An SNP Marker Predicts Colorectal Cancer Outcomes with 5-Fluorouracil-Based Adjuvant Chemotherapy Post-Resection
Abstract
:1. Introduction
2. Results
2.1. Study Design
2.2. Comparison of Baseline Characteristics in the Exploration Cohort of CRC Patients
2.3. GWAS Analysis Identifies GALNT14-rs62139523 and DNMBP-rs10786578 Genotypes as Potential Genetic Predictors
2.4. Comparison of Baseline Characteristics in the Validation Cohort of CRC Patients
2.5. Association of GALNT14-rs62139523, but Not DNMBP-rs10786578, Genotypes with Prognosis in Intermediate-Stage CRC Patients Undergoing Surgical Resection Followed by 5-FU-Based Adjuvant Chemotherapy
2.6. Exploring the Predictive Role of GALNT14-rs62139523 “A/G” Genotype in Favorable OS and PFS across Subgroups in Intermediate-Stage CRC Patients Undergoing Surgical Resection Followed by 5-FU-Based Adjuvant Chemotherapy
3. Discussion
4. Materials and Methods
4.1. Patients and Samples
4.2. Genotyping Using TWB 2.0 Chip
4.3. Genotyping Using Polymerase Chain Reaction (PCR) Followed by Direct Sequencing
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Xie, Y.H.; Chen, Y.X.; Fang, J.Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther. 2020, 5, 22. [Google Scholar] [CrossRef] [PubMed]
- Sargent, D.; Sobrero, A.; Grothey, A.; O’Connell, M.J.; Buyse, M.; Andre, T.; Zheng, Y.; Green, E.; Labianca, R.; O’Callaghan, C.; et al. Evidence for cure by adjuvant therapy in colon cancer: Observations based on individual patient data from 20,898 patients on 18 randomized trials. J. Clin. Oncol. 2009, 27, 872–877. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, T.; Cervantes, A.; Bando, H.; Martinelli, E.; Oki, E.; Xu, R.H.; Mulansari, N.A.; Govind Babu, K.; Lee, M.A.; Tan, C.K.; et al. Pan-Asian adapted ESMO Clinical Practice Guidelines for the diagnosis, treatment and follow-up of patients with metastatic colorectal cancer. ESMO Open 2023, 8, 101558. [Google Scholar] [CrossRef] [PubMed]
- Labianca, R.; Nordlinger, B.; Beretta, G.D.; Mosconi, S.; Mandalà, M.; Cervantes, A.; Arnold, D. Early colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2013, 24 (Suppl. S6), vi64–vi72. [Google Scholar] [CrossRef]
- André, T.; Boni, C.; Navarro, M.; Tabernero, J.; Hickish, T.; Topham, C.; Bonetti, A.; Clingan, P.; Bridgewater, J.; Rivera, F.; et al. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J. Clin. Oncol. 2009, 27, 3109–3116. [Google Scholar] [CrossRef] [PubMed]
- Kuebler, J.P.; Wieand, H.S.; O’Connell, M.J.; Smith, R.E.; Colangelo, L.H.; Yothers, G.; Petrelli, N.J.; Findlay, M.P.; Seay, T.E.; Atkins, J.N.; et al. Oxaliplatin combined with weekly bolus fluorouracil and leucovorin as surgical adjuvant chemotherapy for stage II and III colon cancer: Results from NSABP C-07. J. Clin. Oncol. 2007, 25, 2198–2204. [Google Scholar] [CrossRef] [PubMed]
- Yates, L.R.; Campbell, P.J. Evolution of the cancer genome. Nat. Rev. Genet. 2012, 13, 795–806. [Google Scholar] [CrossRef]
- Cohen, R.; Liu, H.; Fiskum, J.; Adams, R.; Chibaudel, B.; Maughan, T.S.; Van Cutsem, E.; Venook, A.; Douillard, J.Y.; Heinemann, V.; et al. BRAF V600E Mutation in First-Line Metastatic Colorectal Cancer: An Analysis of Individual Patient Data from the ARCAD Database. J. Natl. Cancer Inst. 2021, 113, 1386–1395. [Google Scholar] [CrossRef]
- Sawada, K.; Nakamura, Y.; Yamanaka, T.; Kuboki, Y.; Yamaguchi, D.; Yuki, S.; Yoshino, T.; Komatsu, Y.; Sakamoto, N.; Okamoto, W.; et al. Prognostic and Predictive Value of HER2 Amplification in Patients with Metastatic Colorectal Cancer. Clin. Color. Cancer 2018, 17, 198–205. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Grewal, U.S.; Vora, K.B.; Parikh, A.R.; Almader-Douglas, D.; Mahipal, A.; Sonbol, M.B.B. Outcome of Patients with Early-Stage Mismatch Repair Deficient Colorectal Cancer Receiving Neoadjuvant Immunotherapy: A Systematic Review. JCO Precis. Oncol. 2023, 7, e2300182. [Google Scholar] [CrossRef]
- Ramos-Esquivel, A.; Chinchilla-Monge, R.; Abbas, J.; Valle, M. C677T and A1298C MTHFR gene polymorphisms and response to fluoropyrimidine-based chemotherapy in Mestizo patients with metastatic colorectal cancer. Pharmacogenet. Genom. 2021, 31, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Fariña-Sarasqueta, A.; Gosens, M.J.; Moerland, E.; van Lijnschoten, I.; Lemmens, V.E.; Slooter, G.D.; Rutten, H.J.; van den Brule, A.J. TS gene polymorphisms are not good markers of response to 5-FU therapy in stage III colon cancer patients. Cell. Oncol. 2011, 34, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Park, C.M.; Lee, W.Y.; Chun, H.K.; Cho, Y.B.; Yun, H.R.; Heo, J.S.; Yun, S.H.; Kim, H.C. Relationship of polymorphism of the tandem repeat sequence in the thymidylate synthase gene and the survival of stage III colorectal cancer patients receiving adjuvant 5-flurouracil-based chemotherapy. J. Surg. Oncol. 2010, 101, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, M.; Takita, N.; Hata, M.; Maeda, T.; Sakamoto, K.; Kamano, T.; Ochiai, T. The relationship between 5-fluorouracil sensitivity and single nucleotide polymorphisms of the orotate phosphoribosyl transferase gene in colorectal cancer. Oncol. Rep. 2006, 15, 161–165. [Google Scholar] [CrossRef]
- Yin, M.; Yan, J.; Martinez-Balibrea, E.; Graziano, F.; Lenz, H.J.; Kim, H.J.; Robert, J.; Im, S.A.; Wang, W.S.; Etienne-Grimaldi, M.C.; et al. ERCC1 and ERCC2 polymorphisms predict clinical outcomes of oxaliplatin-based chemotherapies in gastric and colorectal cancer: A systemic review and meta-analysis. Clin. Cancer Res. 2011, 17, 1632–1640. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Jiang, T.; Yao, R.Y.; Liu, Z.M.; Lv, H.Y.; Qi, W.W. The combination of ERCC1 and XRCC1 gene polymorphisms better predicts clinical outcome to oxaliplatin-based chemotherapy in metastatic colorectal cancer. Cancer Chemother. Pharmacol. 2010, 66, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Ruzzo, A.; Graziano, F.; Galli, F.; Giacomini, E.; Floriani, I.; Galli, F.; Rulli, E.; Lonardi, S.; Ronzoni, M.; Massidda, B.; et al. Genetic markers for toxicity of adjuvant oxaliplatin and fluoropyrimidines in the phase III TOSCA trial in high-risk colon cancer patients. Sci. Rep. 2014, 4, 6828. [Google Scholar] [CrossRef] [PubMed]
- Park, H.A.; Edelmann, D.; Canzian, F.; Seibold, P.; Harrison, T.A.; Hua, X.; Shi, Q.; Silverman, A.; Benner, A.; Macauda, A.; et al. Genome-wide study of genetic polymorphisms predictive for outcome from first-line oxaliplatin-based chemotherapy in colorectal cancer patients. Int. J. Cancer 2023, 153, 1623–1634. [Google Scholar] [CrossRef]
- Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer 2003, 3, 330–338. [Google Scholar] [CrossRef]
- Scartozzi, M.; Maccaroni, E.; Giampieri, R.; Pistelli, M.; Bittoni, A.; Del Prete, M.; Berardi, R.; Cascinu, S. 5-Fluorouracil pharmacogenomics: Still rocking after all these years? Pharmacogenomics 2011, 12, 251–265. [Google Scholar] [CrossRef]
- Wohlhueter, R.M.; McIvor, R.S.; Plagemann, P.G. Facilitated transport of uracil and 5-fluorouracil, and permeation of orotic acid into cultured mammalian cells. J. Cell. Physiol. 1980, 104, 309–319. [Google Scholar] [CrossRef]
- Maring, J.G.; van Kuilenburg, A.B.; Haasjes, J.; Piersma, H.; Groen, H.J.; Uges, D.R.; Van Gennip, A.H.; De Vries, E.G. Reduced 5-FU clearance in a patient with low DPD activity due to heterozygosity for a mutant allele of the DPYD gene. Br. J. Cancer 2002, 86, 1028–1033. [Google Scholar] [CrossRef]
- Kufe, D.W.; Major, P.P. 5-Fluorouracil incorporation into human breast carcinoma RNA correlates with cytotoxicity. J. Biol. Chem. 1981, 256, 9802–9805. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.T.; Lin, J.C.; Lee, C.H. Taiwan Biobank: A project aiming to aid Taiwan’s transition into a biomedical island. Pharmacogenomics 2008, 9, 235–246. [Google Scholar] [CrossRef]
- Moretto, R.; Rossini, D.; Conca, V.; Lonardi, S.; Rasola, C.; Antoniotti, C.; Santini, D.; Marmorino, F.; Tomasello, G.; Borelli, B.; et al. CEA increase as a marker of disease progression after first-line induction therapy in metastatic colorectal cancer patients. A pooled analysis of TRIBE and TRIBE2 studies. Br. J. Cancer 2021, 125, 839–845. [Google Scholar] [CrossRef]
- Gulhati, P.; Yin, J.; Pederson, L.; Schmoll, H.J.; Hoff, P.; Douillard, J.Y.; Hecht, J.R.; Tournigand, C.; Tebbut, N.; Chibaudel, B.; et al. Threshold Change in CEA as a Predictor of Non-Progression to First-Line Systemic Therapy in Metastatic Colorectal Cancer Patients with Elevated CEA. J. Natl. Cancer Inst. 2020, 112, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Sobrero, A. Should adjuvant chemotherapy become standard treatment for patients with stage II colon cancer? For the proposal. Lancet Oncol. 2006, 7, 515–516. [Google Scholar] [CrossRef]
- André, T.; de Gramont, A.; Vernerey, D.; Chibaudel, B.; Bonnetain, F.; Tijeras-Raballand, A.; Scriva, A.; Hickish, T.; Tabernero, J.; Van Laethem, J.L.; et al. Adjuvant Fluorouracil, Leucovorin, and Oxaliplatin in Stage II to III Colon Cancer: Updated 10-Year Survival and Outcomes According to BRAF Mutation and Mismatch Repair Status of the MOSAIC Study. J. Clin. Oncol. 2015, 33, 4176–4187. [Google Scholar] [CrossRef]
- Taieb, J.; André, T.; Auclin, E. Refining adjuvant therapy for non-metastatic colon cancer, new standards and perspectives. Cancer Treat. Rev. 2019, 75, 1–11. [Google Scholar] [CrossRef]
- McCleary, N.J.; Benson, A.B., 3rd; Dienstmann, R. Personalizing Adjuvant Therapy for Stage II/III Colorectal Cancer. Am. Soc. Clin. Oncol. Educ. Book. 2017, 37, 232–245. [Google Scholar] [CrossRef] [PubMed]
- Uffelmann, E.; Huang, Q.Q.; Munung, N.S.; de Vries, J.; Okada, Y.; Martin, A.R.; Martin, H.C.; Lappalainen, T.; Posthuma, D. Genome-wide association studies. Nat. Rev. Methods Primers 2021, 1, 59. [Google Scholar] [CrossRef]
- Pe’er, I.; Yelensky, R.; Altshuler, D.; Daly, M.J. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet. Epidemiol. 2008, 32, 381–385. [Google Scholar] [CrossRef]
- Chen, Z.; Boehnke, M.; Wen, X.; Mukherjee, B. Revisiting the genome-wide significance threshold for common variant GWAS. G3 2021, 11, jkaa056. [Google Scholar] [CrossRef]
- Asif, H.; Alliey-Rodriguez, N.; Keedy, S.; Tamminga, C.A.; Sweeney, J.A.; Pearlson, G.; Clementz, B.A.; Keshavan, M.S.; Buckley, P.; Liu, C.; et al. GWAS significance thresholds for deep phenotyping studies can depend upon minor allele frequencies and sample size. Mol. Psychiatry 2021, 26, 2048–2055. [Google Scholar] [CrossRef]
- Hong, E.P.; Park, J.W. Sample size and statistical power calculation in genetic association studies. Genom. Inform. 2012, 10, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Benson, A.B., 3rd. Adjuvant chemotherapy of stage III colon cancer. Semin. Oncol. 2005, 32, S74–S77. [Google Scholar] [CrossRef] [PubMed]
- De Divitiis, C.; Nasti, G.; Montano, M.; Fisichella, R.; Iaffaioli, R.V.; Berretta, M. Prognostic and predictive response factors in colorectal cancer patients: Between hope and reality. World J. Gastroenterol. 2014, 20, 15049–15059. [Google Scholar] [CrossRef]
- O’Connor, E.S.; Greenblatt, D.Y.; LoConte, N.K.; Gangnon, R.E.; Liou, J.I.; Heise, C.P.; Smith, M.A. Adjuvant chemotherapy for stage II colon cancer with poor prognostic features. J. Clin. Oncol. 2011, 29, 3381–3388. [Google Scholar] [CrossRef]
- Liang, K.H.; Lin, C.L.; Chen, S.F.; Chiu, C.W.; Yang, P.C.; Chang, M.L.; Lin, C.C.; Sung, K.F.; Yeh, C.; Hung, C.F.; et al. GALNT14 genotype effectively predicts the therapeutic response in unresectable hepatocellular carcinoma treated with transcatheter arterial chemoembolization. Pharmacogenomics 2016, 17, 353–366. [Google Scholar] [CrossRef]
- Lin, W.R.; Hsu, C.W.; Yeh, C.S.; Chen, Y.C.; Chang, M.L.; Liang, K.H.; Lin, C.C.; Chu, Y.D.; Yeh, C.T. Combinations of single nucleotide polymorphisms WWOX-rs13338697, GALNT14-rs9679162 and rs6025211 effectively stratify outcomes of chemotherapy in advanced hepatocellular carcinoma. Asia Pac. J. Clin. Oncol. 2018, 14, e54–e63. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.C.; Hsu, C.W.; Chen, Y.C.; Chang, M.L.; Liang, K.H.; Lai, M.W.; Lin, C.L.; Chien, R.N.; Lin, K.H.; Yeh, C.T. A GALNT14 rs9679162 genotype-guided therapeutic strategy for advanced hepatocellular carcinoma: Systemic or hepatic arterial infusion chemotherapy. Pharmacogenom. J. 2020, 20, 57–68. [Google Scholar] [CrossRef]
- Chen, W.T.; Lin, S.M.; Lee, W.C.; Wu, T.J.; Lin, C.C.; Shen, C.H.; Chang, M.L.; Lin, C.L.; Yeh, C.T. GALNT14 genotype-guided chemoembolization plus sorafenib therapy in hepatocellular carcinoma: A randomized trial. Hepatol. Int. 2022, 16, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.L.; Chien, R.N.; Chen, L.W.; Chu, Y.D.; Yeh, C.T. Rs9679162 genotype predicts prognosis of real-world advanced hepatocellular carcinoma treated by sorafenib. Cancer Biomark. 2023, 36, 251–266. [Google Scholar] [CrossRef]
- Tsou, Y.K.; Liang, K.H.; Lin, W.R.; Chang, H.K.; Tseng, C.K.; Yeh, C.T. GALNT14 genotype as a response predictor for concurrent chemoradiotherapy in advanced esophageal squamous cell carcinoma. Oncotarget 2017, 8, 29151–29160. [Google Scholar] [CrossRef]
- Chiang, C.C.; Yeh, C.T.; Hwang, T.L.; Chu, Y.D.; Lim, S.N.; Chen, C.W.; Kuo, C.J.; Le, P.H.; Chen, T.H.; Lin, W.R. The GALNT14 Genotype Predicts Postoperative Outcome of Pancreatic Ductal Adenocarcinoma. J. Clin. Med. 2019, 8, 2225. [Google Scholar] [CrossRef] [PubMed]
- Liang, K.H.; Yeh, T.S.; Wu, R.C.; Yeh, C.N.; Yeh, C.T. GALNT14 genotype is associated with perineural invasion, lymph node metastasis and overall survival in resected cholangiocarcinoma. Oncol. Lett. 2017, 13, 4215–4223. [Google Scholar] [CrossRef]
- Chen, T.H.; Lin, W.R.; Lee, C.; Chiu, C.T.; Hsu, J.T.; Yeh, T.S.; Lin, K.H.; Le, P.H.; Yeh, C.T. Prognostic Stratification of Advanced Gastric Signet Ring Cell Carcinoma by Clinicopathological Factors and GALNT14 Genotype. J. Cancer 2018, 9, 3540–3547. [Google Scholar] [CrossRef]
- Lin, N.C.; Shih, Y.H.; Chiu, K.C.; Li, P.J.; Yang, H.W.; Lan, W.C.; Hsia, S.M.; Wang, T.H.; Shieh, T.M. Association of rs9679162 Genetic Polymorphism and Aberrant Expression of Polypeptide N-Acetylgalactosaminyltransferase 14 (GALNT14) in Head and Neck Cancer. Cancers 2022, 14, 4217. [Google Scholar] [CrossRef]
- Chu, Y.D.; Fan, T.C.; Lai, M.W.; Yeh, C.T. GALNT14-mediated O-glycosylation on PHB2 serine-161 enhances cell growth, migration and drug resistance by activating IGF1R cascade in hepatoma cells. Cell Death Dis. 2022, 13, 956. [Google Scholar] [CrossRef]
- Lin, W.R.; Chiang, J.M.; Liang, K.H.; Lim, S.N.; Lai, M.W.; Tsou, Y.K.; Hsieh, T.Y.; Hsu, C.K.; Yeh, C.T. GALNT14 Genotype Predicts Postoperative Outcome of Stage III Colorectal Cancer with Oxaliplatin as Adjuvant Chemotherapy. Medicine 2016, 95, e3487. [Google Scholar] [CrossRef] [PubMed]
- De Mariano, M.; Gallesio, R.; Chierici, M.; Furlanello, C.; Conte, M.; Garaventa, A.; Croce, M.; Ferrini, S.; Tonini, G.P.; Longo, L. Identification of GALNT14 as a novel neuroblastoma predisposition gene. Oncotarget 2015, 6, 26335–26346. [Google Scholar] [CrossRef] [PubMed]
- Baraibar, I.; Ros, J.; Saoudi, N.; Salvà, F.; García, A.; Castells, M.R.; Tabernero, J.; Élez, E. Sex and gender perspectives in colorectal cancer. ESMO Open 2023, 8, 101204. [Google Scholar] [CrossRef] [PubMed]
- Abancens, M.; Bustos, V.; Harvey, H.; McBryan, J.; Harvey, B.J. Sexual Dimorphism in Colon Cancer. Front. Oncol. 2020, 10, 607909. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, L.; Chen, H.; Wang, Y.; Xu, Y.; Mao, H.; Li, J.; Mills, G.B.; Shu, Y.; Li, L.; et al. Comprehensive Characterization of Molecular Differences in Cancer between Male and Female Patients. Cancer Cell 2016, 29, 711–722. [Google Scholar] [CrossRef] [PubMed]
- Gusella, M.; Crepaldi, G.; Barile, C.; Bononi, A.; Menon, D.; Toso, S.; Scapoli, D.; Stievano, L.; Ferrazzi, E.; Grigoletto, F.; et al. Pharmacokinetic and demographic markers of 5-fluorouracil toxicity in 181 patients on adjuvant therapy for colorectal cancer. Ann. Oncol. 2006, 17, 1656–1660. [Google Scholar] [CrossRef] [PubMed]
- Sloan, J.A.; Goldberg, R.M.; Sargent, D.J.; Vargas-Chanes, D.; Nair, S.; Cha, S.S.; Novotny, P.J.; Poon, M.A.; O’Connell, M.J.; Loprinzi, C.L. Women experience greater toxicity with fluorouracil-based chemotherapy for colorectal cancer. J. Clin. Oncol. 2002, 20, 1491–1498. [Google Scholar] [CrossRef] [PubMed]
- Sloan, J.A.; Loprinzi, C.L.; Novotny, P.J.; Okuno, S.; Nair, S.; Barton, D.L. Sex differences in fluorouracil-induced stomatitis. J. Clin. Oncol. 2000, 18, 412–420. [Google Scholar] [CrossRef]
- Mueller, F.; Büchel, B.; Köberle, D.; Schürch, S.; Pfister, B.; Krähenbühl, S.; Froehlich, T.K.; Largiader, C.R.; Joerger, M. Gender-specific elimination of continuous-infusional 5-fluorouracil in patients with gastrointestinal malignancies: Results from a prospective population pharmacokinetic study. Cancer Chemother. Pharmacol. 2013, 71, 361–370. [Google Scholar] [CrossRef]
- Gokare, P.; Finnberg, N.K.; Abbosh, P.H.; Dai, J.; Murphy, M.E.; El-Deiry, W.S. P53 represses pyrimidine catabolic gene dihydropyrimidine dehydrogenase (DPYD) expression in response to thymidylate synthase (TS) targeting. Sci. Rep. 2017, 7, 9711. [Google Scholar] [CrossRef]
- Xu, Z.; Ku, X.; Tomioka, A.; Xie, W.; Liang, T.; Zou, X.; Cui, Y.; Sato, T.; Kaji, H.; Narimatsu, H.; et al. O-linked N-acetylgalactosamine modification is present on the tumor suppressor p53. Biochim. Biophys. Acta Gen. Subj. 2020, 1864, 129635. [Google Scholar] [CrossRef] [PubMed]
- Very, N.; Lefebvre, T.; El Yazidi-Belkoura, I. Drug resistance related to aberrant glycosylation in colorectal cancer. Oncotarget 2018, 9, 1380–1402. [Google Scholar] [CrossRef] [PubMed]
- Fenocchio, E.; Filippi, R.; Lombardi, P.; Quarà, V.; Milanesio, M.; Aimar, G.; Leone, F.; Aglietta, M. Is There a Standard Adjuvant Therapy for Resected Pancreatic Cancer? Cancers 2019, 11, 1547. [Google Scholar] [CrossRef] [PubMed]
- Grassadonia, A.; De Luca, A.; Carletti, E.; Vici, P.; Di Lisa, F.S.; Filomeno, L.; Cicero, G.; De Lellis, L.; Veschi, S.; Florio, R.; et al. Optimizing the Choice for Adjuvant Chemotherapy in Gastric Cancer. Cancers 2022, 14, 4670. [Google Scholar] [CrossRef]
- Del Mastro, L.; Poggio, F.; Blondeaux, E.; De Placido, S.; Giuliano, M.; Forestieri, V.; De Laurentiis, M.; Gravina, A.; Bisagni, G.; Rimanti, A.; et al. Fluorouracil and dose-dense adjuvant chemotherapy in patients with early-stage breast cancer (GIM2): End-of-study results from a randomised, phase 3 trial. Lancet Oncol. 2022, 23, 1571–1582. [Google Scholar] [CrossRef]
Variable | Good Prognosis (n = 17) | Poor Prognosis (n = 14) | p |
---|---|---|---|
Gender, male, n (%) | 6 (35.3%) | 7 (50.0%) | 0.646 |
Age, year, mean ± SD | 63.7 ± 10.5 | 66.9 ± 10.5 | 0.320 |
CEA, ng/mL, median (range) | 1.8 (0.5–6.5) | 34.6 (0.5–1332.0) | 0.002 |
Tumor diameter, mm, mean ± SD | 40.1 ± 12.8 | 50.3 ± 12.1 | 0.052 |
Tumor free margin, mm, mean ± SD | 62.9 ± 42.3 | 33.6 ± 21.6 | 0.072 |
Tumor invasion, pT4, n (%) | 3 (17.7%) | 6 (42.9%) | 0.254 |
Lymph node metastasis, yes, n (%) | 16 (81.7%) | 12 (64.8%) | 0.859 |
Tumor differentiation, poor, n (%) | 1 (5.9%) | 2 (14.3%) | 0.859 |
Tumor location, left-sided, n (%) | 8 (47.1%) | 11 (78.6%) | 0.821 |
Overall survival, month, median (range) | 67.0 (61.0–80.0) | 18.0 (4.0–22.0) | <0.001 |
Progression-free survival, month, median (range) | 67.0 (61.0–80.0) | 8.5 (1.0–14.0) | <0.001 |
Chr | Start | dbSNP_ID | Gene | Functional Consequence | Ref | Alt | Good Prognosis (n = 17) | Poor Prognosis (n = 14) | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ref | Het | Alt | Ref | Het | Alt | ||||||||
2 | 30890589 | rs62139523 | GALNT14, ENSG00000285984 | Non-coding transcript variant | G | A | 2 | 14 | 1 | 2 | 1 | 11 | 0.0000585 |
2 | 43643229 | rs13408620 | PLEKHH2 | Intron variant | G | A | 1 | 0 | 16 | 0 | 10 | 4 | 0.0001186 |
2 | 43638639 | rs6544681 | PLEKHH2 | Intron variant | T | G | 16 | 0 | 1 | 4 | 10 | 0 | 0.0001186 |
2 | 43637387 | rs6544679 | PLEKHH2 | Intron variant | A | G | 16 | 0 | 1 | 4 | 10 | 0 | 0.0001186 |
3 | 59825736 | rs689497 | FHIT | Intron variant | G | T | 0 | 15 | 2 | 2 | 2 | 10 | 0.0001893 |
3 | 1665346 | rs13078044 | - | Intergenic | T | C | 4 | 13 | 0 | 10 | 1 | 3 | 0.0003870 |
3 | 61797496 | rs657813 | PTPRG | Intron variant | G | A | 4 | 13 | 0 | 8 | 1 | 5 | 0.0002635 |
5 | 26261937 | rs28794939 | - | Intergenic | G | A | 0 | 0 | 17 | 1 | 9 | 4 | 0.0001281 |
5 | 4611800 | rs13171304 | - | Intergenic | A | G | 0 | 10 | 7 | 8 | 6 | 0 | 0.0003601 |
6 | 149149120 | rs62425913 | LOC124901426 | Intron variant | A | G | 17 | 0 | 0 | 4 | 8 | 2 | 0.0001281 |
7 | 129784611 | rs10259447 | - | Intergenic | T | C | 10 | 2 | 5 | 1 | 12 | 1 | 0.0001992 |
8 | 135197628 | rs984449 | - | Intergenic | G | A | 0 | 11 | 6 | 8 | 1 | 5 | 0.0002907 |
10 | 99930293 | rs10786578 | DMNBP, DNMBP-AS1 | Synonymous variant | C | T | 0 | 15 | 2 | 6 | 1 | 7 | 0.0000285 |
11 | 131650003 | rs10791160 | NTM | Intron variant | C | A | 17 | 0 | 0 | 5 | 8 | 1 | 0.0004530 |
12 | 61646586 | rs7133799 | - | Intergenic | A | C | 1 | 7 | 9 | 10 | 3 | 1 | 0.0004965 |
13 | 67569545 | rs7318264 | - | Intergenic | C | T | 12 | 2 | 3 | 1 | 11 | 2 | 0.0004109 |
16 | 11584433 | rs2868424 | LITAF | Intron variant | T | A | 0 | 16 | 1 | 6 | 3 | 5 | 0.0001637 |
16 | 54175924 | rs2542671 | - | Intergenic | T | C | 12 | 2 | 3 | 1 | 11 | 2 | 0.0004109 |
17 | 45990481 | rs2435213 | MAPT | Intron variant | G | T | 15 | 1 | 1 | 3 | 10 | 1 | 0.0004965 |
19 | 44823511 | rs1871045 | - | Intergenic | C | T | 7 | 10 | 0 | 1 | 4 | 9 | 0.0003474 |
Variable | All Patients (n = 195) | DNMBP-rs10786578 | GALNT14-rs62139523 | ||||
---|---|---|---|---|---|---|---|
“C/T” (n = 109) | “non-C/T” (n = 86) | p | “A/G” (n = 99) | “non-A/G” (n = 96) | p | ||
Gender, male, n (%) | 106 (54.4%) | 62 (56.9%) | 44 (51.2%) | 0.426 | 43 (43.4%) | 63 (65.6%) | 0.002 |
Age, year, mean ± SD | 57.2 ± 11.6 | 58.1 ± 10.8 | 56.0 ± 12.4 | 0.221 | 57.0 ± 11.0 | 57.3 ± 12.2 | 0.851 |
CEA, ng/mL, median (range) | 2.5 (0.5–1332.0) | 2.5 (0.5–107.4) | 2.6 (0.5–1332.0) | 0.391 | 2.2 (0.5–505.5) | 2.8 (0.5–1332.0) | 0.158 |
Tumor diameter, mm, mean ± SD | 46.6 ± 20.9 | 44.8 ± 20.5 | 48.8 ± 21.3 | 0.186 | 46.0 ± 21.7 | 47.2 ± 20.1 | 0.677 |
Tumor free margin, mm, mean ± SD | 60.9 ± 49.0 | 61.6 ± 47.8 | 60.0 ± 50.1 | 0.836 | 66.8 ± 50.7 | 54.8 ± 46.8 | 0.088 |
Tumor invasion, pT4, n (%) | 45 (23.1%) | 26 (23.9%) | 19 (22.1%) | 0.772 | 21 (21.2%) | 24 (25.0%) | 0.530 |
Lymph node metastasis, yes, n (%) | 184 (94.4%) | 102 (93.6%) | 82 (95.3%) | 0.595 | 96 (97.0%) | 88 (91.7%) | 0.109 |
Tumor differentiation, poor, n (%) | 27 (13.8%) | 13 (11.9%) | 14 (16.3%) | 0.382 | 7 (7.1%) | 20 (20.8%) | 0.005 |
Tumor location, left-sided, n (%) | 148 (75.9%) | 80 (73.4%) | 68 (79.1%) | 0.358 | 72 (72.7%) | 76 (79.2%) | 0.293 |
Variable | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p | HR | 95% CI | p | |
For OS | ||||||
DNMBP-rs10786578, “C/T” = 1 | 0.617 | 0.339–1.123 | 0.114 | |||
GALNT14-rs62139523, “A/G” = 1 | 0.326 | 0.167–0.638 | 0.001 | 0.397 | 0.200–0.787 | 0.008 |
Age, per year increase | 1.016 | 0.989–1.044 | 0.242 | |||
Gender, male = 1 | 1.333 | 0.723–2.456 | 0.357 | |||
Tumor diameter, per mm increase | 0.994 | 0.979–1.009 | 0.451 | |||
Tumor free margin, per mm increase | 0.993 | 0.985–1.001 | 0.082 | |||
Tumor invasion, pT4 = 1 | 2.252 | 1.213–4.183 | 0.010 | 2.180 | 1.128–4.213 | 0.022 |
Lymph node metastasis, yes = 1 | 0.326 | 0.137–0.776 | 0.011 | 0.238 | 0.097–0.587 | 0.002 |
Tumor differentiation, poor = 1 | 1.235 | 0.550–2.776 | 0.609 | |||
CEA, per ng/mL increase | 1.005 | 1.003–1.008 | <0.001 | 1.004 | 1.002–1.006 | <0.001 |
Tumor location, left-sided = 1 | 0.762 | 0.391–1.484 | 0.424 | |||
For PFS | ||||||
DNMBP-rs10786578, “C/T” = 1 | 0.716 | 0.424–1.209 | 0.211 | |||
GALNT14-rs62139523, “A/G” = 1 | 0.434 | 0.248–0.759 | 0.003 | 0.451 | 0.255–0.795 | 0.006 |
Age, per year increase | 1.007 | 0.984–1.030 | 0.580 | |||
Gender, male = 1 | 1.354 | 0.792–2.315 | 0.268 | |||
Tumor diameter, per mm increase | 0.985 | 0.971–0.999 | 0.040 | 0.975 | 0.959–0.992 | 0.003 |
Tumor free margin, per mm increase | 0.994 | 0.988–1.001 | 0.099 | |||
Tumor invasion, pT4 = 1 | 1.813 | 1.034–3.179 | 0.038 | 2.398 | 1.323–4.346 | 0.004 |
Lymph node metastasis, yes = 1 | 0.565 | 0.225–1.419 | 0.224 | |||
Tumor differentiation, poor = 1 | 1.305 | 0.639–2.664 | 0.465 | |||
CEA, per ng/mL increase | 1.003 | 1.002–1.004 | <0.001 | 1.003 | 1.002–1.005 | <0.001 |
Tumor location, left-sided = 1 | 0.728 | 0.407–1.300 | 0.283 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chien, H.; Chu, Y.-D.; Hsu, Y.-P.; Yeh, C.-T.; Lai, M.-W.; Chang, M.-L.; Lim, S.-N.; Chen, C.-W.; Lin, W.-R. An SNP Marker Predicts Colorectal Cancer Outcomes with 5-Fluorouracil-Based Adjuvant Chemotherapy Post-Resection. Int. J. Mol. Sci. 2024, 25, 6642. https://doi.org/10.3390/ijms25126642
Chien H, Chu Y-D, Hsu Y-P, Yeh C-T, Lai M-W, Chang M-L, Lim S-N, Chen C-W, Lin W-R. An SNP Marker Predicts Colorectal Cancer Outcomes with 5-Fluorouracil-Based Adjuvant Chemotherapy Post-Resection. International Journal of Molecular Sciences. 2024; 25(12):6642. https://doi.org/10.3390/ijms25126642
Chicago/Turabian StyleChien, Hao, Yu-De Chu, Yi-Ping Hsu, Chau-Ting Yeh, Ming-Wei Lai, Ming-Ling Chang, Siew-Na Lim, Chun-Wei Chen, and Wey-Ran Lin. 2024. "An SNP Marker Predicts Colorectal Cancer Outcomes with 5-Fluorouracil-Based Adjuvant Chemotherapy Post-Resection" International Journal of Molecular Sciences 25, no. 12: 6642. https://doi.org/10.3390/ijms25126642
APA StyleChien, H., Chu, Y. -D., Hsu, Y. -P., Yeh, C. -T., Lai, M. -W., Chang, M. -L., Lim, S. -N., Chen, C. -W., & Lin, W. -R. (2024). An SNP Marker Predicts Colorectal Cancer Outcomes with 5-Fluorouracil-Based Adjuvant Chemotherapy Post-Resection. International Journal of Molecular Sciences, 25(12), 6642. https://doi.org/10.3390/ijms25126642