Integrated Multi-Omics Analysis to Reveal the Molecular Mechanisms of Inflorescence Elongation in Medicago sativa
Abstract
:1. Introduction
2. Results
2.1. Distinct Phenotypes of Long and Short Inflorescences between Two Extreme Materials in Alfalfa
2.2. Genetic and Proteomic Analysis of Two Extreme Materials at the Three Developmental Stages
2.3. Enrichment Analysis of Integrative Genes and Proteins in Two Extreme Materials at the Three Developmental Stages
2.4. Integrated Analysis of Genes and Proteins Associated with Lignin Biosynthesis
2.5. Targeted Phytohormone Metabolome of Two Extreme Materials at the Three Developmental Stages
2.6. Integrated Analysis of Genes, Proteins, and Metabolites Related to Plant Hormone Biosynthesis
2.7. Integrated Analysis of Genes, Proteins, and Metabolites Related to Plant Hormone Signal Transduction
2.8. Weighted Gene and Protein Co-Expression Network Analysis
2.9. Transcription Factors Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Transcriptome Sequencing and Data Analysis
4.3. Proteomic Analysis
4.4. Hormone Analysis
4.5. qRT-PCR Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harder, L.D.; Prusinkiewicz, P. The Interplay between Inflorescence Development and Function as the Crucible of Architectural Diversity. Ann. Bot. 2013, 112, 1477–1493. [Google Scholar] [CrossRef] [PubMed]
- Prusinkiewicz, P.; Erasmus, Y.; Lane, B.; Harder, L.D.; Coen, E. Evolution and Development of Inflorescence Architectures. Science 2007, 316, 1452–1456. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Lindsay, P.L.; Jackson, D. Next Generation Cereal Crop Yield Enhancement: From Knowledge of Inflorescence Development to Practical Engineering by Genome Editing. Int. J. Mol. Sci. 2021, 22, 5167. [Google Scholar] [CrossRef]
- Zong, J.; Wang, L.; Zhu, L.; Bian, L.; Zhang, B.; Chen, X.; Huang, G.; Zhang, X.; Fan, J.; Cao, L.; et al. A Rice Single Cell Transcriptomic Atlas Defines the Developmental Trajectories of Rice Floret and Inflorescence Meristems. New Phytol. 2022, 234, 494–512. [Google Scholar] [CrossRef]
- Zhu, Y.; Klasfeld, S.; Jeong, C.W.; Jin, R.; Goto, K.; Yamaguchi, N.; Wagner, D. TERMINAL FLOWER 1-FD Complex Target Genes and Competition with FLOWERING LOCUS T. Nat. Commun. 2020, 11, 5118. [Google Scholar] [CrossRef] [PubMed]
- Kitabatake, T.; Yoshihira, T.; Suzuki, H.; Yamaguchi, N. Yield and Related Traits for a Soybean Breeding Line ‘Tokei 1122’ with QTLs for Long Terminal Racemes under High Planting Density Conditions. Plant Prod. Sci. 2020, 23, 234–246. [Google Scholar] [CrossRef]
- Nagl, N.; Taski-Ajdukovic, K.; Barac, G.; Baburski, A.; Seccareccia, I.; Milic, D.; Katic, S. Estimation of the Genetic Diversity in Tetraploid Alfalfa Populations Based on RAPD Markers for Breeding Purposes. Int. J. Mol. Sci. 2011, 12, 5449–5460. [Google Scholar] [CrossRef]
- Bodzon, Z. Correlations and Heritability of the Characters Determining the Seed Yield of the Long-Raceme Alfalfa (Medicago sativa L.). J. Appl. Genet. 2004, 45, 49–59. [Google Scholar]
- Bolanos-Aguilar, E.D.; Huyghe, C.; Djukic, D.; Julier, B.; Ecalle, C. Genetic Control of Alfalfa Seed Yield and Its Components. Plant Breed. 2001, 120, 67–72. [Google Scholar] [CrossRef]
- Zhong, R.; Cui, D.; Ye, Z. Secondary cell wall biosynthesis. New Phytol. 2019, 221, 1703–1723. [Google Scholar] [CrossRef]
- Ralph, J.; Brunow, G.; Boerjan, W. Lignins. In Encyclopedia of Life Sciences; Wiley: Hoboken, NJ, USA, 2007; ISBN 978-0-470-01617-6. [Google Scholar] [CrossRef]
- Seca, A.M.L.; Cavaleiro, J.A.S.; Domingues, F.M.J.; Silvestre, A.J.D.; Evtuguin, D.; Neto, C.P. Structural Characterization of the Lignin from the Nodes and Internodes of Arundo donax Reed. J. Agric. Food Chem. 2000, 48, 817–824. [Google Scholar] [CrossRef]
- Grima-Pettenati, J.; Goffner, D. Lignin Genetic Engineering Revisited. Plant Sci. 1999, 145, 51–65. [Google Scholar] [CrossRef]
- Bonawitz, N.D.; Chapple, C. The Genetics of Lignin Biosynthesis: Connecting Genotype to Phenotype. Annu. Rev. Genet. 2010, 44, 337–363. [Google Scholar] [CrossRef]
- Zhao, Q. Lignification: Flexibility, Biosynthesis and Regulation. Trends Plant Sci. 2016, 21, 713–721. [Google Scholar] [CrossRef]
- Weyers, J.D.B.; Paterson, N.W. Plant Hormones and the Control of Physiological Processes. New Phytol. 2001, 152, 375–407. [Google Scholar] [CrossRef]
- Sarmiento-López, L.G.; López-Espinoza, M.Y.; Juárez-Verdayes, M.A.; López-Meyer, M. Genome-Wide Characterization of the Xyloglucan Endotransglucosylase/Hydrolase Gene Family in Solanum lycopersicum L. and Gene Expression Analysis in Response to Arbuscular Mycorrhizal Symbiosis. PeerJ 2023, 11, e15257. [Google Scholar] [CrossRef]
- Yang, C.; Li, X.; Chen, S.; Liu, C.; Yang, L.; Li, K.; Liao, J.; Zheng, X.; Li, H.; Li, Y.; et al. ABI5–FLZ13 Module Transcriptionally Represses Growth-Related Genes to Delay Seed Germination in Response to ABA. Plant Commun. 2023, 4, 100636. [Google Scholar] [CrossRef]
- Ren, H.; Gray, W.M. SAUR Proteins as Effectors of Hormonal and Environmental Signals in Plant Growth. Mol. Plant 2015, 8, 1153–1164. [Google Scholar] [CrossRef]
- Khan, S.; Stone, J.M. Arabidopsis Thaliana GH3.9 Influences Primary Root Growth. Planta 2007, 226, 21–34. [Google Scholar] [CrossRef]
- Li, Q.; Li, J.; Zhang, L.; Pan, C.; Yang, N.; Sun, K.; He, C. Gibberellins Are Required for Dimorphic Flower Development in Viola Philippica. Plant Sci. 2021, 303, 110749. [Google Scholar] [CrossRef]
- Davière, J.-M.; Achard, P. Gibberellin Signaling in Plants. Development 2013, 140, 1147–1151. [Google Scholar] [CrossRef]
- Zhang, X.; Fujino, K.; Shimura, H. Transcriptomic Analyses Reveal the Role of Cytokinin and the Nodal Stem in Microtuber Sprouting in Potato (Solanum tuberosum L.). Int. J. Mol. Sci. 2023, 24, 17534. [Google Scholar] [CrossRef]
- Lanctot, A. A High-Yielding Recipe: Cytokinin Signaling in Soybean Roots Affects Phosphorus Uptake Efficiency and Crop Production. Plant Physiol. 2024, 194, 1260–1262. [Google Scholar] [CrossRef]
- Sheng, J.; Li, X.; Zhang, D. Gibberellins, Brassinolide, and Ethylene Signaling Were Involved in Flower Differentiation and Development in Nelumbo Nucifera. Hortic. Plant J. 2022, 8, 243–250. [Google Scholar] [CrossRef]
- Jamil, M.; Alagoz, Y.; Wang, J.Y.; Chen, G.E.; Berqdar, L.; Kharbatia, N.M.; Moreno, J.C.; Kuijer, H.N.J.; Al-Babili, S. Abscisic Acid Inhibits Germination of Striga Seeds and Is Released by Them Likely as a Rhizospheric Signal Supporting Host Infestation. Plant J. 2024, 117, 1305–1316. [Google Scholar] [CrossRef]
- Spoel, S.H.; Dong, X. Salicylic Acid in Plant Immunity and Beyond. Plant Cell 2024, 36, 1451–1464. [Google Scholar] [CrossRef]
- Zhang, K.; He, Y.; Lu, X.; Shi, Y.; Zhao, H.; Li, X.; Li, J.; Liu, Y.; Ouyang, Y.; Tang, Y.; et al. Comparative and Population Genomics of Buckwheat Species Reveal Key Determinants of Flavor and Fertility. Mol. Plant 2023, 16, 1427–1444. [Google Scholar] [CrossRef]
- Tong, N.; Shu, Q.; Wang, B.; Peng, L.; Liu, Z. Histology, Physiology, and Transcriptomic and Metabolomic Profiling Reveal the Developmental Dynamics of Annual Shoots in Tree Peonies (Paeonia suffruticosa Andr.). Hortic. Res. 2023, 10, uhad152. [Google Scholar] [CrossRef]
- Weng, X.; Song, H.; Sreedasyam, A.; Haque, T.; Zhang, L.; Chen, C.; Yoshinaga, Y.; Williams, M.; O’Malley, R.C.; Grimwood, J.; et al. Transcriptome and DNA Methylome Divergence of Inflorescence Development between 2 Ecotypes in Panicum hallii. Plant Physiol. 2023, 192, 2374–2393. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, G.; Yang, X.; Kuijer, H.N.J.; Liang, W.; Zhang, D. Transcriptome Profiling Reveals Phase-Specific Gene Expression in the Developing Barley Inflorescence. Crop J. 2020, 8, 71–86. [Google Scholar] [CrossRef]
- Vanholme, R.; De Meester, B.; Ralph, J.; Boerjan, W. Lignin Biosynthesis and Its Integration into Metabolism. Curr. Opin. Biotechnol. 2019, 56, 230–239. [Google Scholar] [CrossRef]
- Yoon, J.; Choi, H.; An, G. Roles of Lignin Biosynthesis and Regulatory Genes in Plant Development. J. Integr. Plant Biol. 2015, 57, 902–912. [Google Scholar] [CrossRef]
- Chen, H.-C.; Song, J.; Wang, J.P.; Lin, Y.-C.; Ducoste, J.; Shuford, C.M.; Liu, J.; Li, Q.; Shi, R.; Nepomuceno, A.; et al. Systems Biology of Lignin Biosynthesis in Populus trichocarpa : Heteromeric 4-Coumaric Acid:Coenzyme A Ligase Protein Complex Formation, Regulation, and Numerical Modeling. Plant Cell 2014, 26, 876–893. [Google Scholar] [CrossRef]
- Reddy, M.S.S.; Chen, F.; Shadle, G.; Jackson, L.; Aljoe, H.; Dixon, R.A. Targeted Down-Regulation of Cytochrome P450 Enzymes for Forage Quality Improvement in Alfalfa (Medicago sativa L.). Proc. Natl. Acad. Sci. USA 2005, 102, 16573–16578. [Google Scholar] [CrossRef]
- Huntley, S.K.; Ellis, D.; Gilbert, M.; Chapple, C.; Mansfield, S.D. Significant Increases in Pulping Efficiency in C4H-F5H-Transformed Poplars: Improved Chemical Savings and Reduced Environmental Toxins. J. Agric. Food Chem. 2003, 51, 6178–6183. [Google Scholar] [CrossRef]
- Schuetz, M.; Benske, A.; Smith, R.A.; Watanabe, Y.; Tobimatsu, Y.; Ralph, J.; Demura, T.; Ellis, B.; Samuels, A.L. Laccases Direct Lignification in the Discrete Secondary Cell Wall Domains of Protoxylem. Plant Physiol. 2014, 166, 798–807. [Google Scholar] [CrossRef]
- Lapierre, C.; Pilate, G.; Pollet, B.; Mila, I.; Leplé, J.-C.; Jouanin, L.; Kim, H.; Ralph, J. Signatures of Cinnamyl Alcohol Dehydrogenase Deficiency in Poplar Lignins. Phytochemistry 2004, 65, 313–321. [Google Scholar] [CrossRef]
- Pawlak-Sprada, S.; Arasimowicz-Jelonek, M.; Podgórska, M.; Deckert, J. Activation of Phenylpropanoid Pathway in Legume Plants Exposed to Heavy Metals. Part I. Effects of Cadmium and Lead on Phenylalanine Ammonia-Lyase Gene Expression, Enzyme Activity and Lignin Content. Acta Biochim. Pol. 2011, 58, 211–216. [Google Scholar] [CrossRef]
- Pollmann, S.; Düchting, P.; Weiler, E.W. Tryptophan-Dependent Indole-3-Acetic Acid Biosynthesis by ‘IAA-Synthase’ Proceeds via Indole-3-Acetamide. Phytochemistry 2009, 70, 523–531. [Google Scholar] [CrossRef]
- Marchant, A.; Bhalerao, R.; Casimiro, I.; Eklöf, J.; Casero, P.J.; Bennett, M.; Sandberg, G. AUX1 Promotes Lateral Root Formation by Facilitating Indole-3-Acetic Acid Distribution between Sink and Source Tissues in the Arabidopsis Seedling. Plant Cell 2002, 14, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Hu, Q.; Luo, S.; Li, Q.; Yang, X.; Wang, X.; Wang, S. Expression of Wild-Type PtrIAA14.1, a Poplar Aux/IAA Gene Causes Morphological Changes in Arabidopsis. Front. Plant Sci. 2015, 6, 388. [Google Scholar] [CrossRef] [PubMed]
- Chae, K.; Isaacs, C.G.; Reeves, P.H.; Maloney, G.S.; Muday, G.K.; Nagpal, P.; Reed, J.W. Arabidopsis SMALL AUXIN UP RNA63 Promotes Hypocotyl and Stamen Filament Elongation. Plant J. 2012, 71, 684–697. [Google Scholar] [CrossRef] [PubMed]
- Du, G.; Zhao, Y.; Xiao, C.; Ren, D.; Ding, Y.; Xu, J.; Jin, H.; Jiao, H. Mechanism Analysis of Calcium Nitrate Application to Induce Gibberellin Biosynthesis and Signal Transduction Promoting Stem Elongation of Dendrobium Officinale. Ind. Crops Prod. 2023, 195, 116495. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, D. Molecular Basis and Evolutionary Pattern of GA–GID1–DELLA Regulatory Module. Mol. Genet. Genom. 2014, 289, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Achard, P.; Liao, L.; Jiang, C.; Desnos, T.; Bartlett, J.; Fu, X.; Harberd, N.P. DELLAs Contribute to Plant Photomorphogenesis. Plant Physiol. 2007, 143, 1163–1172. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Martinez, C.; Gusmaroli, G.; Wang, Y.; Zhou, J.; Wang, F.; Chen, L.; Yu, L.; Iglesias-Pedraz, J.M.; Kircher, S.; et al. Coordinated Regulation of Arabidopsis Thaliana Development by Light and Gibberellins. Nature 2008, 451, 475–479. [Google Scholar] [CrossRef] [PubMed]
- Persson, S.; Caffall, K.H.; Freshour, G.; Hilley, M.T.; Bauer, S.; Poindexter, P.; Hahn, M.G.; Mohnen, D.; Somerville, C. The Arabidopsis Irregular Xylem8 Mutant Is Deficient in Glucuronoxylan and Homogalacturonan, Which Are Essential for Secondary Cell Wall Integrity. Plant Cell 2007, 19, 237–255. [Google Scholar] [CrossRef]
- Greco, M.; Chiappetta, A.; Bruno, L.; Bitonti, M.B. Overexpression of a putative Arabidopsis BAHDacyltransferase causes dwarfism that can be rescued by brassinosteroid. J. Exp. Bot. 2012, 63, 5787–5801. [Google Scholar] [CrossRef]
- Wang, F.; Ge, S.; Xu, X.; Xing, Y.; Du, X.; Zhang, X.; Lv, M.; Liu, J.; Zhu, Z.; Jiang, Y. Multiomics Analysis Reveals New Insights into the Apple Fruit Quality Decline under High Nitrogen Conditions. J. Agric. Food Chem. 2021, 69, 5559–5572. [Google Scholar] [CrossRef]
- Huang, K.-L.; Zhang, M.-L.; Ma, G.-J.; Wu, H.; Wu, X.-M.; Ren, F.; Li, X.-B. Transcriptome Profiling Analysis Reveals the Role of Silique in Controlling Seed Oil Content in Brassica Napus. PLoS ONE 2017, 12, e0179027. [Google Scholar] [CrossRef]
- Taylor-Teeples, M.; Lin, L.; De Lucas, M.; Turco, G.; Toal, T.W.; Gaudinier, A.; Young, N.F.; Trabucco, G.M.; Veling, M.T.; Lamothe, R.; et al. An Arabidopsis Gene Regulatory Network for Secondary Cell Wall Synthesis. Nature 2015, 517, 571–575. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Xu, C.; Kang, Y.; Gu, T.; Wang, D.; Zhao, S.; Xia, G. The Heterologous Expression in Arabidopsis Thaliana of Sorghum Transcription Factor SbbHLH1 Downregulates Lignin Synthesis. J. Exp. Bot. 2013, 64, 3021–3032. [Google Scholar] [CrossRef] [PubMed]
- Niu, Q.; Zong, Y.; Qian, M.; Yang, F.; Teng, Y. Simultaneous Quantitative Determination of Major Plant Hormones in Pear Flowers and Fruit by UPLC/ESI-MS/MS. Anal. Methods 2014, 6, 1766–1773. [Google Scholar] [CrossRef]
Gene ID | Module | NR | TF-Family |
---|---|---|---|
MsG0180005104.01 | blue | transcription factor bHLH30 | bHLH |
MsG0180005162.01 | blue | transcription factor bHLH30 | bHLH |
MsG0280011275.01 | blue | dehydration-responsive element-binding protein 3 | AP2/ERF-ERF |
MsG0380015775.01 | blue | LOB domain-containing protein 25 | LOB |
MsG0380017605.01 | blue | transcription factor MYB3R-1 | MYB |
MsG0480018564.01 | blue | receptor protein kinase-like protein ZAR1 | S1Fa-like |
MsG0480022142.01 | blue | homeobox-leucine zipper protein HOX3 | HB-other |
MsG0580025575.01 | blue | transcription factor bHLH93 isoform X1 | bHLH |
MsG0580028352.01 | blue | zinc finger protein CONSTANS-LIKE 9 | C2C2-CO-like |
MsG0780036307.01 | blue | transcription factor MYB16 | MYB |
MsG0780038789.01 | blue | probable WRKY transcription factor 49 | WRKY |
MsG0880042918.01 | blue | transcription factor MYC1 | bHLH |
MsG0880046208.01 | blue | scarecrow-like protein 28 | GRAS |
MsG0180004743.01 | black | transcription factor MYB61 isoform X1 | MYB |
MsG0180005910.01 | black | zinc finger CCCH domain-containing protein 15 | C3H |
MsG0280010649.01 | black | transcription factor MYB14 | MYB-related |
MsG0280010788.01 | black | NAC domain-containing protein 73 | NAC |
MsG0380016673.01 | black | hypothetical protein DVH24_022336 | NAC |
MsG0380017030.01 | black | transcription factor bHLH94 | bHLH |
MsG0480022074.01 | black | myb transcription factor | MYB |
MsG0780041430.01 | black | transcription factor MYB61 | MYB |
MsG0780041452.01 | black | transcription factor MYB61 | MYB |
MsG0780041453.01 | black | transcription factor PIF3 isoform X1 | bHLH |
MsG0780041768.01 | black | ethylene-responsive transcription factor ERF023 | AP2/ERF-ERF |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Liu, L.; Qiang, X.; Meng, Y.; Li, Z.; Huang, F. Integrated Multi-Omics Analysis to Reveal the Molecular Mechanisms of Inflorescence Elongation in Medicago sativa. Int. J. Mol. Sci. 2024, 25, 6497. https://doi.org/10.3390/ijms25126497
Huang X, Liu L, Qiang X, Meng Y, Li Z, Huang F. Integrated Multi-Omics Analysis to Reveal the Molecular Mechanisms of Inflorescence Elongation in Medicago sativa. International Journal of Molecular Sciences. 2024; 25(12):6497. https://doi.org/10.3390/ijms25126497
Chicago/Turabian StyleHuang, Xiuzheng, Lei Liu, Xiaojing Qiang, Yuanfa Meng, Zhiyong Li, and Fan Huang. 2024. "Integrated Multi-Omics Analysis to Reveal the Molecular Mechanisms of Inflorescence Elongation in Medicago sativa" International Journal of Molecular Sciences 25, no. 12: 6497. https://doi.org/10.3390/ijms25126497
APA StyleHuang, X., Liu, L., Qiang, X., Meng, Y., Li, Z., & Huang, F. (2024). Integrated Multi-Omics Analysis to Reveal the Molecular Mechanisms of Inflorescence Elongation in Medicago sativa. International Journal of Molecular Sciences, 25(12), 6497. https://doi.org/10.3390/ijms25126497