hepatitis. Hepatology 2008, 48, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Ferenci, P.; Caca, K.; Loudianos, G.; Mieli-Vergani, G.; Tanner, S.; Sternlieb, I.; Schilsky, M.; Cox, D.; Berr, F. Diagnosis and phenotypic classification of Wilson disease. Liver Int. 2003, 23, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Nagral, A.; Sarma, M.S.; Matthai, J.; Kukkle, P.L.; Devarbhavi, H.; Sinha, S.; Alam, S.; Bavdekar, A.; Dhiman, R.K.; Eapen, C.E.; et al. Wilson’s disease: Clinical Practice Guidelines of the Indian National Association for Study of the Liver, the Indian Society of Pediatric Gastroenterology, Hepatology and Nutrition, and the Movement Disorders Society of India. J. Clin. Exp. Hepatol. 2019, 9, 74–98, Erratum in J. Clin. Exp. Hepatol. 2020, 10, 99. [Google Scholar] [CrossRef] [PubMed]
- Sood, V.; Rawat, D.; Khanna, R.; Alam, S. Cholestatic liver disease masquerading as Wilson disease. Indian J. Gastroenterol. 2015, 34, 174–177. [Google Scholar] [CrossRef] [PubMed]
- Kolbaum, A.E.; Sarvan, I.; Bakhiya, N.; Spolders, M.; Pieper, R.; Schubert, J.; Jung, C.; Hackethal, C.; Sieke, C.; Grünewald, K.H.; et al. Long-term dietary exposure to copper in the population in Germany—Results from the BfR MEAL study. Food Chem. Toxicol. 2023, 176, 113759. [Google Scholar] [CrossRef] [PubMed]
- AlDhaleei, W.; AlAhmad, M.; Alhosani, I. Wilson’s disease presenting in late adult life. Case Rep. Gastroenterol. 2021, 15, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, S.M.; Matsukuma, K.E.; Medici, V. Wilson disease and the differential diagnosis of its hepatic manifestations: A narrative review of clinical, laboratory, and liver histological features. Ann. Transl. Med. 2021, 9, 1394. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, S.; Inada, N.; Izumi, A.; Kawanaka, M.; Kobashi, H.; Yamada, G. Wilson’s disease masquerading as nonalcoholic steatohepatitis. N. Am. J. Med. Sci. 2009, 1, 74–76. [Google Scholar] [PubMed]
- Teschke, R. Alcoholic steatohepatitis (ASH) and acute alcoholic hepatitis (AH): Cascade of events, clinical features, and pharmacotherapy options. Exp. Opin. Pharmacother. 2018, 19, 779–793. [Google Scholar] [CrossRef] [PubMed]
- Teschke, R. Alcoholic liver disease: Alcohol metabolism, cascade of molecular mechanisms, cellular targets, and clinical aspects. Biomedicines 2018, 6, 106. [Google Scholar] [CrossRef] [PubMed]
- Teschke, R. Alcoholic liver disease: Current mechanistic aspects with focus on their clinical relevance. Biomedicines 2019, 7, 68. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Yoon, H.M.; Jung, A.Y.; Lee, J.S.; Kim, K.M.; Oh, S.H.; Cho, Y.A. Diagnostic performance of ultrasound elastography and serologic fibrosis indices for evaluation of hepatic involvement in Wilson disease. J. Ultrasound Med. 2020, 39, 2231–2242. [Google Scholar] [CrossRef] [PubMed]
- Karlas, T.; Hempel, M.; Tröltzsch, M.; Huster, D.; Günther, P.; Tenckhoff, H.; Mössner, J.; Berg, T.; Keim, V.; Wiegand, J. Non-invasive evaluation of hepatic manifestation in Wilson disease with transient elastography, ARFI, and different fibrosis scores. Scand. J. Gastroenterol. 2012, 47, 1353–1361. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.Z.; Li, G.Y.; Chen, J.L.; Li, J.Q.; Wang, X.P. Paramagnetic metal accumulation in the deep gray matter nuclei is associated with neurodegeneration in Wilson’s disease. Front. Neurosci. 2020, 14, 573633. [Google Scholar] [CrossRef] [PubMed]
- Doganay, S.; Gumus, K.; Koc, G.; Bayram, A.K.; Dogan, M.S.; Arslan, D.; Gumus, H.; Gorkem, S.B.; Ciraci, S.; Serin, H.I.; et al. Magnetic susceptibility changes in the basal ganglia and brain stem of patients with Wilson’s disease: Evaluation with quantitative susceptibility mapping. Magn. Reson. Med. Sci. 2018, 17, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Broniek-Kowalik, K.; Dzieżyc, K.; Litwin, T.; Członkowska, A.; Szaflik, J.P. Anterior segment optical coherence tomography (AS-OCT) as a new method of detecting copper deposits forming the Kayser-Fleischer ring in patients with Wilson disease. Acta Ophthalmol. 2019, 97, e757–e760. [Google Scholar] [CrossRef]
- Jafari, S.H.; Haseli, S.; Kaffashan, S.; Saeedi-Moghadam, M.; Iranpour, P.; Zeinali-Rafsanjani, B. Assessment of the hallmarks of Wilson disease in CT scan imaging. J. Med. Imaging Radiat. Sci. 2020, 51, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Emanuele, P.; Goodman, Z.D. A simple and rapid stain for copper in liver tissue. Ann. Diagn. Pathol. 1998, 2, 125–126. [Google Scholar] [CrossRef] [PubMed]
- Sternlieb, I. Mitochondrial and fatty changes in hepatocytes of patients with Wilson’s disease. Gastroenterology 1968, 55, m354–m367. [Google Scholar] [CrossRef]
- Adeyeye, E.I.; Arogundade, L.A.; Asaolu, S.S.; Olaofe, O. Fungicide-derived copper content in soil and vegetation component, Owena cocoa (Theobroma cacao L.) plantations in Nigeria. Bangladesh J. Sci. Ind. Res. 2006, 41, 129–140. [Google Scholar] [CrossRef]
- Weber, T.; Solioz, M. Evaluation of chocolate as a source of dietary copper. Eur. Food Res. Technol. 2014, 238, 1063–1066. [Google Scholar] [CrossRef]
- Teschke, R.; Vongdala, N.; Quan, N.V.; Quy, T.N.; Xuan, T.D. Metabolic toxification of 1,2-unsaturated pyrrolizidine alkaloids causes human hepatic sinusoidal obstruction syndrome: The update. Int. J. Mol. Sci. 2021, 22, 10419. [Google Scholar] [CrossRef] [PubMed]
- Weiss, K.; Stremmel, W. Evolving perspectives in Wilson disease: Diagnosis, treatment and monitoring. Curr. Gastroenterol. Rep. 2012, 14, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Bost, M.; Houdart, S.; Oberli, M.; Kalonji, E.; Huneau, J.F.; Margaritis, I. Dietary copper and human health: Current evidence and unresolved issues. J. Trace Elem. Med. Biol. 2016, 35, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Stremmel, W.; Meyerrose, K.W.; Niederau, C.; Hefter, H.; Kreuzpaintner, G.; Strohmeyer, G. Wilson disease: Clinical presentation, treatment, and survival. Ann. Intern. Med. 1991, 115, 720–726. [Google Scholar] [CrossRef]
- Weiss, K.H.; Thurik, F.; Gotthardt, D.N.; Schäfer, M.; Teufel, U.; Wiegand, F.; Merle, U.; Ferenci-Foerster, D.; Maieron, A.; Stauber, R.; et al. Efficacy and safety of oral chelators in treatment of patients with Wilson disease. Clin. Gastroenterol. Hepatol. 2013, 11, 1028–1035.e2. [Google Scholar] [CrossRef] [PubMed]
- Woimant, F.; Debray, D.; Morvan, E.; Obadia, M.A.; Poujois, A. Efficacy and safety of two salts of trientine in the treatment of Wilson’s disease. J. Clin. Med. 2022, 11, 3975. [Google Scholar] [CrossRef] [PubMed]
- Schilsky, M.L.; Czlonkowska, A.; Zuin, M.; Cassiman, D.; Twardowschy, C.; Poujois, A.; Gondim, F.A.A.; Denk, G.; Cury, R.G.; Ott, P.; et al. Trientine tetrahydrochloride versus penicillamine for maintenance therapy in Wilson disease (CHELATE): A randomised, open-label, non-inferiority, phase 3 trial. Lancet Gastroenterol. Hepatol. 2022, 7, 1092–1102. [Google Scholar] [CrossRef] [PubMed]
- Ranucci, G.; Di Dato, F.; Spagnuolo, M.I.; Vajro, P.; Iorio, R. Zinc monotherapy is effective in Wilson’s disease patients with mild liver disease diagnosed in childhood: A retrospective study. Orphanet J. Rare Dis. 2014, 9, 41. [Google Scholar] [CrossRef] [PubMed]
- Avan, A.; Członkowska, A.; Gaskin, S.; Granzotto, A.; Sensi, S.L.; Hoogenraad, T.U. The role of zinc in the treatment of Wilson’s disease. Int. J. Mol. Sci. 2022, 23, 9316. [Google Scholar] [CrossRef] [PubMed]
- Soriot, P. AstraZeneca Cuts Alexion’s PhIII Wilson Disease Drug, Takes $244M Write-Down. Available online: https://endpts.com/astrazeneca-cuts-alexions-phiii-wilson-disease-drug-takes-244m-writedown/ (accessed on 27 April 2023).
- Kim, P.; Zhang, C.C.; Thoröe-Boveleth, S.; Buhl, E.M.; Weiskirchen, S.; Stremmel, W.; Merle, U.; Weiskirchen, R. Analyzing the therapeutic efficacy of Bis-Choline-Tetrathiomolybdate in the Atp7b-/- copper overload mouse model. Biomedicines 2021, 9, 1861. [Google Scholar] [CrossRef] [PubMed]
- Weiss, K.H.; Askari, F.K.; Czlonkowska, A.; Ferenci, P.; Bronstein, J.M.; Bega, D.; Ala, A.; Nicholl, D.; Flint, S.; Olsson, L.; et al. Bis-choline tetrathiomolybdate in patients with Wilson’s disease: An open-label, multicentre, phase 2 study. Lancet Gastroenterol. Hepatol. 2017, 2, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Catana, A.M.; Medici, V. Liver transplantation for Wilson disease. World J. Hepatol. 2012, 4, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Litwin, T.; Bembenek, J.; Antos, A.; Przybyłkowski, A.; Skowrońska, M.; Kurkowska-Jastrzębska, I.; Członkowska, A. Liver transplantation as a treatment for Wilson’s disease with neurological presentation: A systematic literature review. Acta Neurol. Belg. 2022, 122, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Filippi, C.; Dhawan, A. Current status of human hepatocyte transplantation and its potential for Wilson’s disease. Ann. N. Y. Acad. Sci. 2014, 1315, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Schilsky, M.L.; Roberts, E.A.; Bronstein, J.M.; Dhawan, A.; Hamilton, J.P.; Rivard, A.M.; Washington, M.K.; Weiss, K.H.; Zimbrean, P.C. A multidisciplinary approach to the diagnosis and management of Wilson disease: Executive summary of the 2022 Practice Guidance on Wilson disease from the American Association for the Study of Liver Diseases. Hepatology 2023, 77, 1428–1455. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xing, S.; Feng, Y.; Chen, S.; Pei, Z.; Wang, C.; Liang, X. Early stage transplantation of bone marrow cells markedly ameliorates copper metabolism and restores liver function in a mouse model of Wilson disease. BMC Gastroenterol. 2011, 11, 75. [Google Scholar] [CrossRef] [PubMed]
- Allen, K.J.; Cheah, D.M.; Lee, X.L.; Pettigrew-Buck, N.E.; Vadolas, J.; Mercer, J.F.; Ioannou, P.A.; Williamson, R. The potential of bone marrow stem cells to correct liver dysfunction in a mouse model of Wilson’s disease. Cell Transplant. 2004, 13, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Shao, C.; Dong, T.; Chai, H.; Xiong, X.; Sun, D.; Zhang, L.; Yu, Y.; Wang, P.; Cheng, F. Transplantation of ATP7B-transduced bone marrow mesenchymal stem cells decreases copper overload in rats. PLoS ONE 2014, 9, e111425. [Google Scholar] [CrossRef] [PubMed]
- Merle, U.; Encke, J.; Tuma, S.; Volkmann, M.; Naldini, L.; Stremmel, W. Lentiviral gene transfer ameliorates disease progression in Long-Evans cinnamon rats: An animal model for Wilson disease. Scand. J. Gastroenterol. 2006, 41, 974–982. [Google Scholar] [CrossRef] [PubMed]
- Murillo, O.; Luqui, D.M.; Gazquez, C.; Martinez-Espartosa, D.; Navarro-Blasco, I.; Monreal, J.I.; Guembe, L.; Moreno-Cermeño, A.; Corrales, F.J.; Prieto, J.; et al. Long-term metabolic correction of Wilson’s disease in a murine model by gene therapy. J. Hepatol. 2016, 64, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Murillo, O.; Moreno, D.; Gazquez, C.; Barberia, M.; Cenzano, I.; Navarro, I.; Uriarte, I.; Sebastian, V.; Arruebo, M.; Ferrer, V.; et al. Liver expression of a MiniATP7B gene results in long-term restoration of copper homeostasis in a Wilson disease model in mice. Hepatology 2019, 70, 108–126. [Google Scholar] [CrossRef] [PubMed]
- Lichtmannegger, J.; Leitzinger, C.; Wimmer, R.; Schmitt, S.; Schulz, S.; Kabiri, Y.; Eberhagen, C.; Rieder, T.; Janik, D.; Neff, F.; et al. Methanobacbactin reverses acute liver failure in a rat model of Wilson disease. J. Clin. Investig. 2016, 126, 2721–2735. [Google Scholar] [CrossRef]
- Müller, J.C.; Lichtmannegger, J.; Zischka, H.; Sperling, M.; Karst, U. High spatial resolution LA-ICP-MS demonstrates massive liver copper depletion in Wilson disease rats upon Methanobactin treatment. J. Trace Elem. Med. Biol. 2018, 49, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Einer, C.; Leitzinger, C.; Lichtmannegger, J.; Eberhagen, C.; Rieder, T.; Borchard, S.; Wimmer, R.; Denk, G.; Popper, B.; Neff, F.; et al. A high-calorie diet aggravates mitochondrial dysfunction and triggers severe liver damage in Wilson disease rats. Cell. Mol. Gastroenterol. Hepatol. 2019, 7, 571–596. [Google Scholar] [CrossRef] [PubMed]
- Ching, T.L.; Haenen, G.R.; Bast, A. Cimetidine and other H2 receptor antagonists as powerful hydroxyl radical scavengers. Chem. Biol. Interact. 1993, 86, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Lapenna, D.; De Gioia, S.; Mezzetti, A.; Grossi, L.; Festi, D.; Marzio, L.; Cuccurullo, F. H2-receptor antagonists are scavengers of oxygen radicals. Eur. J. Clin. Investig. 1994, 24, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, A.; Ebrahimzadeh, M.A.; Ahmad-Ashrafi, S.; Karami, M.; Mahdavi, M.R.; Saravi, S.S. Hepatoprotective, antinociceptive and antioxidant activities of cimetidine, ranitidine and famotidine as histamine H2 receptor antagonists. Fundam. Clin. Pharmacol. 2011, 25, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Hatwalne, M.S. Free radical scavengers in anaesthesiology and critical care. Indian J. Anaesth. 2012, 56, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Shaw, S.; Jayatilleke, E. Cimetidine as a scavenger of ethanol-induced free radicals. Alcohol 1992, 9, 363–367. [Google Scholar] [CrossRef]
- Harjumäki, R.; Pridgeon, C.S.; Ingelman-Sundberg, M. CYP2E1 in alcoholic and non-alcoholic liver injury. Roles of ROS, reactive intermediates and lipid overload. Int. J. Mol. Sci. 2021, 22, 8221. [Google Scholar] [CrossRef] [PubMed]
- Unsal, V.; Cicek, M.; Sabancilar, İ. Toxicity of carbon tetrachloride, free radicals and role of antioxidants. Rev. Environ. Health 2021, 36, 279–295. [Google Scholar] [CrossRef] [PubMed]
- Walshe, J.M. Cause of death in Wilson disease. Mov. Disord. 2007, 22, 2216–2220. [Google Scholar] [CrossRef]
- Reyes, C.V. Hepatocellular carcinoma in Wilson disease-related liver cirrhosis. Gastroenterol. Hepatol. 2008, 4, 435–437. [Google Scholar]
- Iwadate, H.; Ohira, H.; Suzuki, T.; Abe, K.; Yokokawa, J.; Takiguchi, J.; Rai, T.; Orikasa, H.; Irisawa, A.; Obara, K.; et al. Hepatocellular carcinoma associated with Wilson’s disease. Intern. Med. 2004, 43, 1042–1045. [Google Scholar] [CrossRef]
- Thattil, R.; Dufour, J.F. Hepatocellular carcinoma in a non-cirrhotic patient with Wilson’s disease. World J. Gastroenterol. 2013, 19, 2110–2113. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, M.L.; Portmann, B.; Williams, R. Wilson’s disease and hepatocellular carcinoma: Possible protective role of copper. Gut 1983, 24, 767–771. [Google Scholar] [CrossRef] [PubMed]
- van Meer, S.; de Man, R.A.; van den Berg, A.P.; Houwen, R.H.; Linn, F.H.; van Oijen, M.G.; Siersema, P.D.; van Erpecum, K.J. No increased risk of hepatocellular carcinoma in cirrhosis due to Wilson disease during long-term follow-up. J. Gastroenterol. Hepatol. 2015, 30, 535–539. [Google Scholar] [CrossRef] [PubMed]
- Jang, E.J.; Kang, S.H.; Kim, K.W. Intrahepatic cholangiocarcinoma in Wilson’s disease: A case report. Am. J. Case Rep. 2024, 25, e942372. [Google Scholar] [CrossRef]
- Mukai, Y.; Wada, H.; Eguchi, H.; Yamada, D.; Asaoka, T.; Noda, T.; Kawamoto, K.; Gotoh, K.; Takeda, Y.; Tanemura, M.; et al. Intrahepatic cholangiocarcinoma in a patient with Wilson’s disease: A case report. Surg. Case Rep. 2016, 2, 29. [Google Scholar] [CrossRef] [PubMed]
- Lopez, M.J.; Royer, A.; Shah, N.J. Biochemistry, Ceruloplasmin. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK554422/ (accessed on 19 January 2024).
- Walshe, J.M. Serum ‘free’ copper in Wilson disease. QJM Int. J. Med. 2012, 105, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Buckley, W.T.; Vanderpool, R.A. Analytical variables affecting exchangeable copper determination in blood plasma. Biometals 2008, 21, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Catalani, S.; Paganelli, M.; Gilberti, M.E.; Rozzini, L.; Lanfranchi, F.; Padovani, A.; Apostoli, P. Free copper in serum: An analytical challenge and its possible applications. J. Trace Elem. Med. Biol. 2018, 45, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Güngör, Ş.; Selimoğlu, M.A.; Bağ, H.G.G.; Varol, F.I. Is it possible to diagnose fulminant Wilson’s disease with simple laboratory tests? Liver Int. 2020, 40, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Harrington, C.F. Biomedical copper speciation in relation to Wilson’s disease using strong anion exchange chromatography coupled to triple quadrupole inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2020, 1098, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Woimant, F.; Djebrani-Oussedik, N.; Poujois, A. New tools for Wilson’s disease diagnosis: Exchangeable copper fraction. Ann. Transl. Med. 2019, 7 (Suppl. S2), S70. [Google Scholar] [CrossRef] [PubMed]
- Shaver, W.A.; Bhatt, H.; Combes, B. Low serum alkaline phosphatase activity in Wilson’s disease. Hepatology 1986, 6, 859–863. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, C.S.; Schilsky, M.L. Clinical practice guidelines in Wilson disease. Ann. Transl. Med. 2019, 7 (Suppl. S2), S65. [Google Scholar] [CrossRef] [PubMed]
- Arora, P.; Jadaun, S.S.; Das, P.; Shalimar Datta, S.K. Unusually low serum alkaline phosphatase activity in a patient with acute on chronic liver failure and hemolysis. EJIFCC 2019, 30, 99–105. [Google Scholar] [PubMed]
- Cho, Y.H.; Jeong, D.W.; Lee, S.Y.; Park, S.K.; Yoon, K.T.; Kim, Y.J.; Lee, J.K.; Lee, Y.H. A case of Wilson’s disease in patient with mildly elevated liver enzymes. Korean J. Fam. Med. 2011, 32, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Oosthuizen, N.M. Undetectable serum alkaline phosphatase activity in a patient with fulminant hepatic failure and hemolytic anemia. Clin. Chem. 2011, 57, 382–385. [Google Scholar] [CrossRef] [PubMed]
- Iorio, R.; Ranucci, G. Wilson disease: A matter of copper, but also of zinc. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 423–424. [Google Scholar] [CrossRef]
- Sintusek, P.; Kyrana, E.; Dhawan, A. Value of serum zinc in diagnosing and assessing severity of liver disease in children with Wilson disease. J. Pediatr. Gastroenterol. Nutr. 2018, 67, 377–382. [Google Scholar] [CrossRef]
- Van Biervliet, S.; Küry, S.; De Bruyne, R.; Vanakker, O.M.; Schmitt, S.; Vande Velde, S.; Blouin, E.; Bézieau, S. Clinical zinc deficiency as early presentation of Wilson disease. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 457–459. [Google Scholar] [CrossRef]
- Geetha, A.; Jeyachristy, S.A.; Selvamathy, S.M.; Ilavarasi, S.; Surendran, R. A study on the concentrations of serum zinc, non-ceruloplasmin copper, reactive oxygen and nitrogen species in children with Wilson’s disease. Clin. Chim. Acta 2007, 383, 165–167. [Google Scholar] [CrossRef] [PubMed]
- Iorio, R.; Ranucci, G. Aberrance of serum zinc and free copper level in Wilson disease. J. Pediatr. Gastroenterol. Nutr. 2016, 62, e46. [Google Scholar] [CrossRef] [PubMed]
- Harada, M.; Miyagawa, K.; Honma, Y.; Hiura, M.; Shibata, M.; Matsuhashi, T.; Abe, S.; Harada, R.; Tabaru, A. Excess copper chelating therapy for Wilson disease induces anemia and liver dysfunction. Intern. Med. 2011, 50, 1461–1464. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, H.; Hattori, A.; Tatsumi, Y.; Hayashi, K.; Katano, Y.; Ueyama, J.; Wakusawa, S.; Yano, M.; Goto, H. Various copper and iron overload patterns in the livers of patients with Wilson disease and idiopathic copper toxicosis. Med. Mol. Morphol. 2013, 46, 133–140. [Google Scholar] [CrossRef]
- Kim, P.; Zhang, C.C.; Thoröe-Boveleth, S.; Weiskirchen, S.; Gaisa, N.T.; Buhl, E.M.; Stremmel, W.; Merle, U.; Weiskirchen, R. Accurate measurement of copper overload in an experimental model of Wilson disease by laser ablation inductively coupled plasma mass spectrometry. Biomedicines 2020, 8, 356. [Google Scholar] [CrossRef] [PubMed]
- Shiono, Y.; Hayashi, H.; Wakusawa, S.; Yano, M. Ultrastructural identification of iron and copper accumulation in the liver of a male patient with Wilson disease. Med. Mol. Morphol. 2001, 34, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Dusek, P.; Bahn, E.; Litwin, T.; Jabłonka-Salach, K.; Łuciuk, A.; Huelnhagen, T.; Madai, V.I.; Dieringer, M.A.; Bulska, E.; Knauth, M.; et al. Brain iron accumulation in Wilson disease: A post mortem 7 Tesla MRI—Histopathological study. Neuropathol. Appl. Neurobiol. 2017, 43, 514–532. [Google Scholar] [CrossRef] [PubMed]
- Dusek, P.; Skoloudik, D.; Maskova, J.; Huelnhagen, T.; Bruha, R.; Zahorakova, D.; Niendorf, T.; Ruzicka, E.; Schneider, S.A.; Wuerfel, J. Brain iron accumulation in Wilson’s disease: A longitudinal imaging case study during anticopper treatment using 7.0T MRI and transcranial sonography. J. Magn. Reson. Imaging 2018, 47, 282–285. [Google Scholar] [CrossRef]
- Shribman, S.; Poujois, A.; Bandmann, O.; Czlonkowska, A.; Warner, T.T. Wilson’s disease: Update on pathogenesis, biomarkers and treatments. J. Neurol. Neurosurg. Psychiatry 2021, 92, 1053–1061. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Guo, C.; Ruan, J.; Li, K.; Zhou, Y.; Gong, X. From ferroptosis to cuproptosis, and calcicoptosis, to find more novel metals-mediated distinct form of regulated cell death. Apoptosis 2024, 29, 586–604. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, G.; Porcu, C.; Arciello, M.; Andreozzi, P.; Balsano, C. Prediction of carotid intima–media thickness in obese patients with low prevalence of comorbidities by serum copper bioavailability. J. Gastroenterol. Hepatol. 2018, 33, 1511–1517. [Google Scholar] [CrossRef]
Cascade of Events | Short Description | References |
---|---|---|
1. Normal intestinal uptake of copper in healthy individuals and patients with Wilson disease. | In healthy individuals, as well as in patients with Wilson disease, copper absorption from food containing normal amounts of copper proceeds regularly, not under any local control by gene mutation. | Chen et al., 2022 [16], Chaudhry et al., 2023 [25] |
2. Normal copper transfer from enterocytes via the portal system to the liver cells in healthy individuals and in patients with Wilson disease. | In patients with Wilson disease, hepatocellular uptake of copper remains unchanged despite ongoing copper accumulation within the liver. There is no regulatory mechanism adjusting the cellular copper uptake according to intracellular copper demand. | Chaudhry et al., 2023 [25], Chen et al., 2020 [26], La Fontaine et al., 2010 [31] |
3. In patients with Wilson disease, the excess of copper accumulation within the hepatocytes is due to impaired biliary excretion. | Characteristic of Wilson disease are mutations of ATP7B genes that encode the protein ATP7B. This ATP7B transporter has dualistic functions, and both are impaired in patients with Wilson disease: biliary excretion of copper, and synthesis of the copper-containing protein ceruloplasmin. | Chaudhry et al., 2023 [25], Chen et al., 2020 [26], La Fontaine et al., 2010 [31], Lutsenko, 2016 [33], Yu et al., 2018 [40], Weiss et al., 2008 [41], Chang et al., 2017 [42] |
4. Copper and its role in generating reactive oxygen species (ROS) as initiator of the liver injury in Wilson disease, possibly in conjunction with iron visible in the liver. | In the liver, intracellular copper in excess produces ROS, similar to iron such as in hemochromatosis. Although most of the ROS production is caused by copper, the liver of patients with Wilson disease normally also contains iron with storage in ferritin is expected. With liver injury, there is acute phase reaction, and this link with inflammation may be the reason for iron present. Most patients do not have hemolytic anemia, which would rather give iron in spleen and hepatic Kupffer cells. | Iakovidis et al., 2011 [10], Tsang et al., 2021 [15], Xue et al., 2023 [52], Shiono et al., 2001 [53], Hayashi et al., 2006 [54], Kadiiska et al., 2002 [55] |
5. Role of copper-related cuproptosis and iron-related ferroptosis in the liver injury of patients with Wilson disease. Both reactions depend on free radicals like H2O2 comprised in ROS. | Major liver injury is caused by intracellular copper binding to lipoylated enzymes in tricarboxylic acid (TCA) cycle that ultimately causes cell death through cuproptosis. Iron accumulated in the liver of patients with Wilson disease likely plays a limited contributary role in the liver injury via ferroptosis. ROS results from the Haber Weiss and Fenton reactions and initiates both, cuproptosis and ferroptosis. | Iakovidis et al., 2022 [10], Chen et al., 2022 [16], Pak et al., 2021 [56], Wang et al., 2022 [57], Tsvetkov et al., 2022 [58], Tang et al., 2022 [59], Gromadzka et al., 2022 [60], Xie et al., 2023 [61], Li et al., 2023 [62] |
6. Cross talk among inflammatory cytokines. | In patients with Wilson disease, copper leads to inflammation in the affected organs and tissues. Antibody microarray methods are commonly used to analyze and quantitate plasma levels of inflammatory cytokines. In patients with Wilson disease, their cytokine levels are a response to activation of inflammatory mechanisms, as mostly evidenced by increased expression of interleukins as well as chemokines. | Wu et al., 2019 [63], Kisseleva et al., 2021 [64], Merle et al., 2007 [65], Stremmel et al., 2021 [66], Kelley et al., 1995 [67], Hopkins et al., 1997 [68], Hopkins et al., 1999 [69] |
7. Gut microbiome. | The gut microbiome can modify the clinical course of Wilson disease. | Cai et al., 2020 [70] |
Reaction Type | Haber Weiss and Fenton Reactions |
---|---|
Copper-based Haber–Weiss reaction Copper-based Fenton reaction | Cu2+ + •O2− → Cu1+ + O2 Cu1+ + H2O2 → Cu2+ + OH− + •OH |
Iron-based Haber–Weiss reaction Iron-based Fenton reaction | Fe3+ + •O2− → Fe2+ + O2 Fe2+ + H2O2 → Fe3+ + OH− + •OH |
Copper-based Net reaction Iron-based Net reaction | •O2− + H2O2 → OH− + •OH + O2 •O2− + H2O2 → OH− + •OH + O2 |
Laboratory Tests | Normal Range | Test Details in Patients with Wilson Disease | References |
---|---|---|---|
Serum ceruloplasmin | 0.2–0.5 g/L [134], >0.2 g/L [135] | An amount of <0.1 g/L. Because ceruloplasmin is an acute phase protein it may increase to normal values in co-existing inflammatory diseases and can provide false-negative results [135]. | Stremmel et al., 2021 [66], Kasztelan-Szczerbinska et al., 2021 [134], EASL, 2012 [135] |
Serum free copper | <150 µg/L [132] | An amount of >250 µg/L [132]. Calculation is required: non-ceruloplasmin-bound free copper (µg/dL) = total serum copper level in µg/dL [132] minus 3 times the level of ceruloplasmin given in mg/L [134], for diagnosis currently not recommended [128]. Serum total copper values of 10–22 μmol/L or 63.7–140.12 μg/dL are acceptable in healthy humans. | Mohr et al., 2019 [132], Kasztelan-Szczerbinska et al., 2021 [134], EASL, 2012 [135] |
Serum ALT activity | 7–55 U/L, varies from laboratory to laboratory | An amount of >150 U/L in children aged 4–8 years and <50 U/L in patients aged 35 years or older. Normal ALT activities do not rule out Wilson disease. Overall, ALT is of little diagnostic value. | Hayashi et al., 2019 [129], Kasztelan-Szczerbinska et al., 2021 [134] |
Serum AST activity | 8–48 U/L, varies from laboratory to laboratory | Serum AST activities are often higher than those of ALT, but this higher ratio is of little diagnostic value. | Hassoun et al., 2021 [130], Korman et al., 2008 [136] |
Serum ALP activity | 40–129 U/L in adults, varies from laboratory to laboratory, with higher ranges in children | Serum ALP activities in adult patients commonly were reported with low levels. | Chaudhry et al., 2023 [25], Korman et al., 2008 [136], Eisenbach 2007 [137] |
ATP7B gene screening | NA | Sensitivity 90%, specificity 100% [66]. Obligatory test [89]. Although this screening commonly is recommended, restrictions are current costs and the uneven availability worldwide. | Stremmel et al., 2021 [66] Stremmel et al., 2019 [89] Mohr et al., 2019 [132], Kasztelan-Szczerbinska et al., 2021 [134] |
Liver copper content | 50–249 µg/g dry weight | Correctly >250 µg copper/g dry liver weight [129,132] rather than erroneously >250 mg copper/g dry liver weight [131], which may confirm the diagnosis. However, it is now outdated keeping a strict cutoff of 250 µg copper/g dry tissue. Other problems are confined to invasive procedure, uneven copper distribution, its low tissue level in advanced liver disease causing biopsy sampling errors with false-negative results, and are confounded by high copper levels in in biliary atresia or cholestasis disorders. | Stremmel et al., 2021 [66], Hayashi et al., 2019 [129], Mohr et al., 2019 [132], Kasztelan-Szczerbinska et al., 2021 [134], Roberts et al., 2008 [138] |
Urinary copper excretion | 0–50 µg/24 h | Usually >100 µg/24 h in adults and 40 µg/24 h in children. This is confirmed to be the most sensitive single screening test for diagnosis. In acute liver failure, false-positive high values are found. Urinary copper excretion typically is above the ranges noted for symptomatic patients, but can be normal early in asymptomatic heterozygotic patients. | Kasztelan-Szczerbinska et al., 2021 [134], EASL, 2012 [135] |
Parameter | Score |
---|---|
Kayser Fleischer rings | |
| 2 |
| 0 |
Serum ceruloplasmin | |
| 0 |
| 3 |
| 2 |
| 1 |
24 h urinary copper (in the absence of chronic cholestatic liver disease) | |
| 2 |
| 1 |
| 0 |
Coombs-negative hemolytic anemia with liver disease | |
| 1 |
| 0 |
Mutational analysis | |
| 4 |
| 1 |
| 0 |
Liver biopsy for histology suggestive of Wilson disease with | |
| 1 |
Neurobehavioral symptoms | |
| 2 |
| 1 |
Typical features on Magnetic Resonance Imaging brain | |
| 1 |
| 0 |
History of Wilson disease in a family member | |
| 1 |
Evaluation | Total score |
| ≥4 |
| 3 |
| ≤2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teschke, R.; Eickhoff, A. Wilson Disease: Copper-Mediated Cuproptosis, Iron-Related Ferroptosis, and Clinical Highlights, with Comprehensive and Critical Analysis Update. Int. J. Mol. Sci. 2024, 25, 4753. https://doi.org/10.3390/ijms25094753
Teschke R, Eickhoff A. Wilson Disease: Copper-Mediated Cuproptosis, Iron-Related Ferroptosis, and Clinical Highlights, with Comprehensive and Critical Analysis Update. International Journal of Molecular Sciences. 2024; 25(9):4753. https://doi.org/10.3390/ijms25094753
Chicago/Turabian StyleTeschke, Rolf, and Axel Eickhoff. 2024. "Wilson Disease: Copper-Mediated Cuproptosis, Iron-Related Ferroptosis, and Clinical Highlights, with Comprehensive and Critical Analysis Update" International Journal of Molecular Sciences 25, no. 9: 4753. https://doi.org/10.3390/ijms25094753
APA StyleTeschke, R., & Eickhoff, A. (2024). Wilson Disease: Copper-Mediated Cuproptosis, Iron-Related Ferroptosis, and Clinical Highlights, with Comprehensive and Critical Analysis Update. International Journal of Molecular Sciences, 25(9), 4753. https://doi.org/10.3390/ijms25094753