Male Germ Cell Specification in Plants
Abstract
:1. Introduction
2. Stamen Morphogenesis
2.1. Pattern Formation: Spatial–Temporal Initiation of Stamen Primordia
2.2. Stamen Polarity: Establishment of Three AXES
3. Germ Cell Specification: Anther Growth and Cellular Differentiation
3.1. Growth Dynamics of Anthers
3.2. Concentric Layered Structure and GC Formation
4. Germ Cell Specification: Molecular Players
5. Discussion and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Hansen, C.L.; Pelegri, F. Primordial Germ Cell Specification in Vertebrate Embryos: Phylogenetic Distribution and Conserved Molecular Features of Preformation and Induction. Front. Cell Dev. Biol. 2021, 9, 2563. [Google Scholar] [CrossRef] [PubMed]
- Kanamori, M.; Oikawa, K.; Tanemura, K.; Hara, K. Mammalian Germ Cell Migration during Development, Growth, and Homeostasis. Reprod. Med. Biol. 2019, 18, 247. [Google Scholar] [CrossRef]
- Dresselhaus, T.; Jürgens, G. Comparative Embryogenesis in Angiosperms: Activation and Patterning of Embryonic Cell Lineages. Annu. Rev. Plant Biol. 2021, 72, 641–676. [Google Scholar] [CrossRef] [PubMed]
- Burian, A.; Barbier de Reuille, P.; Kuhlemeier, C. Patterns of Stem Cell Divisions Contribute to Plant Longevity. Curr. Biol. 2016, 26, 1385–1394. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Zhang, C.; Tian, C.; Wang, J.; Wang, Q.; Xu, T.; Xu, Y.; Ohno, C.; Sablowski, R.; Heisler, M.G.; et al. Two-Step Regulation of a Meristematic Cell Population Acting in Shoot Branching in Arabidopsis. PLoS Genet. 2016, 12, e1006168. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Jiao, Y.; Wang, Y. Stem Cell Basis of Shoot Branching. Plant Cell Physiol. 2022, 64, pcac165. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.-N. Plant Morphogenesis 123: A Renaissance in Modern Botany? Sci. China Life Sci. 2019, 62, 453–466. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, A.; Vayssières, A.; Richter, R.; Sang, Q.; Roggen, A.; van Driel, A.D.; Smith, R.S.; Coupland, G. Regulation of Shoot Meristem Shape by Photoperiodic Signaling and Phytohormones during Floral Induction of Arabidopsis. eLife 2020, 9, e60661. [Google Scholar] [CrossRef]
- Quiroz, S.; Yustis, J.C.; Chávez-Hernández, E.C.; Martínez, T.; de la Sanchez, M.P.; Garay-Arroyo, A.; Álvarez-Buylla, E.R.; García-Ponce, B. Beyond the Genetic Pathways, Flowering Regulation Complexity in Arabidopsis thaliana. Int. J. Mol. Sci. 2021, 22, 5716. [Google Scholar] [CrossRef]
- Smyth, D.R.; Bowman, J.L.; Meyerowitz, E.M. Early Flower Development in Arabidopsis. Plant Cell 1990, 2, 755–767. [Google Scholar]
- Landrein, B.; Refahi, Y.; Besnard, F.; Hervieux, N.; Mirabet, V.; Boudaoud, A.; Vernoux, T.; Hamant, O. Meristem Size Contributes to the Robustness of Phyllotaxis in Arabidopsis. J. Exp. Bot. 2015, 66, 1317–1324. [Google Scholar] [CrossRef]
- Zhao, F.; Chen, W.; Traas, J. Mechanical Signaling in Plant Morphogenesis. Curr. Opin. Genet Dev. 2018, 51, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Chen, W.; Sechet, J.; Martin, M.; Bovio, S.; Lionnet, C.; Long, Y.; Battu, V.; Mouille, G.; Monéger, F.; et al. Xyloglucans and Microtubules Synergistically Maintain Meristem Geometry and Phyllotaxis. Plant Physiol. 2019, 181, 1191–1206. [Google Scholar] [CrossRef] [PubMed]
- Vernoux, T.; Besnard, F.; Godin, C. What Shoots Can Teach about Theories of Plant Form. Nat. Plants 2021, 7, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Trinh, D.-C.; Alonso-Serra, J.; Asaoka, M.; Colin, L.; Cortes, M.; Malivert, A.; Takatani, S.; Zhao, F.; Traas, J.; Trehin, C.; et al. How Mechanical Forces Shape Plant Organs. Curr. Biol. 2021, 31, R143–R159. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Long, Y. Mechanosensing, from Forces to Structures. Front. Plant Sci. 2022, 13, 1060018. [Google Scholar] [CrossRef] [PubMed]
- Benková, E.; Michniewicz, M.; Sauer, M.; Teichmann, T.; Seifertová, D.; Jürgens, G.; Friml, J. Local, Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ Formation. Cell 2003, 115, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Dai, X.; Zhao, Y. Auxin Biosynthesis by the YUCCA Flavin Monooxygenases Controls the Formation of Floral Organs and Vascular Tissues in Arabidopsis. Genes Dev. 2006, 20, 1790–1799. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Chen, W.; Mirabet, V.; Hong, L.; Bovio, S.; Strauss, S.; Schwarz, E.M.; Tsugawa, S.; Wang, Z.; Smith, R.S.; et al. Robust Organ Size Requires Robust Timing of Initiation Orchestrated by Focused Auxin and Cytokinin Signalling. Nat. Plants 2020, 6, 686–698. [Google Scholar] [CrossRef]
- Besnard, F.; Refahi, Y.; Morin, V.; Marteaux, B.; Brunoud, G.; Chambrier, P.; Rozier, F.; Mirabet, V.; Legrand, J.; Lainé, S.; et al. Cytokinin Signalling Inhibitory Fields Provide Robustness to Phyllotaxis. Nature 2013, 505, 417–421. [Google Scholar] [CrossRef]
- Running, M.P.; Fletcher, J.C.; Meyerowitz, E.M. The WIGGUM Gene Is Required for Proper Regulation of Floral Meristem Size in Arabidopsis. Development 1998, 125, 2545–2553. [Google Scholar] [CrossRef] [PubMed]
- Running, M.P.; Meyerowitz, E.M. Mutations in the PERIANTHIA Gene of Arabidopsis Specifically Alter Floral Organ Number and Initiation Pattern. Development 1996, 122, 1261–1269. [Google Scholar] [CrossRef] [PubMed]
- Prunet, N.; Yang, W.; Das, P.; Meyerowitz, E.M.; Jack, T.P. SUPERMAN Prevents Class B Gene Expression and Promotes Stem Cell Termination in the Fourth Whorl of Arabidopsis thaliana Flowers. Proc. Natl. Acad. Sci. USA 2017, 114, 201705977. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Prunet, N.; Gan, E.-S.; Wang, Y.; Stewart, D.; Wellmer, F.; Huang, J.; Yamaguchi, N.; Tatsumi, Y.; Kojima, M.; et al. SUPERMAN Regulates Floral Whorl Boundaries through Control of Auxin Biosynthesis. EMBO J. 2018, 37, e97499. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, D.; Ye, S.; Chen, W.; Li, G.; Xu, Z.; Bai, S.; Zhao, F. Auxin Guides Germ-Cell Specification in Arabidopsis Anthers. Proc. Natl. Acad. Sci. USA 2021, 118, e2101492118. [Google Scholar] [CrossRef] [PubMed]
- Von Goethe, J.W. Versuch Die Metamorphose Der Pflanzen Zu Erklären; Deutsches Textarchiv (Kernkorpus): Berlin, Germany, 1790. [Google Scholar]
- Wang, Q.; Marconi, M.; Guan, C.; Wabnik, K.; Jiao, Y. Polar Auxin Transport Modulates Early Leaf Flattening. Proc. Natl. Acad. Sci. USA 2022, 119, e2215569119. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Traas, J. Stable Establishment of Organ Polarity Occurs Several Plastochrons before Primordium Outgrowth in Arabidopsis. Development 2021, 148, dev198820. [Google Scholar] [CrossRef] [PubMed]
- Caggiano, M.P.; Yu, X.; Bhatia, N.; Larsson, A.; Ram, H.; Ohno, C.K.; Sappl, P.; Meyerowitz, E.M.; Jönsson, H.; Heisler, M.G. Cell Type Boundaries Organize Plant Development. eLife 2017, 6, e27421. [Google Scholar] [CrossRef] [PubMed]
- Scacchi, E.; Paszkiewicz, G.; Thi Nguyen, K.; Meda, S.; Burian, A.; De Back, W.; Timmermans, M.C.P. A Diffusible Small-RNA-Based Turing System Dynamically Coordinates Organ Polarity. Nat. Plants 2024, 10, 412–422. [Google Scholar] [CrossRef]
- Burian, A.; Paszkiewicz, G.; Nguyen, K.T.; Meda, S.; Raczyńska-Szajgin, M.; Timmermans, M.C.P. Specification of Leaf Dorsiventrality via a Prepatterned Binary Readout of a Uniform Auxin Input. Nat. Plants 2022, 8, 269–280. [Google Scholar] [CrossRef]
- Qi, J.; Wang, Y.; Yu, T.; Cunha, A.; Wu, B.; Vernoux, T.; Meyerowitz, E.; Jiao, Y. Auxin Depletion from Leaf Primordia Contributes to Organ Patterning. Proc. Natl. Acad. Sci. USA 2014, 111, 18769–18774. [Google Scholar] [CrossRef] [PubMed]
- Heisler, M.G.; Byrne, M.E. Progress in Understanding the Role of Auxin in Lateral Organ Development in Plants. Curr. Opin. Plant Biol. 2020, 53, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Du, F.; Oliveri, H.; Zhou, L.; Ali, O.; Chen, W.; Feng, S.; Wang, Q.; Lü, S.; Long, M.; et al. Microtubule-Mediated Wall Anisotropy Contributes to Leaf Blade Flattening. Curr. Biol. 2020, 30, 3972–3985.e6. [Google Scholar] [CrossRef] [PubMed]
- Silveira, S.R.; Le Gloanec, C.; Gómez-Felipe, A.; Routier-Kierzkowska, A.-L.; Kierzkowski, D. Live-Imaging Provides an Atlas of Cellular Growth Dynamics in the Stamen. Plant Physiol. 2022, 188, 769–781. [Google Scholar] [CrossRef] [PubMed]
- Sanders, P.M.; Bui, A.Q.; Weterings, K.; McIntire, K.N.; Hsu, Y.-C.; Lee, P.Y.; Truong, M.T.; Beals, T.P.; Goldberg, R.B. Anther Developmental Defects in Arabidopsis thaliana Male-Sterile Mutants. Sex Plant Reprod. 1999, 11, 297–322. [Google Scholar] [CrossRef]
- Ma, H. Molecular Genetic Analyses of Microsporogenesis and Microgametogenesis in Flowering Plants. Annu. Rev. Plant Biol. 2005, 56, 393–434. [Google Scholar] [CrossRef] [PubMed]
- Toriba, T.; Suzaki, T.; Yamaguchi, T.; Ohmori, Y.; Tsukaya, H.; Hirano, H.-Y. Distinct Regulation of Adaxial-Abaxial Polarity in Anther Patterning in Rice. Plant Cell 2010, 22, 1452–1462. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Li, X.; Yu, Q.; Zhao, H.; Song, J.; Liao, J. Irregular Adaxial–Abaxial Polarity Rearrangement Contributes to the Monosymmetric-to-Asymmetric Transformation of Canna Indica Stamen. AoB Plants 2020, 12, plaa051. [Google Scholar] [CrossRef] [PubMed]
- Dinneny, J.R.; Weigel, D.; Yanofsky, M.F. NUBBIN and JAGGED Define Stamen and Carpel Shape in Arabidopsis. Development 2006, 133, 1645–1655. [Google Scholar] [CrossRef]
- Sessions, A.; Nemhauser, J.L.; McColl, A.; Roe, J.L.; Feldmann, K.A.; Zambryski, P.C. ETTIN Patterns the Arabidopsis Floral Meristem and Reproductive Organs. Development 1997, 124, 4481–4491. [Google Scholar] [CrossRef]
- Siegfried, K.R.; Eshed, Y.; Baum, S.F.; Otsuga, D.; Drews, G.N.; Bowman, J.L. Members of the YABBY Gene Family Specify Abaxial Cell Fate in Arabidopsis. Development 1999, 126, 4117–4128. [Google Scholar] [CrossRef]
- Vandenbussche, M.; Horstman, A.; Zethof, J.; Koes, R.; Rijpkema, A.S.; Gerats, T. Differential Recruitment of WOX Transcription Factors for Lateral Development and Organ Fusion in Petunia and Arabidopsis. Plant Cell 2009, 21, 2269–2283. [Google Scholar] [CrossRef] [PubMed]
- Nakata, M.; Matsumoto, N.; Tsugeki, R.; Rikirsch, E.; Laux, T.; Okada, K. Roles of the Middle Domain–Specific WUSCHEL-RELATED HOMEOBOX Genes in Early Development of Leaves in Arabidopsis. Plant Cell 2012, 24, 519–535. [Google Scholar] [CrossRef]
- Vandenbussche, M. The Role of WOX1 Genes in Blade Development and Beyond. J. Exp. Bot. 2021, 72, 1514–1516. [Google Scholar] [CrossRef] [PubMed]
- Satterlee, J.W.; Evans, L.J.; Conlon, B.R.; Conklin, P.; Martinez-Gomez, J.; Yen, J.R.; Wu, H.; Sylvester, A.W.; Specht, C.D.; Cheng, J.; et al. A Wox3-Patterning Module Organizes Planar Growth in Grass Leaves and Ligules. Nat. Plants 2023, 9, 720–732. [Google Scholar] [CrossRef]
- Matsumoto, N.; Okada, K. A Homeobox Gene, PRESSED FLOWER, Regulates Lateral Axis-Dependent Development of Arabidopsis Flowers. Genes Dev. 2001, 15, 3355–3364. [Google Scholar] [CrossRef]
- Åstrand, J.; Knight, C.; Robson, J.; Talle, B.; Wilson, Z.A. Evolution and Diversity of the Angiosperm Anther: Trends in Function and Development. Plant Reprod. 2021, 34, 307–319. [Google Scholar] [CrossRef]
- Hepworth, S.R.; Zhang, Y.; McKim, S.; Li, X.; Haughn, G.W. BLADE-ON-PETIOLE-Dependent Signaling Controls Leaf and Floral Patterning in Arabidopsis. Plant Cell 2005, 17, 1434–1448. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Atkinson, A.; Otsuga, D.; Christensen, T.; Reynolds, L.; Drews, G.N. The Arabidopsis FILAMENTOUS FLOWER Gene Is Required for Flower Formation. Development 1999, 126, 2715–2726. [Google Scholar] [CrossRef]
- Sawa, S.; Ito, T.; Shimura, Y.; Okada, K. FILAMENTOUS FLOWER Controls the Formation and Development of Arabidopsis Inflorescences and Floral Meristems. Plant Cell 1999, 11, 69–86. [Google Scholar] [CrossRef]
- Eshed, Y.; Baum, S.F.; Perea, J.V.; Bowman, J.L. Establishment of Polarity in Lateral Organs of Plants. Curr. Biol. 2001, 11, 1251–1260. [Google Scholar] [CrossRef] [PubMed]
- Eshed, Y.; Izhaki, A.; Baum, S.F.; Floyd, S.K.; Bowman, J.L. Asymmetric Leaf Development and Blade Expansion in Arabidopsis Are Mediated by KANADI and YABBY Activities. Development 2004, 131, 2997–3006. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, R.B.; Beals, T.P.; Sanders, P.M. Anther Development: Basic Principles and Practical Applications. Plant Cell 1993, 5, 1217–1229. [Google Scholar] [CrossRef]
- Walbot, V.; Egger, R.L. Pre-Meiotic Anther Development: Cell Fate Specification and Differentiation. Annu. Rev. Plant Biol. 2016, 67, 365–395. [Google Scholar] [CrossRef] [PubMed]
- Gould, K.S.; Lord, E.M. Growth of Anthers in Lilium Longiflorum: A Kinematic Analysis. Planta 1988, 173, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Kelliher, T.; Walbot, V. Emergence and Patterning of the Five Cell Types of the Zea Mays Anther Locule. Dev. Biol. 2011, 350, 32–49. [Google Scholar] [CrossRef] [PubMed]
- Jenik, P.D.; Irish, V.F. Regulation of Cell Proliferation Patterns by Homeotic Genes during Arabidopsis Floral Development. Development 2000, 127, 1267–1276. [Google Scholar] [CrossRef] [PubMed]
- Lanfear, R. Do Plants Have a Segregated Germline? PLoS Biol. 2018, 16, e2005439. [Google Scholar] [CrossRef] [PubMed]
- Burian, A. Does Shoot Apical Meristem Function as the Germline in Safeguarding Against Excess of Mutations? Front. Plant Sci. 2021, 12, 707740. [Google Scholar] [CrossRef]
- Marchant, D.B.; Walbot, V. Anther Development—The Long Road to Making Pollen. Plant Cell 2022, 34, 4677–4695. [Google Scholar] [CrossRef]
- Xue, J.-S.; Yao, C.; Xu, Q.-L.; Sui, C.-X.; Jia, X.-L.; Hu, W.-J.; Lv, Y.-L.; Feng, Y.-F.; Peng, Y.-J.; Shen, S.-Y.; et al. Development of the Middle Layer in the Anther of Arabidopsis. Front. Plant Sci. 2021, 12, 634114. [Google Scholar] [CrossRef] [PubMed]
- Van der Linde, K.; Walbot, V. Pre-Meiotic Anther Development. In Current Topics in Developmental Biology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 131, pp. 239–256. ISBN 978-0-12-809804-2. [Google Scholar]
- Li, Y.; Ma, H.; Wu, Y.; Ma, Y.; Yang, J.; Li, Y.; Yue, D.; Zhang, R.; Kong, J.; Lindsey, K.; et al. Single-Cell Transcriptome Atlas and Regulatory Dynamics in Developing Cotton Anthers. Adv. Sci. 2024, 11, e2304017. [Google Scholar] [CrossRef]
- Nelms, B.; Walbot, V. Defining the Developmental Program Leading to Meiosis in Maize. Science 2019, 364, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Dickinson, H.G. Packaging the Male Germline in Plants. Trends Genet. 2007, 23, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Böwer, F.; Schnittger, A. How to Switch from Mitosis to Meiosis: Regulation of Germline Entry in Plants. Annu. Rev. Genet. 2021, 55, 427–452. [Google Scholar] [CrossRef] [PubMed]
- Cui, D.-L.; Xu, C.-X.; Wang, P.; Gao, T.-Y.; Wang, B.; Yu, T.-Y. Male Gametogenesis in Flowering Plants. Front. Sustain. Food Syst. 2024, 7, 1333544. [Google Scholar] [CrossRef]
- Schiefthaler, U.; Balasubramanian, S.; Sieber, P.; Chevalier, D.; Wisman, E.; Schneitz, K. Molecular Analysis of NOZZLE, a Gene Involved in Pattern Formation and Early Sporogenesis during Sex Organ Development in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 1999, 96, 11664–11669. [Google Scholar] [CrossRef]
- Yang, W.C.; Ye, D.; Xu, J.; Sundaresan, V. The SPOROCYTELESS Gene of Arabidopsis Is Required for Initiation of Sporogenesis and Encodes a Novel Nuclear Protein. Genes Dev. 1999, 13, 2108–2117. [Google Scholar] [CrossRef]
- Hao, S.; Ariizumi, T.; Ezura, H. SEXUAL STERILITY Is Essential for Both Male and Female Gametogenesis in Tomato. Plant Cell Physiol. 2017, 58, 22–34. [Google Scholar] [CrossRef]
- Rojas-Gracia, P.; Roque, E.; Medina, M.; Rochina, M.; Hamza, R.; Angarita-Díaz, M.P.; Moreno, V.; Pérez-Martín, F.; Lozano, R.; Cañas, L.; et al. The Parthenocarpic Hydra Mutant Reveals a New Function for a SPOROCYTELESS-like Gene in the Control of Fruit Set in Tomato. New Phytol. 2017, 214, 1198–1212. [Google Scholar] [CrossRef]
- Liu, X.; Ning, K.; Che, G.; Yan, S.; Han, L.; Gu, R.; Li, Z.; Weng, Y.; Zhang, X. CsSPL Functions as an Adaptor between HD-ZIP III and CsWUS Transcription Factors Regulating Anther and Ovule Development in Cucumis Sativus (Cucumber). Plant J. 2018, 94, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Tang, D.; Zhao, T.; Zhang, F.; Liu, C.; Xue, Z.; Shi, W.; Du, G.; Shen, Y.; Li, Y.; et al. OsSPL Regulates Meiotic Fate Acquisition in Rice. New Phytol. 2018, 218, 789–803. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Hu, C.; Zhu, Y.; Cheng, K.; Li, X.; Wei, Z.; Xue, L.; Lin, F.; Shi, H.; Yi, J.; et al. CIK Receptor Kinases Determine Cell Fate Specification during Early Anther Development in Arabidopsis. Plant Cell 2018, 30, 2383–2401. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Lu, X.; Gou, X. Receptor-like Protein Kinases in Plant Reproduction: Current Understanding and Future Perspectives. Plant Commun. 2021, 3, 100273. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Zhu, Y.; Cui, Y.; Cheng, K.; Liang, W.; Wei, Z.; Zhu, M.; Yin, H.; Zeng, L.; Xiao, Y.; et al. A Group of Receptor Kinases Are Essential for CLAVATA Signalling to Maintain Stem Cell Homeostasis. Nat. Plants 2018, 4, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Soltabayeva, A.; Dauletova, N.; Serik, S.; Sandybek, M.; Omondi, J.O.; Kurmanbayeva, A.; Srivastava, S. Receptor-like Kinases (LRR-RLKs) in Response of Plants to Biotic and Abiotic Stresses. Plants 2022, 11, 2660. [Google Scholar] [CrossRef]
- Liu, J.; Li, W.; Wu, G.; Ali, K. An Update on Evolutionary, Structural, and Functional Studies of Receptor-like Kinases in Plants. Front. Plant Sci. 2024, 15, 1305599. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Jun, Y.S.; Cha, O.-K.; Sheen, J. Mitogen-Activated Protein Kinases MPK3 and MPK6 Are Required for Stem Cell Maintenance in the Arabidopsis Shoot Apical Meristem. Plant Cell Rep. 2019, 38, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Zheng, Y.-F.; Zeng, T.; Sun, R.; Yang, J.-Y.; Li, Y.; Ren, D.-T.; Ma, H.; Xu, Z.-H.; Bai, S.-N. Phosphorylation of SPOROCYTELESS/NOZZLE by the MPK3/6 Kinase Is Required for Anther Development. Plant Physiol. 2017, 173, 2265–2277. [Google Scholar] [CrossRef]
- Mohyeldin, A.; Garzón-Muvdi, T.; Quiñones-Hinojosa, A. Oxygen in Stem Cell Biology: A Critical Component of the Stem Cell Niche. Cell Stem. Cell 2010, 7, 150–161. [Google Scholar] [CrossRef]
- Weits, D.A.; Kunkowska, A.B.; Kamps, N.C.W.; Portz, K.M.S.; Packbier, N.K.; Nemec Venza, Z.; Gaillochet, C.; Lohmann, J.U.; Pedersen, O.; Van Dongen, J.T.; et al. An Apical Hypoxic Niche Sets the Pace of Shoot Meristem Activity. Nature 2019, 569, 714–717. [Google Scholar] [CrossRef] [PubMed]
- Kelliher, T.; Walbot, V. Hypoxia Triggers Meiotic Fate Acquisition in Maize. Science 2012, 337, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Xing, S.; Zachgo, S. ROXY1 and ROXY2, Two Arabidopsis Glutaredoxin Genes, Are Required for Anther Development. Plant J. 2008, 53, 790–801. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Tang, D.; Zhu, K.; Wang, K.; Li, M.; Cheng, Z. Somatic and Reproductive Cell Development in Rice Anther Is Regulated by a Putative Glutaredoxin. Plant Cell 2012, 24, 577–588. [Google Scholar] [CrossRef] [PubMed]
- De Reuille, P.B.; Bohn-Courseau, I.; Ljung, K.; Morin, H.; Carraro, N.; Godin, C.; Traas, J. Computer Simulations Reveal Properties of the Cell-Cell Signaling Network at the Shoot Apex in Arabidopsis. Proc. Natl. Acad. Sci. USA 2006, 103, 1627–1632. [Google Scholar] [CrossRef] [PubMed]
- Vernoux, T.; Brunoud, G.; Farcot, E.; Morin, V.; Van den Daele, H.; Legrand, J.; Oliva, M.; Das, P.; Larrieu, A.; Wells, D.; et al. The Auxin Signalling Network Translates Dynamic Input into Robust Patterning at the Shoot Apex. Mol. Syst. Biol. 2014, 7, 508. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Miotk, A.; Šutiković, Z.; Ermakova, O.; Wenzl, C.; Medzihradszky, A.; Gaillochet, C.; Forner, J.; Utan, G.; Brackmann, K.; et al. WUSCHEL Acts as an Auxin Response Rheostat to Maintain Apical Stem Cells in Arabidopsis. Nat. Commun. 2019, 10, 5093. [Google Scholar] [CrossRef]
- Yadav, S.; Kumar, H.; Mahajan, M.; Sahu, S.K.; Singh, S.K.; Yadav, R.K. Local Auxin Biosynthesis Promotes Shoot Patterning and Stem Cell Differentiation in Arabidopsis Shoot Apex. Development 2023, 150, dev202014. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Zhu, W.; Li, L.; Zhang, S.; Yin, Y.; Ma, H.; Wang, X. Brassinosteroids Control Male Fertility by Regulating the Expression of Key Genes Involved in Arabidopsis Anther and Pollen Development. Proc. Natl. Acad. Sci. USA 2010, 107, 6100–6105. [Google Scholar] [CrossRef]
- Chen, W.; Lv, M.; Wang, Y.; Wang, P.-A.; Cui, Y.; Li, M.; Wang, R.; Gou, X.; Li, J. BES1 Is Activated by EMS1-TPD1-SERK1/2-Mediated Signaling to Control Tapetum Development in Arabidopsis thaliana. Nat. Commun. 2019, 10, 4164. [Google Scholar] [CrossRef]
- Shi, L.; Li, C.; Lv, G.; Li, X.; Feng, W.; Bi, Y.; Wang, W.; Wang, Y.; Zhu, L.; Tang, W.; et al. The Adaptor Protein ECAP, the Co-Repressor LEUNIG, and the Transcription Factor BEH3 Interact and Regulate Microsporocyte Generation in Arabidopsis. Plant Cell 2024, koae086. [Google Scholar] [CrossRef]
- Gendron, J.M.; Liu, J.-S.; Fan, M.; Bai, M.-Y.; Wenkel, S.; Springer, P.S.; Barton, M.K.; Wang, Z.-Y. Brassinosteroids Regulate Organ Boundary Formation in the Shoot Apical Meristem of Arabidopsis. Proc. Natl. Acad. Sci. USA 2012, 109, 21152–21157. [Google Scholar] [CrossRef]
- Ikeda, M.; Mitsuda, N.; Ohme-Takagi, M. Arabidopsis WUSCHEL Is a Bifunctional Transcription Factor That Acts as a Repressor in Stem Cell Regulation and as an Activator in Floral Patterning. Plant Cell 2009, 21, 3493–3505. [Google Scholar] [CrossRef] [PubMed]
- Lenhard, M.; Bohnert, A.; Jürgens, G.; Laux, T. Termination of Stem Cell Maintenance in Arabidopsis Floral Meristems by Interactions between WUSCHEL and AGAMOUS. Cell 2001, 105, 805–814. [Google Scholar] [CrossRef]
- Lohmann, J.U.; Hong, R.L.; Hobe, M.; Busch, M.A.; Parcy, F.; Simon, R.; Weigel, D. A Molecular Link between Stem Cell Regulation and Floral Patterning in Arabidopsis. Cell 2001, 105, 793–803. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Xu, Y.; Ng, K.-H.; Ito, T. A Timing Mechanism for Stem Cell Maintenance and Differentiation in the Arabidopsis Floral Meristem. Genes Dev. 2009, 23, 1791–1804. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Looi, L.-S.; Guo, S.; He, Z.; Gan, E.-S.; Huang, J.; Xu, Y.; Wee, W.-Y.; Ito, T. Timing Mechanism Dependent on Cell Division Is Invoked by Polycomb Eviction in Plant Stem Cells. Science 2014, 343, 1248559. [Google Scholar] [CrossRef]
- Ito, T.; Wellmer, F.; Yu, H.; Das, P.; Ito, N.; Alves-Ferreira, M.; Riechmann, J.L.; Meyerowitz, E.M. The Homeotic Protein AGAMOUS Controls Microsporogenesis by Regulation of SPOROCYTELESS. Nature 2004, 430, 356–360. [Google Scholar] [CrossRef]
- Ito, T.; Ng, K.-H.; Lim, T.-S.; Yu, H.; Meyerowitz, E.M. The Homeotic Protein AGAMOUS Controls Late Stamen Development by Regulating a Jasmonate Biosynthetic Gene in Arabidopsis. Plant Cell 2007, 19, 3516–3529. [Google Scholar] [CrossRef]
- Sieber, P.; Petrascheck, M.; Barberis, A.; Schneitz, K. Organ Polarity in Arabidopsis. NOZZLE Physically Interacts with Members of the YABBY Family. Plant Physiol. 2004, 135, 2172–2185. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, J.; Zhang, S.; Zhan, Y.; Shen, J.; Chang, F. ARF3-Mediated Regulation of SPL in Early Anther Morphogenesis: Maintaining Precise Spatial Distribution and Expression Level. Int. J. Mol. Sci. 2023, 24, 11740. [Google Scholar] [CrossRef] [PubMed]
- Juliano, C.; Wessel, G. Versatile Germline Genes. Science 2010, 329, 640–641. [Google Scholar] [CrossRef] [PubMed]
- Varley, Á.; Horkan, H.R.; McMahon, E.T.; Krasovec, G.; Frank, U. Pluripotent, Germ Cell Competent Adult Stem Cells Underlie Cnidarian Regenerative Ability and Clonal Growth. Curr. Biol. 2023, 33, 1883–1892.e3. [Google Scholar] [CrossRef] [PubMed]
- Greb, T.; Lohmann, J.U. Plant Stem Cells. Curr. Biol. 2016, 26, R816–R821. [Google Scholar] [CrossRef]
- Bradamante, G.; Nguyen, V.H.; Incarbone, M.; Meir, Z.; Bente, H.; Donà, M.; Lettner, N.; Scheid, O.M.; Gutzat, R. Two ARGONAUTE proteins loaded with transposon-derived small RNAs are associated with the reproductive cell lineage in Arabidopsis. Plant Cell 2023, 36, 863–880. [Google Scholar] [CrossRef] [PubMed]
- Meyerowitz, E.M. Plants Compared to Animals: The Broadest Comparative Study of Development. Science 2002, 295, 1482–1485. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.M.; Platzer, A.; Kazda, A.; Akimcheva, S.; Valuchova, S.; Nizhynska, V.; Nordborg, M.; Riha, K. Germline Replications and Somatic Mutation Accumulation Are Independent of Vegetative Life Span in Arabidopsis. Proc. Natl. Acad. Sci. USA 2016, 113, 12226–12231. [Google Scholar] [CrossRef] [PubMed]
- Cammarata, J.; Morales Farfan, C.; Scanlon, M.J.; Roeder, A.H.K. Cytokinin–CLAVATA Cross-Talk Is an Ancient Mechanism Regulating Shoot Meristem Homeostasis in Land Plants. Proc. Natl. Acad. Sci. USA 2022, 119, e2116860119. [Google Scholar] [CrossRef] [PubMed]
- Nemec-Venza, Z.; Madden, C.; Stewart, A.; Liu, W.; Novák, O.; Pěnčík, A.; Cuming, A.C.; Kamisugi, Y.; Harrison, C.J. CLAVATA Modulates Auxin Homeostasis and Transport to Regulate Stem Cell Identity and Plant Shape in a Moss. New Phytol. 2022, 234, 149–163. [Google Scholar] [CrossRef]
- John, A.; Smith, E.S.; Jones, D.S.; Soyars, C.L.; Nimchuk, Z.L. A Network of CLAVATA Receptors Buffers Auxin-Dependent Meristem Maintenance. Nat. Plants 2023, 9, 1306–1317. [Google Scholar] [CrossRef]
- Hirakawa, Y.; Fujimoto, T.; Ishida, S.; Uchida, N.; Sawa, S.; Kiyosue, T.; Ishizaki, K.; Nishihama, R.; Kohchi, T.; Bowman, J.L. Induction of Multichotomous Branching by CLAVATA Peptide in Marchantia Polymorpha. Curr. Biol. 2020, 30, 3833. [Google Scholar] [CrossRef]
- Kohchi, T.; Yamato, K.T.; Ishizaki, K.; Yamaoka, S.; Nishihama, R. Development and Molecular Genetics of Marchantia Polymorpha. Annu. Rev. Plant Biol. 2021, 72, 677–702. [Google Scholar] [CrossRef]
- Benfey, P.N. Auxin Action: Slogging out of the Swamp. Curr. Biol. 2002, 12, R389–R390. [Google Scholar] [CrossRef] [PubMed]
- Niederreither, K.; Dollé, P. Retinoic Acid in Development: Towards an Integrated View. Nat. Rev. Genet. 2008, 9, 541–553. [Google Scholar] [CrossRef]
- Koubova, J.; Menke, D.B.; Zhou, Q.; Capel, B.; Griswold, M.D.; Page, D.C. Retinoic Acid Regulates Sex-Specific Timing of Meiotic Initiation in Mice. Proc. Natl. Acad. Sci. USA 2006, 103, 2474–2479. [Google Scholar] [CrossRef] [PubMed]
- Adolfi, M.C.; Herpin, A.; Regensburger, M.; Sacquegno, J.; Waxman, J.S.; Schartl, M. Retinoic Acid and Meiosis Induction in Adult versus Embryonic Gonads of Medaka. Sci. Rep. 2016, 6, 34281. [Google Scholar] [CrossRef]
- Teletin, M.; Vernet, N.; Ghyselinck, N.B.; Mark, M. Chapter Seven—Roles of Retinoic Acid in Germ Cell Differentiation. In Current Topics in Developmental Biology; Forrest, D., Tsai, S., Eds.; Nuclear Receptors in Development and Disease; Academic Press: Cambridge, MA, USA, 2017; Volume 125, pp. 191–225. [Google Scholar]
- Walker, C.H.; Bennett, T. A Distributive “50% Rule” Determines Floral Initiation Rates in the Brassicaceae. Nat. Plants 2019, 5, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Coen, E.; Prusinkiewicz, P. Developmental Timing in Plants. Nat. Commun. 2024, 15, 2674. [Google Scholar] [CrossRef]
- Li, F.; Yang, J.-J.; Sun, Z.-Y.; Wang, L.; Qi, L.-Y.; A, S.; Liu, Y.-Q.; Zhang, H.-M.; Dang, L.-F.; Wang, S.-J.; et al. Plant-on-Chip: Core Morphogenesis Processes in the Tiny Plant Wolffia Australiana. PNAS Nexus 2023, 2, pgad141. [Google Scholar] [CrossRef]
Germ cell: A germ cell, also known as a gamete precursor cell or reproductive cell, typically arises from PGCs during early embryonic development in animals. Germ cells undergo meiosis to form gametes (sperm or eggs) in animals and plants, delivering genetic information from one generation to their offspring. |
Germline: A line of cells that separate from somatic cells and become germ cells. |
Primordial germ cell: A primordial germ cell (PGC) is a specialized cell type that gives rise to gametes (sperm and eggs) in animals during embryonic development. These cells are set aside early in embryonic development and undergo a unique series of developmental events that ultimately lead to their differentiation into mature gametes. |
Somatic cells: Cells in the organism that are not germ cells. |
Archesporial cell (AR cell): These cells give rise to the spore mother cell, which will further undergo meiosis to produce spores in plants. AR cells are specified early within the floral meristem or sporophytic tissue, which could be analogous to animal PGCs. |
Germ cell lineage: The cells that give rise to the gametes, including the primordial germ cells, the developing eggs and sperms, and the mature gametes. |
Morphogen: A morphogen is a signaling molecule that diffuses through tissues and forms a concentration gradient, providing positional information to cells and directing their differentiation and patterning during development. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Wang, P.; Liu, C.; Han, Y.; Zhao, F. Male Germ Cell Specification in Plants. Int. J. Mol. Sci. 2024, 25, 6643. https://doi.org/10.3390/ijms25126643
Chen W, Wang P, Liu C, Han Y, Zhao F. Male Germ Cell Specification in Plants. International Journal of Molecular Sciences. 2024; 25(12):6643. https://doi.org/10.3390/ijms25126643
Chicago/Turabian StyleChen, Wenqian, Pan Wang, Chan Liu, Yuting Han, and Feng Zhao. 2024. "Male Germ Cell Specification in Plants" International Journal of Molecular Sciences 25, no. 12: 6643. https://doi.org/10.3390/ijms25126643
APA StyleChen, W., Wang, P., Liu, C., Han, Y., & Zhao, F. (2024). Male Germ Cell Specification in Plants. International Journal of Molecular Sciences, 25(12), 6643. https://doi.org/10.3390/ijms25126643