Comprehensive Overview of Alzheimer’s Disease: Etiological Insights and Degradation Strategies
Abstract
:1. Introduction
2. Methods
3. Alzheimer’s Disease Etiology
3.1. Amyloid-β Production, Tau Hyperphosphorylation, and Molecular Biomarkers
3.2. GWAS and Genetic Risk Factors Associated with AD and Synaptic Plasticity
Genes | Localization | Functions | References |
---|---|---|---|
Apolipoprotein E (APOE) | Three human APOE isoforms—ε2, ε3, and ε4—secreted from microglia, astrocytes, and other neurons | Binds to Aβ to facilitate its uptake and clearance by microglia | [21,29,81,82,83,84] |
A disintegrin and metalloprotease domain-containing protein 10 (ADAM10) | Expressed in neuroepithelial regions and differentiating gray matter | Various transmembrane proteins such as APP, n-Cadherin, neurexin-1, neuroligin-1, and Cx3CL1 are substrates of ADAM10.; involved in learning and memory, and synaptic plasticity | [85,86] |
ATP-binding cassette transporters (ABCA7) | Localized in the luminal domain of BBB endothelial cells and expressed in brain tissues | Conducts apolipoprotein-mediated transport of cholesterol and HDL affects Aβ clearance by phagocytosis | [87,88] |
Beta1 adrenergic receptor (β-1 AR) | Member of g-protein-coupled receptor expressed in the brain and release adrenaline | Important role in learning and memory functions through TNFα signaling. | [11,89] |
Bridging integrator 1 (BIN1) | Neuronal cells including pre- and post-synaptic compartments | Involved in Aβ peptide generation and tau spreading | [90,91,92] |
CD2-associated protein | Present in endothelial cells | Involve in receptor-mediated endocytosis; regulate Aβ generation in neurons | [93] |
Complement component Receptor 1 (CR1) | Type-1 transmembrane glycoprotein expressed on erythrocytes, and all blood cell types, CD4+ T cells follicular dendritic cells, and glomerular podocytes | Binds to C3b, a cofactor, and removes Aβ1–42 from the brain as well as from the circulatory system | [11,94] |
Inositol-requiring protein I (IRE1) | Localized in the ER membrane, binds to misfolded proteins | Catalyzes the splicing of transcription factor box binding protein (XBP1) mRNA; degrades mRNAs of ER through RIDD under UPR | [95,96] |
IL33 | Expressed in astrocytes, oligodendrocytes, and in neurons binds to ST2 in microglia | Involved in synaptic plasticity and learning and memory; decreased IL33/ST2 signaling contributes to synaptic impairment | [97] |
Leukocyte immunoglobulin-like receptor B2 (LILRB2) | Highly expressed in pyramidal neurons in visual cortex and hippocampus | PirB signaling is important for maintaining synapse density and plasticity; plays role in learning and memory | [63,98] |
LDL receptor-related protein-1 (LRP1) | Abundantly expressed in the liver, neurons, astrocytes, and vasculatures in the brain | Binds with phosphatidylinositol-binding clathrin assembly (PICALM) to clear Aβ monomers, oligomers, and aggregates from the brain across the blood–brain barrier (BBB) | [99,100,101,102,103] |
Microtubule-associated protein tau (MAPT) | Expressed in neurons, maintain microtubule structure in axons | Hyperphosphorylated and induced formation of tau aggregates and NFTs in AD | [11] |
Phosphatidylinositol-binding clathrin assembly protein (PICALM) | Present in pre- and post-synaptic compartments and involve in regulating SV recycling | Involved in synaptic dysfunction in AD | [93] |
Protein tyrosine kinase 2β (PTK2B) | Highly expressed in the hippocampus | Role in synaptic plasticity regulation and memory | [104,105] |
Phospholipase D (PLD3) | Expressed in pyramidal neurons in the brain | A significant AD risk variant pA442A, altered microglia and lysosomal function | [106] |
Presenilin (PSEN) | Mostly PSEN1- and PSEN2-encoded proteins expressed in brain | Involved in induced cleavage of APP results in Aβ peptide generation | [16] |
Protein kinase RNA-like ER kinase (PERK) | Localized in the ER membrane, binds to misfolded proteins | Binds to eIF2α and Nrf2; potentially inhibits translation and restore ER homeostasis | [107,108] |
Sortilin-related receptor 1 (SORL1) | Membrane bound protein containing VPS10 and the YWTD/EGF domain | Protein sorting and trafficking within the trans-Golgi network to the membrane and targets protein in the endosomal/lysosomal system, APP processing and trafficking, synapse formation and synaptic functions | [109,110] |
Triggering receptor expressed on myeloid cell 2 (TREM2) | Expressed in the immune cells of myeloid origin | Activates downstream signaling in microglia | [58,111,112] |
3.3. Signaling Pathways Associated with Aβ Production and Tau Phosphorylation
3.4. Inflammatory Pathways Aid in Alzheimer’s Disease Progression
4. Clearance and Degradation Pathways Implicated in AD
4.1. Receptor for Advance Glycation End Product-Mediated Aβ Clearance
4.2. Endoplasmic Reticulum-Associated Aβ Clearance
4.3. Autophagy-Mediated Amyloid-β Clearance in Alzheimer’s Disease
5. Conclusions and Future Prospects
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
APP | amyloid precursor protein |
APH1 | anterior pharynx defective 1 |
BACE1 | β-site APP-cleaving enzyme-1 |
BBB | blood–brain barrier |
CSF | cerebrospinal fluid |
EOAD | Early-Onset Alzheimer’s Disease |
ER | endoplasmic reticulum |
ERAD | ER-associated protein degradation |
eQTL | expression quantitative trait loci |
eTWASs | expression transcriptome-wide association studies |
FTD | familial frontotemporal dementia |
GWASs | genome-wide association studies |
IGAP | International Genomics of Alzheimer’s Project |
LOAD | late-onset Alzheimer’s disease |
LRP-1 | LDL receptor-related protein-1 |
LD | linkage disequilibrium |
MMPs | matrix metalloproteinases |
MAPT | microtubule-associated protein |
mQTL | methylation QTL |
NFTs | neurofibrillary tangles |
PICALM | phosphatidylinositol-binding clathrin assembly |
RAGE | Receptor for Advanced Glycation End Product |
SRP14 | Single Recognition Particle 14 |
α7nAChRs | α7-Nicotinic Acetylcholine Receptors |
SNPs | single nucleotide polymorphisms |
TNF | tumor necrosis factor |
TREM2 | triggering receptor expressed on myeloid cells 2 |
UPR | unfolded protein response |
UPS | ubiquitous proteasomal system |
XBP1 | X-box binding protein 1 |
References
- Breijyeh, Z.; Karaman, R. Comprehensive review on alzheimer’s disease: Causes and treatment. Molecules 2020, 25, 5789. [Google Scholar] [CrossRef] [PubMed]
- Knopman, D.S.; Amieva, H.; Petersen, R.C.; Chételat, G.; Holtzman, D.M.; Hyman, B.T.; Nixon, R.A.; Jones, D.T. Alzheimer disease. Nat. Rev. Dis. Primers 2021, 7, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Mandelkow, E. Tau in physiology and pathology. Nat. Rev. Neurosci. 2016, 17, 22–35. [Google Scholar] [CrossRef]
- Zhou, L.; McInnes, J.; Wierda, K.; Holt, M.; Herrmann, A.G.; Jackson, R.J.; Wang, Y.-C.; Swerts, J.; Beyens, J.; Miskiewicz, K.; et al. Tau association with synaptic vesicles causes presynaptic dysfunction. Nat. Commun. 2017, 8, 15295. [Google Scholar] [CrossRef]
- Better, M.A. 2024 alzheimer’s disease facts and figures. Alzheimer’s Dement. 2024, 20, 3708–3821. [Google Scholar]
- Hanger, D.P.; Byers, H.L.; Wray, S.; Leung, K.-Y.; Saxton, M.J.; Seereeram, A.; Reynolds, C.H.; Ward, M.A.; Anderton, B.H. Novel phosphorylation sites in tau from alzheimer brain support a role for casein kinase 1 in disease pathogenesis. J. Biol. Chem. 2007, 282, 23645–23654. [Google Scholar] [CrossRef]
- Ittner, A.; Chua, S.W.; Bertz, J.; Volkerling, A.; Van Der Hoven, J.; Gladbach, A.; Przybyla, M.; Bi, M.; Van Hummel, A.; Stevens, C.H. Site-specific phosphorylation of tau inhibits amyloid-β toxicity in alzheimer’s mice. Science 2016, 354, 904–908. [Google Scholar] [CrossRef]
- Andrade-Guerrero, J.; Santiago-Balmaseda, A.; Jeronimo-Aguilar, P.; Vargas-Rodríguez, I.; Cadena-Suárez, A.R.; Sánchez-Garibay, C.; Pozo-Molina, G.; Méndez-Catalá, C.F.; Cardenas-Aguayo, M.-d.-C.; Diaz-Cintra, S. Alzheimer’s disease: An updated overview of its genetics. Int. J. Mol. Sci. 2023, 24, 3754. [Google Scholar] [CrossRef]
- Kim, J.; Basak, J.M.; Holtzman, D.M. The role of apolipoprotein e in alzheimer’s disease. Neuron 2009, 63, 287–303. [Google Scholar] [CrossRef]
- Liu, C.-C.; Zhao, N.; Fu, Y.; Wang, N.; Linares, C.; Tsai, C.-W.; Bu, G. Apoe4 accelerates early seeding of amyloid pathology. Neuron 2017, 96, 1024–1032.e3. [Google Scholar] [CrossRef]
- Nystuen, K.L.; McNamee, S.M.; Akula, M.; Holton, K.M.; DeAngelis, M.M.; Haider, N.B. Alzheimer’s disease: Models and molecular mechanisms informing disease and treatments. Bioengineering 2024, 11, 45. [Google Scholar] [CrossRef] [PubMed]
- Jansen, I.E.; Savage, J.E.; Watanabe, K.; Bryois, J.; Williams, D.M.; Steinberg, S.; Sealock, J.; Karlsson, I.K.; Hägg, S.; Athanasiu, L. Genome-wide meta-analysis identifies new loci and functional pathways influencing alzheimer’s disease risk. Nat. Genet. 2019, 51, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Takatori, S.; Wang, W.; Iguchi, A.; Tomita, T. Genetic risk factors for alzheimer disease: Emerging roles of microglia in disease pathomechanisms. In Reviews on Biomarker Studies in Psychiatric and Neurodegenerative Disorders; Springer: Cham, Switzerland, 2019; pp. 83–116. [Google Scholar]
- J Baranello, R.; L Bharani, K.; Padmaraju, V.; Chopra, N.; K Lahiri, D.; H Greig, N.; A Pappolla, M.; Sambamurti, K. Amyloid-beta protein clearance and degradation (abcd) pathways and their role in alzheimer’s disease. Curr. Alzheimer Res. 2015, 12, 32–46. [Google Scholar] [CrossRef] [PubMed]
- Vassar, R.; Kovacs, D.M.; Yan, R.; Wong, P.C. The β-secretase enzyme bace in health and alzheimer’s disease: Regulation, cell biology, function, and therapeutic potential. J. Neurosci. 2009, 29, 12787–12794. [Google Scholar] [CrossRef] [PubMed]
- Kimberly, W.T.; LaVoie, M.J.; Ostaszewski, B.L.; Ye, W.; Wolfe, M.S.; Selkoe, D.J. Γ-secretase is a membrane protein complex comprised of presenilin, nicastrin, aph-1, and pen-2. Proc. Natl. Acad. Sci. USA 2003, 100, 6382–6387. [Google Scholar] [CrossRef]
- Hampel, H.; Hardy, J.; Blennow, K.; Chen, C.; Perry, G.; Kim, S.H.; Villemagne, V.L.; Aisen, P.; Vendruscolo, M.; Iwatsubo, T.; et al. The amyloid-β pathway in alzheimer’s disease. Mol. Psychiatry 2021, 26, 5481–5503. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Götz, J. Tau-based therapies in neurodegeneration: Opportunities and challenges. Nat. Rev. Drug Discov. 2017, 16, 863–883. [Google Scholar] [CrossRef] [PubMed]
- Nozal, V.; Martinez, A. Tau tubulin kinase 1 (ttbk1), a new player in the fight against neurodegenerative diseases. Eur. J. Med. Chem. 2019, 161, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.R.; Barbosa, D.J.; Remião, F.; Silva, R. Alzheimer’s disease: Insights and new prospects in disease pathophysiology, biomarkers and disease-modifying drugs. Biochem. Pharmacol. 2023, 211, 115522. [Google Scholar] [CrossRef]
- Li, Z.; Shue, F.; Zhao, N.; Shinohara, M.; Bu, G. Apoe2: Protective mechanism and therapeutic implications for alzheimer’s disease. Mol. Neurodegener. 2020, 15, 63. [Google Scholar] [CrossRef]
- Shinohara, M.; Kanekiyo, T.; Tachibana, M.; Kurti, A.; Shinohara, M.; Fu, Y.; Zhao, J.; Han, X.; Sullivan, P.M.; Rebeck, G.W. Apoe2 is associated with longevity independent of alzheimer’s disease. Elife 2020, 9, e62199. [Google Scholar] [CrossRef] [PubMed]
- Arboleda-Velasquez, J.F.; Lopera, F.; O’Hare, M.; Delgado-Tirado, S.; Marino, C.; Chmielewska, N.; Saez-Torres, K.L.; Amarnani, D.; Schultz, A.P.; Sperling, R.A. Resistance to autosomal dominant alzheimer’s disease in an apoe3 christchurch homozygote: A case report. Nat. Med. 2019, 25, 1680–1683. [Google Scholar] [CrossRef] [PubMed]
- Chemparathy, A.; Le Guen, Y.; Chen, S.; Lee, E.-G.; Leong, L.; Gorzynski, J.E.; Jensen, T.D.; Ferrasse, A.; Xu, G.; Xiang, H. Apoe loss-of-function variants: Compatible with longevity and associated with resistance to alzheimer’s disease pathology. Neuron 2023, 112, 1110–1116.e5. [Google Scholar] [CrossRef] [PubMed]
- Parhizkar, S.; Holtzman, D.M. Apoe mediated neuroinflammation and neurodegeneration in alzheimer’s disease. Semin. Immunol. 2022, 59, 101594. [Google Scholar] [CrossRef] [PubMed]
- Homann, J.; Osburg, T.; Ohlei, O.; Dobricic, V.; Deecke, L.; Bos, I.; Vandenberghe, R.; Gabel, S.; Scheltens, P.; Teunissen, C.E. Genome-wide association study of alzheimer’s disease brain imaging biomarkers and neuropsychological phenotypes in the european medical information framework for alzheimer’s disease multimodal biomarker discovery dataset. Front. Aging Neurosci. 2022, 14, 840651. [Google Scholar] [CrossRef] [PubMed]
- Barone, E.; Di Domenico, F.; Mancuso, C.; Butterfield, D.A. The janus face of the heme oxygenase/biliverdin reductase system in alzheimer disease: It’s time for reconciliation. Neurobiol. Dis. 2014, 62, 144–159. [Google Scholar] [CrossRef]
- Heath, L.; Earls, J.C.; Magis, A.T.; Kornilov, S.A.; Lovejoy, J.C.; Funk, C.C.; Rappaport, N.; Logsdon, B.A.; Mangravite, L.M.; Kunkle, B.W. Manifestations of alzheimer’s disease genetic risk in the blood are evident in a multiomic analysis in healthy adults aged 18 to 90. Sci. Rep. 2022, 12, 6117. [Google Scholar] [CrossRef] [PubMed]
- Litvinchuk, A.; Suh, J.H.; Guo, J.L.; Lin, K.; Davis, S.S.; Bien-Ly, N.; Tycksen, E.; Tabor, G.T.; Serrano, J.R.; Manis, M. Amelioration of tau and apoe4-linked glial lipid accumulation and neurodegeneration with an lxr agonist. Neuron 2024, 112, 384–403.e8. [Google Scholar] [CrossRef]
- Tracy, T.E.; Gan, L. Tau-mediated synaptic and neuronal dysfunction in neurodegenerative disease. Curr. Opin. Neurobiol. 2018, 51, 134–138. [Google Scholar] [CrossRef]
- Maday, S.; Twelvetrees, A.E.; Moughamian, A.J.; Holzbaur, E.L. Axonal transport: Cargo-specific mechanisms of motility and regulation. Neuron 2014, 84, 292–309. [Google Scholar] [CrossRef]
- Sherman, M.A.; LaCroix, M.; Amar, F.; Larson, M.E.; Forster, C.; Aguzzi, A.; Bennett, D.A.; Ramsden, M.; Lesné, S.E. Soluble conformers of aβ and tau alter selective proteins governing axonal transport. J. Neurosci. 2016, 36, 9647–9658. [Google Scholar] [CrossRef] [PubMed]
- Abyadeh, M.; Gupta, V.; Paulo, J.A.; Mahmoudabad, A.G.; Shadfar, S.; Mirshahvaladi, S.; Gupta, V.; Nguyen, C.T.; Finkelstein, D.I.; You, Y. Amyloid-beta and tau protein beyond alzheimer’s disease. Neural Regen. Res. 2024, 19, 1262–1276. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gu, B.J.; Masters, C.L.; Wang, Y.-J. A systemic view of alzheimer disease—Insights from amyloid-β metabolism beyond the brain. Nat. Rev. Neurol. 2017, 13, 612–623. [Google Scholar] [CrossRef] [PubMed]
- Fá, M.; Puzzo, D.; Piacentini, R.; Staniszewski, A.; Zhang, H.; Baltrons, M.A.; Li Puma, D.D.; Chatterjee, I.; Li, J.; Saeed, F. Extracellular tau oligomers produce an immediate impairment of ltp and memory. Sci. Rep. 2016, 6, 19393. [Google Scholar] [CrossRef] [PubMed]
- Brand, A.L.; Lawler, P.E.; Bollinger, J.G.; Li, Y.; Schindler, S.E.; Li, M.; Lopez, S.; Ovod, V.; Nakamura, A.; Shaw, L.M. The performance of plasma amyloid beta measurements in identifying amyloid plaques in alzheimer’s disease: A literature review. Alzheimer’s Res. Ther. 2022, 14, 195. [Google Scholar] [CrossRef] [PubMed]
- Leuzy, A.; Janelidze, S.; Mattsson-Carlgren, N.; Palmqvist, S.; Jacobs, D.; Cicognola, C.; Stomrud, E.; Vanmechelen, E.; Dage, J.L.; Hansson, O. Comparing the clinical utility and diagnostic performance of csf p-tau181, p-tau217, and p-tau231 assays. Neurology 2021, 97, e1681–e1694. [Google Scholar] [CrossRef]
- Suárez-Calvet, M.; Karikari, T.K.; Ashton, N.J.; Lantero Rodriguez, J.; Milà-Alomà, M.; Gispert, J.D.; Salvadó, G.; Minguillon, C.; Fauria, K.; Shekari, M. Novel tau biomarkers phosphorylated at t181, t217 or t231 rise in the initial stages of the preclinical alzheimer’s continuum when only subtle changes in aβ pathology are detected. EMBO Mol. Med. 2020, 12, e12921. [Google Scholar] [CrossRef] [PubMed]
- Ashton, N.J.; Benedet, A.L.; Pascoal, T.A.; Karikari, T.K.; Lantero-Rodriguez, J.; Brum, W.S.; Mathotaarachchi, S.; Therriault, J.; Savard, M.; Chamoun, M. Cerebrospinal fluid p-tau231 as an early indicator of emerging pathology in alzheimer’s disease. EBioMedicine 2022, 76, 103836. [Google Scholar] [CrossRef] [PubMed]
- Dolphin, H.; Dyer, A.H.; Morrison, L.; Shenkin, S.D.; Welsh, T.; Kennelly, S.P. New horizons in the diagnosis and management of alzheimer’s disease in older adults. Age Ageing 2024, 53, afae005. [Google Scholar] [CrossRef]
- Thijssen, E.H.; La Joie, R.; Wolf, A.; Strom, A.; Wang, P.; Iaccarino, L.; Bourakova, V.; Cobigo, Y.; Heuer, H.; Spina, S. Diagnostic value of plasma phosphorylated tau181 in alzheimer’s disease and frontotemporal lobar degeneration. Nat. Med. 2020, 26, 387–397. [Google Scholar] [CrossRef]
- Janelidze, S.; Mattsson, N.; Palmqvist, S.; Smith, R.; Beach, T.G.; Serrano, G.E.; Chai, X.; Proctor, N.K.; Eichenlaub, U.; Zetterberg, H. Plasma p-tau181 in alzheimer’s disease: Relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to alzheimer’s dementia. Nat. Med. 2020, 26, 379–386. [Google Scholar] [CrossRef]
- Kurihara, M.; Matsubara, T.; Morimoto, S.; Arakawa, A.; Ohse, K.; Kanemaru, K.; Iwata, A.; Murayama, S.; Saito, Y. Neuropathological changes associated with aberrant cerebrospinal fluid p-tau181 and aβ42 in alzheimer’s disease and other neurodegenerative diseases. Acta Neuropathol. Commun. 2024, 12, 48. [Google Scholar] [CrossRef] [PubMed]
- Graff-Radford, J.; Yong, K.X.; Apostolova, L.G.; Bouwman, F.H.; Carrillo, M.; Dickerson, B.C.; Rabinovici, G.D.; Schott, J.M.; Jones, D.T.; Murray, M.E. New insights into atypical alzheimer’s disease in the era of biomarkers. Lancet Neurol. 2021, 20, 222–234. [Google Scholar] [CrossRef]
- Barthélemy, N.R.; Li, Y.; Joseph-Mathurin, N.; Gordon, B.A.; Hassenstab, J.; Benzinger, T.; Buckles, V.; Fagan, A.M.; Perrin, R.J.; Goate, A.M. A soluble phosphorylated tau signature links tau, amyloid and the evolution of stages of dominantly inherited alzheimer’s disease. Nat. Med. 2020, 26, 398–407. [Google Scholar] [CrossRef]
- Phan, L.M.T.; Cho, S. Fluorescent aptasensor and colorimetric aptablot for p-tau231 detection: Toward early diagnosis of alzheimer’s disease. Biomedicines 2022, 10, 93. [Google Scholar] [CrossRef]
- Gonzalez-Ortiz, F.; Turton, M.; Kac, P.R.; Smirnov, D.; Premi, E.; Ghidoni, R.; Benussi, L.; Cantoni, V.; Saraceno, C.; Rivolta, J. Brain-derived tau: A novel blood-based biomarker for alzheimer’s disease-type neurodegeneration. Brain 2023, 146, 1152–1165. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, S.; Carvalho, C.; Correia, S.C. Alzheimer’s disease—115 years after its discovery. Biomedicines 2024, 12, 478. [Google Scholar] [CrossRef]
- Oeckl, P.; Halbgebauer, S.; Anderl-Straub, S.; von Arnim, C.A.; Diehl-Schmid, J.; Froelich, L.; Grimmer, T.; Hausner, L.; Denk, J.; Jahn, H. Targeted mass spectrometry suggests beta-synuclein as synaptic blood marker in alzheimer’s disease. J. Proteome Res. 2020, 19, 1310–1318. [Google Scholar] [CrossRef] [PubMed]
- Cicognola, C.; Janelidze, S.; Hertze, J.; Zetterberg, H.; Blennow, K.; Mattsson-Carlgren, N.; Hansson, O. Plasma glial fibrillary acidic protein detects alzheimer pathology and predicts future conversion to alzheimer dementia in patients with mild cognitive impairment. Alzheimer’s Res. Ther. 2021, 13, 68. [Google Scholar] [CrossRef]
- Kaneko, N.; Nakamura, A.; Washimi, Y.; Kato, T.; Sakurai, T.; Arahata, Y.; Bundo, M.; Takeda, A.; Niida, S.; Ito, K. Novel plasma biomarker surrogating cerebral amyloid deposition. Proc. Jpn. Acad. Ser. B 2014, 90, 353–364. [Google Scholar] [CrossRef]
- Pérez-Grijalba, V.; Arbizu, J.; Romero, J.; Prieto, E.; Pesini, P.; Sarasa, L.; Guillen, F.; Monleón, I.; San-José, I.; Martínez-Lage, P. Plasma aβ42/40 ratio alone or combined with fdg-pet can accurately predict amyloid-pet positivity: A cross-sectional analysis from the ab255 study. Alzheimer’s Res. Ther. 2019, 11, 96. [Google Scholar] [CrossRef]
- Palmqvist, S.; Janelidze, S.; Stomrud, E.; Zetterberg, H.; Karl, J.; Zink, K.; Bittner, T.; Mattsson, N.; Eichenlaub, U.; Blennow, K. Performance of fully automated plasma assays as screening tests for alzheimer disease–related β-amyloid status. JAMA Neurol. 2019, 76, 1060–1069. [Google Scholar] [CrossRef]
- Palmqvist, S.; Stomrud, E.; Cullen, N.; Janelidze, S.; Manuilova, E.; Jethwa, A.; Bittner, T.; Eichenlaub, U.; Suridjan, I.; Kollmorgen, G. An accurate fully automated panel of plasma biomarkers for alzheimer’s disease. Alzheimer’s Dement. 2023, 19, 1204–1215. [Google Scholar] [CrossRef]
- Tropea, M.R.; Puma, D.D.L.; Melone, M.; Gulisano, W.; Arancio, O.; Grassi, C.; Conti, F.; Puzzo, D. Genetic deletion of α7 nicotinic acetylcholine receptors induces an age-dependent alzheimer’s disease-like pathology. Prog. Neurobiol. 2021, 206, 102154. [Google Scholar] [CrossRef]
- Perluigi, M.; Di Domenico, F.; Butterfield, D.A. Oxidative damage in neurodegeneration: Roles in the pathogenesis and progression of alzheimer disease. Physiol. Rev. 2024, 104, 103–197. [Google Scholar] [CrossRef]
- Paul, P.; Bhattacharjee, A.; Bordoloi, S.K.; Paul, U.K. The evolution of alzheimer’s disease therapies: A comprehensive review. Ann. Med. Sci. Res. 2024, 3, 11–19. [Google Scholar] [CrossRef]
- Fu, W.-Y.; Ip, N.Y. The role of genetic risk factors of alzheimer’s disease in synaptic dysfunction. Semin. Cell Dev. Biol. 2023, 139, 3–12. [Google Scholar] [CrossRef]
- Morabito, S.; Miyoshi, E.; Michael, N.; Swarup, V. Integrative genomics approach identifies conserved transcriptomic networks in alzheimer’s disease. Hum. Mol. Genet. 2020, 29, 2899–2919. [Google Scholar] [CrossRef]
- Kunkle, B.W.; Grenier-Boley, B.; Sims, R.; Bis, J.C.; Damotte, V.; Naj, A.C.; Boland, A.; Vronskaya, M.; Van Der Lee, S.J.; Amlie-Wolf, A. Genetic meta-analysis of diagnosed alzheimer’s disease identifies new risk loci and implicates aβ, tau, immunity and lipid processing. Nat. Genet. 2019, 51, 414–430. [Google Scholar] [CrossRef]
- Schwartzentruber, J.; Cooper, S.; Liu, J.Z.; Barrio-Hernandez, I.; Bello, E.; Kumasaka, N.; Young, A.M.; Franklin, R.J.; Johnson, T.; Estrada, K. Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new alzheimer’s disease risk genes. Nat. Genet. 2021, 53, 392–402. [Google Scholar] [CrossRef]
- Escott-Price, V.; Hardy, J. Genome-wide association studies for alzheimer’s disease: Bigger is not always better. Brain Commun. 2022, 4, fcac125. [Google Scholar] [CrossRef]
- Wightman, D.P.; Jansen, I.E.; Savage, J.E.; Shadrin, A.A.; Bahrami, S.; Holland, D.; Rongve, A.; Børte, S.; Winsvold, B.S.; Drange, O.K. A genome-wide association study with 1,126,563 individuals identifies new risk loci for alzheimer’s disease. Nat. Genet. 2021, 53, 1276–1282. [Google Scholar] [CrossRef]
- Deming, Y.; Li, Z.; Kapoor, M.; Harari, O.; Del-Aguila, J.L.; Black, K.; Carrell, D.; Cai, Y.; Fernandez, M.V.; Budde, J. Genome-wide association study identifies four novel loci associated with alzheimer’s endophenotypes and disease modifiers. Acta Neuropathol. 2017, 133, 839–856. [Google Scholar] [CrossRef]
- Lee, B.; Yao, X.; Shen, L. Genome-wide association study of quantitative biomarkers identifies a novel locus for alzheimer’s disease at 12p12. 1. BMC Genom. 2022, 23, 85. [Google Scholar] [CrossRef]
- Lambert, J.-C.; Ibrahim-Verbaas, C.A.; Harold, D.; Naj, A.C.; Sims, R.; Bellenguez, C.; DeStafano, A.; Bis, J.; Beecham, G.; Grenier-Boley, B. European alzheimer’s disease initiative (eadi); genetic and environmental risk in alzheimer’s disease; alzheimer’s disease genetic consortium; cohorts for heart and aging research in genomic epidemiology. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for alzheimer’s disease. Nat Genet 2013, 45, 1452–1458. [Google Scholar]
- Marioni, R.E.; Harris, S.E.; Zhang, Q.; McRae, A.F.; Hagenaars, S.P.; Hill, W.D.; Davies, G.; Ritchie, C.W.; Gale, C.R.; Starr, J.M. Gwas on family history of alzheimer’s disease. Transl. Psychiatry 2018, 8, 99. [Google Scholar] [CrossRef]
- Karch, C.M.; Ezerskiy, L.A.; Bertelsen, S.; Consortium, A.s.D.G.; Goate, A.M. Alzheimer’s disease risk polymorphisms regulate gene expression in the zcwpw1 and the celf1 loci. PLoS ONE 2016, 11, e0148717. [Google Scholar] [CrossRef]
- Karch, C.M.; Goate, A.M. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol. Psychiatry 2015, 77, 43–51. [Google Scholar] [CrossRef]
- Kong, F.; Wu, T.; Dai, J.; Cai, J.; Zhai, Z.; Zhu, Z.; Xu, Y.; Sun, T. Knowledge domains and emerging trends of genome-wide association studies in alzheimer’s disease: A bibliometric analysis and visualization study from 2002 to 2022. PLoS ONE 2024, 19, e0295008. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, R.M.; Wang, J.T.; Chen, R.L.; Zheng, Y.F.; Zhang, L.; Zhao, Z.G. Correlation of rs9331888 polymorphism with alzheimer’s disease among caucasian and chinese populations: A meta-analysis and systematic review. Metab. Brain Dis. 2017, 32, 981–989. [Google Scholar] [CrossRef]
- Bellenguez, C.; Küçükali, F.; Jansen, I.E.; Kleineidam, L.; Moreno-Grau, S.; Amin, N.; Naj, A.C.; Campos-Martin, R.; Grenier-Boley, B.; Andrade, V. New insights into the genetic etiology of alzheimer’s disease and related dementias. Nat. Genet. 2022, 54, 412–436. [Google Scholar] [CrossRef]
- Iwai, K. Lubac-mediated linear ubiquitination: A crucial regulator of immune signaling. Proc. Jpn. Acad. Ser. B 2021, 97, 120–133. [Google Scholar] [CrossRef]
- Pathak, G.A.; Silzer, T.K.; Sun, J.; Zhou, Z.; Daniel, A.A.; Johnson, L.; O’Bryant, S.; Phillips, N.R.; Barber, R.C. Genome-wide methylation of mild cognitive impairment in mexican americans highlights genes involved in synaptic transport, alzheimer’s disease-precursor phenotypes, and metabolic morbidities. J. Alzheimer’s Dis. 2019, 72, 733–749. [Google Scholar] [CrossRef]
- Yong, W.-S.; Hsu, F.-M.; Chen, P.-Y. Profiling genome-wide DNA methylation. Epigenetics Chromatin 2016, 9, 26. [Google Scholar] [CrossRef]
- Sabarwal, A.; Kumar, K.; Singh, R.P. Hazardous effects of chemical pesticides on human health–cancer and other associated disorders. Environ. Toxicol. Pharmacol. 2018, 63, 103–114. [Google Scholar] [CrossRef]
- Gao, X.; Chen, Q.; Yao, H.; Tan, J.; Liu, Z.; Zhou, Y.; Zou, Z. Epigenetics in alzheimer’s disease. Front. Aging Neurosci. 2022, 14, 911635. [Google Scholar] [CrossRef]
- Andrews, S.J.; Renton, A.E.; Fulton-Howard, B.; Podlesny-Drabiniok, A.; Marcora, E.; Goate, A.M. The complex genetic architecture of alzheimer’s disease: Novel insights and future directions. EBioMedicine 2023, 90, 104511. [Google Scholar] [CrossRef]
- Lee, T.; Lee, H.; Initiative, A.S.D.N. Identification of disease-related genes that are common between alzheimer’s and cardiovascular disease using blood genome-wide transcriptome analysis. Biomedicines 2021, 9, 1525. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, D.-F.; Luo, R.; Wu, Y.; Zhou, H.; Kong, L.-L.; Bi, R.; Yao, Y.-G. A systematic integrated analysis of brain expression profiles reveals yap1 and other prioritized hub genes as important upstream regulators in alzheimer’s disease. Alzheimer’s Dement. 2018, 14, 215–229. [Google Scholar] [CrossRef]
- Dumanis, S.B.; DiBattista, A.M.; Miessau, M.; Moussa, C.E.; Rebeck, G.W. Apoe genotype affects the pre-synaptic compartment of glutamatergic nerve terminals. J. Neurochem. 2013, 124, 4–14. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Li, D.; He, C.; He, K.; Xue, T.; Wan, L.; Zhang, C.; Liu, Q. Astrocytic apoe reprograms neuronal cholesterol metabolism and histone-acetylation-mediated memory. Neuron 2021, 109, 957–970.e8. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-T.; Seo, J.; Gao, F.; Feldman, H.M.; Wen, H.-L.; Penney, J.; Cam, H.P.; Gjoneska, E.; Raja, W.K.; Cheng, J. Apoe4 causes widespread molecular and cellular alterations associated with alzheimer’s disease phenotypes in human ipsc-derived brain cell types. Neuron 2018, 98, 1141–1154.e7. [Google Scholar] [CrossRef] [PubMed]
- Litvinchuk, A.; Huynh, T.P.V.; Shi, Y.; Jackson, R.J.; Finn, M.B.; Manis, M.; Francis, C.M.; Tran, A.C.; Sullivan, P.M.; Ulrich, J.D. Apolipoprotein e4 reduction with antisense oligonucleotides decreases neurodegeneration in a tauopathy model. Ann. Neurol. 2021, 89, 952–966. [Google Scholar] [CrossRef] [PubMed]
- Marcello, E.; Saraceno, C.; Musardo, S.; Vara, H.; de La Fuente, A.G.; Pelucchi, S.; Di Marino, D.; Borroni, B.; Tramontano, A.; Pérez-Otaño, I. Endocytosis of synaptic adam10 in neuronal plasticity and alzheimer’s disease. J. Clin. Investig. 2013, 123, 2523–2538. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, P.-H.; Colombo, A.V.; Schusser, B.; Dreymueller, D.; Wetzel, S.; Schepers, U.; Herber, J.; Ludwig, A.; Kremmer, E.; Montag, D. Systematic substrate identification indicates a central role for the metalloprotease adam10 in axon targeting and synapse function. Elife 2016, 5, e12748. [Google Scholar] [CrossRef]
- De Roeck, A.; Van Broeckhoven, C.; Sleegers, K. The role of abca7 in alzheimer’s disease: Evidence from genomics, transcriptomics and methylomics. Acta Neuropathol. 2019, 138, 201–220. [Google Scholar] [CrossRef] [PubMed]
- Dib, S.; Pahnke, J.; Gosselet, F. Role of abca7 in human health and in alzheimer’s disease. Int. J. Mol. Sci. 2021, 22, 4603. [Google Scholar] [CrossRef]
- Yi, B.; Jahangir, A.; Evans, A.K.; Briggs, D.; Ravina, K.; Ernest, J.; Farimani, A.B.; Sun, W.; Rajadas, J.; Green, M. Discovery of novel brain permeable and g protein-biased beta-1 adrenergic receptor partial agonists for the treatment of neurocognitive disorders. PLoS ONE 2017, 12, e0180319. [Google Scholar] [CrossRef] [PubMed]
- Ubelmann, F.; Burrinha, T.; Salavessa, L.; Gomes, R.; Ferreira, C.; Moreno, N.; Guimas Almeida, C. Bin1 and cd 2 ap polarise the endocytic generation of beta-amyloid. EMBO Rep. 2017, 18, 102–122. [Google Scholar] [CrossRef]
- Calafate, S.; Flavin, W.; Verstreken, P.; Moechars, D. Loss of bin1 promotes the propagation of tau pathology. Cell Rep. 2016, 17, 931–940. [Google Scholar] [CrossRef]
- Crotti, A.; Sait, H.R.; McAvoy, K.M.; Estrada, K.; Ergun, A.; Szak, S.; Marsh, G.; Jandreski, L.; Peterson, M.; Reynolds, T.L. Bin1 favors the spreading of tau via extracellular vesicles. Sci. Rep. 2019, 9, 9477. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Niccoli, T.; Ren, Z.; Woodling, N.S.; Aleyakpo, B.; Szabadkai, G.; Partridge, L. Picalm rescues glutamatergic neurotransmission, behavioural function and survival in a drosophila model of aβ42 toxicity. Hum. Mol. Genet. 2020, 29, 2420–2434. [Google Scholar] [CrossRef] [PubMed]
- Crehan, H.; Holton, P.; Wray, S.; Pocock, J.; Guerreiro, R.; Hardy, J. Complement receptor 1 (cr1) and alzheimer’s disease. Immunobiology 2012, 217, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Adams, C.J.; Kopp, M.C.; Larburu, N.; Nowak, P.R.; Ali, M.M. Structure and molecular mechanism of er stress signaling by the unfolded protein response signal activator ire1. Front. Mol. Biosci. 2019, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Duran-Aniotz, C.; Cornejo, V.H.; Espinoza, S.; Ardiles, Á.O.; Medinas, D.B.; Salazar, C.; Foley, A.; Gajardo, I.; Thielen, P.; Iwawaki, T. Ire1 signaling exacerbates alzheimer’s disease pathogenesis. Acta Neuropathol. 2017, 134, 489–506. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fu, W.-Y.; Cheung, K.; Hung, K.-W.; Chen, C.; Geng, H.; Yung, W.-H.; Qu, J.Y.; Fu, A.K.; Ip, N.Y. Astrocyte-secreted il-33 mediates homeostatic synaptic plasticity in the adult hippocampus. Proc. Natl. Acad. Sci. USA 2021, 118, e2020810118. [Google Scholar] [CrossRef] [PubMed]
- Djurisic, M.; Brott, B.K.; Saw, N.L.; Shamloo, M.; Shatz, C.J. Activity-dependent modulation of hippocampal synaptic plasticity via pirb and endocannabinoids. Mol. Psychiatry 2019, 24, 1206–1219. [Google Scholar] [CrossRef]
- Barić, N. The decline of the expression of low density lipoprotein receptor-related protein 1 (lrp1) during normal ageing and in alzheimer’s disease. Glycative Stress Res. 2022, 9, 42–54. [Google Scholar]
- Belinson, H.; Lev, D.; Masliah, E.; Michaelson, D.M. Activation of the amyloid cascade in apolipoprotein e4 transgenic mice induces lysosomal activation and neurodegeneration resulting in marked cognitive deficits. J. Neurosci. 2008, 28, 4690–4701. [Google Scholar] [CrossRef]
- Candela, P.; Saint-Pol, J.; Kuntz, M.; Boucau, M.-C.; Lamartiniere, Y.; Gosselet, F.; Fenart, L. In vitro discrimination of the role of lrp1 at the bbb cellular level: Focus on brain capillary endothelial cells and brain pericytes. Brain Res. 2015, 1594, 15–26. [Google Scholar] [CrossRef]
- Deane, R.; Wu, Z.; Sagare, A.; Davis, J.; Du Yan, S.; Hamm, K.; Xu, F.; Parisi, M.; LaRue, B.; Hu, H.W. Lrp/amyloid β-peptide interaction mediates differential brain efflux of aβ isoforms. Neuron 2004, 43, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, M.; Tachibana, M.; Kanekiyo, T.; Bu, G. Role of lrp1 in the pathogenesis of alzheimer’s disease: Evidence from clinical and preclinical studies: Thematic review series: Apoe and lipid homeostasis in alzheimer’s disease. J. Lipid Res. 2017, 58, 1267–1281. [Google Scholar] [CrossRef] [PubMed]
- Hsin, H.; Kim, M.J.; Wang, C.-F.; Sheng, M. Proline-rich tyrosine kinase 2 regulates hippocampal long-term depression. J. Neurosci. 2010, 30, 11983–11993. [Google Scholar] [CrossRef] [PubMed]
- de Pins, B.; Mendes, T.; Giralt, A.; Girault, J.-A. The non-receptor tyrosine kinase pyk2 in brain function and neurological and psychiatric diseases. Front. Synaptic Neurosci. 2021, 13, 749001. [Google Scholar] [CrossRef] [PubMed]
- Nackenoff, A.G.; Hohman, T.J.; Neuner, S.M.; Akers, C.S.; Weitzel, N.C.; Shostak, A.; Ferguson, S.M.; Mobley, B.; Bennett, D.A.; Schneider, J.A. Pld3 is a neuronal lysosomal phospholipase d associated with β-amyloid plaques and cognitive function in alzheimer’s disease. PLoS Genet. 2021, 17, e1009406. [Google Scholar] [CrossRef] [PubMed]
- Radford, H.; Moreno, J.A.; Verity, N.; Halliday, M.; Mallucci, G.R. Perk inhibition prevents tau-mediated neurodegeneration in a mouse model of frontotemporal dementia. Acta Neuropathol. 2015, 130, 633–642. [Google Scholar] [CrossRef]
- Yuan, S.H.; Hiramatsu, N.; Liu, Q.; Sun, X.V.; Lenh, D.; Chan, P.; Chiang, K.; Koo, E.H.; Kao, A.W.; Litvan, I. Tauopathy-associated perk alleles are functional hypomorphs that increase neuronal vulnerability to er stress. Hum. Mol. Genet. 2018, 27, 3951–3963. [Google Scholar] [CrossRef]
- Schmidt, V.; Subkhangulova, A.; Willnow, T.E. Sorting receptor sorla: Cellular mechanisms and implications for disease. Cell. Mol. Life Sci. 2017, 74, 1475–1483. [Google Scholar] [CrossRef]
- Malik, A.R.; Willnow, T.E. Vps10p domain receptors: Sorting out brain health and disease. Trends Neurosci. 2020, 43, 870–885. [Google Scholar] [CrossRef]
- Ulland, T.K.; Colonna, M. Trem2—A key player in microglial biology and alzheimer disease. Nat. Rev. Neurol. 2018, 14, 667–675. [Google Scholar] [CrossRef]
- Deczkowska, A.; Weiner, A.; Amit, I. The physiology, pathology, and potential therapeutic applications of the trem2 signaling pathway. Cell 2020, 181, 1207–1217. [Google Scholar] [CrossRef] [PubMed]
- Di Paolo, G.; Kim, T.-W. Linking lipids to alzheimer’s disease: Cholesterol and beyond. Nat. Rev. Neurosci. 2011, 12, 284–296. [Google Scholar] [CrossRef]
- González, A.; Calfío, C.; Churruca, M.; Maccioni, R.B. Glucose metabolism and ad: Evidence for a potential diabetes type 3. Alzheimer’s Res. Ther. 2022, 14, 56. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, A.; Sah, S.P. Insulin signaling pathway and related molecules: Role in neurodegeneration and alzheimer’s disease. Neurochem. Int. 2020, 135, 104707. [Google Scholar] [CrossRef] [PubMed]
- Perluigi, M.; Di Domenico, F.; Butterfield, D.A. Mtor signaling in aging and neurodegeneration: At the crossroad between metabolism dysfunction and impairment of autophagy. Neurobiol. Dis. 2015, 84, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Urbanska, M.; Gozdz, A.; Swiech, L.J.; Jaworski, J. Mammalian target of rapamycin complex 1 (mtorc1) and 2 (mtorc2) control the dendritic arbor morphology of hippocampal neurons. J. Biol. Chem. 2012, 287, 30240–30256. [Google Scholar] [CrossRef] [PubMed]
- Banks, W.A.; Owen, J.B.; Erickson, M.A. Insulin in the brain: There and back again. Pharmacol. Ther. 2012, 136, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Neth, B.J.; Craft, S. Insulin resistance and alzheimer’s disease: Bioenergetic linkages. Front. Aging Neurosci. 2017, 9, 345. [Google Scholar] [CrossRef]
- Zhou, S.; Tu, L.; Chen, W.; Yan, G.; Guo, H.; Wang, X.; Hu, Q.; Liu, H.; Li, F. Alzheimer’s disease, a metabolic disorder: Clinical advances and basic model studies. Exp. Ther. Med. 2024, 27, 63. [Google Scholar] [CrossRef]
- Stanciu, G.D.; Rusu, R.N.; Bild, V.; Filipiuc, L.E.; Tamba, B.-I.; Ababei, D.C. Systemic actions of sglt2 inhibition on chronic mtor activation as a shared pathogenic mechanism between alzheimer’s disease and diabetes. Biomedicines 2021, 9, 576. [Google Scholar] [CrossRef]
- Rosa, E.; Fahnestock, M. Creb expression mediates amyloid β-induced basal bdnf downregulation. Neurobiol. Aging 2015, 36, 2406–2413. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Tian, D.-Y.; Wang, Y.-J. Peripheral clearance of brain-derived aβ in alzheimer’s disease: Pathophysiology and therapeutic perspectives. Transl. Neurodegener. 2020, 9, 16. [Google Scholar] [CrossRef] [PubMed]
- Fahnestock, M. Brain-derived neurotrophic factor: The link between amyloid-β and memory loss. Future Neurol. 2011, 6, 627–639. [Google Scholar] [CrossRef]
- Campos-Pena, V.; Toral-Rios, D.; Becerril-Pérez, F.; Sánchez-Torres, C.; Delgado-Namorado, Y.; Torres-Ossorio, E.; Franco-Bocanegra, D.; Carvajal, K. Metabolic syndrome as a risk factor for alzheimer’s disease: Is aβ a crucial factor in both pathologies? Antioxid. Redox Signal. 2017, 26, 542–560. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhong, C. Oxidative stress in alzheimer’s disease. Neurosci. Bull. 2014, 30, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, M.S.; Jackson, J.; Sheu, S.-H.; Chang, C.-L.; Weigel, A.V.; Liu, H.; Pasolli, H.A.; Xu, C.S.; Pang, S.; Matthies, D. Neuron-astrocyte metabolic coupling protects against activity-induced fatty acid toxicity. Cell 2019, 177, 1522–1535.e14. [Google Scholar] [CrossRef] [PubMed]
- Fazzari, P.; Horre, K.; Arranz, A.M.; Frigerio, C.S.; Saito, T.; Saido, T.C.; De Strooper, B. Pld3 gene and processing of app. Nature 2017, 541, E1–E2. [Google Scholar] [CrossRef] [PubMed]
- Cai, R.; Wang, Y.; Huang, Z.; Zou, Q.; Pu, Y.; Yu, C.; Cai, Z. Role of rhoa/rock signaling in alzheimer’s disease. Behav. Brain Res. 2021, 414, 113481. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.; Wang, X.; Jin, S.; Hu, J.; Wu, Y.; Li, Y.; Wu, X. Activation of gpr55 attenuates cognitive impairment and neurotoxicity in a mouse model of alzheimer’s disease induced by aβ1–42 through inhibiting rhoa/rock2 pathway. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2022, 112, 110423. [Google Scholar] [CrossRef]
- Van Eldik, L.J.; Carrillo, M.C.; Cole, P.E.; Feuerbach, D.; Greenberg, B.D.; Hendrix, J.A.; Kennedy, M.; Kozauer, N.; Margolin, R.A.; Molinuevo, J.L. The roles of inflammation and immune mechanisms in alzheimer’s disease. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2016, 2, 99–109. [Google Scholar] [CrossRef]
- Shi, J.-Q.; Shen, W.; Chen, J.; Wang, B.-R.; Zhong, L.-L.; Zhu, Y.-W.; Zhu, H.-Q.; Zhang, Q.-Q.; Zhang, Y.-D.; Xu, J. Anti-tnf-α reduces amyloid plaques and tau phosphorylation and induces cd11c-positive dendritic-like cell in the app/ps1 transgenic mouse brains. Brain Res. 2011, 1368, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.D.; Vu, H.H. Molecular mechanisms implicated in protein changes in the alzheimer’s disease human hippocampus. Mech. Ageing Dev. 2024, 219, 111930. [Google Scholar] [CrossRef]
- Wang, Y.; Li, L.; Wu, Y.; Zhang, S.; Ju, Q.; Yang, Y.; Jin, Y.; Shi, H.; Sun, C. Cd44 deficiency represses neuroinflammation and rescues dopaminergic neurons in a mouse model of parkinson’s disease. Pharmacol. Res. 2022, 177, 106133. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.; Klein, P.; Koc-Schmitz, Y.; Waldvogel, H.J.; Faull, R.L.; Brundin, P.; Plomann, M.; Li, J.Y. Loss of snap-25 and rabphilin 3a in sensory-motor cortex in huntington’s disease. J. Neurochem. 2007, 103, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Fang, K.; Wang, W.; Lin, W.; Guo, L.; Wang, J. Identification of key genes and pathways for alzheimer’s disease via combined analysis of genome-wide expression profiling in the hippocampus. Biophys. Rep. 2019, 5, 98–109. [Google Scholar] [CrossRef]
- Ali, M.; Falkenhain, K.; Njiru, B.N.; Murtaza-Ali, M.; Ruiz-Uribe, N.E.; Haft-Javaherian, M.; Catchers, S.; Nishimura, N.; Schaffer, C.B.; Bracko, O. Vegf signalling causes stalls in brain capillaries and reduces cerebral blood flow in alzheimer’s mice. Brain 2022, 145, 1449–1463. [Google Scholar] [CrossRef] [PubMed]
- García-Culebras, A.; Cuartero, M.I.; Peña-Martínez, C.; Moraga, A.; Vázquez-Reyes, S.; de Castro-Millán, F.J.; Cortes-Canteli, M.; Lizasoain, I.; Moro, M.Á. Myeloid cells in vascular dementia and alzheimer’s disease: Possible therapeutic targets? Br. J. Pharmacol. 2024, 181, 777–798. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Yu, H.; Yang, X.; Zhu, Y.; Bai, X.; Wang, R.; Cao, Y.; Xu, H.; Luo, H.; Lu, L. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat. Commun. 2020, 11, 2488. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Wan, C.-Q.; Liu, Z. Astrocyte and alzheimer’s disease. J. Neurol. 2017, 264, 2068–2074. [Google Scholar] [CrossRef]
- Fernandez, C.G.; Hamby, M.E.; McReynolds, M.L.; Ray, W.J. The role of apoe4 in disrupting the homeostatic functions of astrocytes and microglia in aging and alzheimer’s disease. Front. Aging Neurosci. 2019, 11, 14. [Google Scholar] [CrossRef]
- Hickman, S.E.; El Khoury, J. Trem2 and the neuroimmunology of alzheimer’s disease. Biochem. Pharmacol. 2014, 88, 495–498. [Google Scholar] [CrossRef] [PubMed]
- Kleinberger, G.; Yamanishi, Y.; Suárez-Calvet, M.; Czirr, E.; Lohmann, E.; Cuyvers, E.; Struyfs, H.; Pettkus, N.; Wenninger-Weinzierl, A.; Mazaheri, F. Trem2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci. Transl. Med. 2014, 6, 243ra86. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, R.; Wojtas, A.; Bras, J.; Carrasquillo, M.; Rogaeva, E.; Majounie, E.; Cruchaga, C.; Sassi, C.; Kauwe, J.S.; Younkin, S. Trem2 variants in alzheimer’s disease. N. Engl. J. Med. 2013, 368, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, S.; Stefansson, H.; Jonsson, T.; Johannsdottir, H.; Ingason, A.; Helgason, H.; Sulem, P.; Magnusson, O.T.; Gudjonsson, S.A.; Unnsteinsdottir, U. Loss-of-function variants in abca7 confer risk of alzheimer’s disease. Nat. Genet. 2015, 47, 445–447. [Google Scholar] [CrossRef] [PubMed]
- Lian, H.; Yang, L.; Cole, A.; Sun, L.; Chiang, A.C.-A.; Fowler, S.W.; Shim, D.J.; Rodriguez-Rivera, J.; Taglialatela, G.; Jankowsky, J.L. Nfκb-activated astroglial release of complement c3 compromises neuronal morphology and function associated with alzheimer’s disease. Neuron 2015, 85, 101–115. [Google Scholar] [CrossRef]
- Jayaraman, A.; Htike, T.T.; James, R.; Picon, C.; Reynolds, R. Tnf-mediated neuroinflammation is linked to neuronal necroptosis in alzheimer’s disease hippocampus. Acta Neuropathol. Commun. 2021, 9, 159. [Google Scholar] [CrossRef] [PubMed]
- Picon, C.; Jayaraman, A.; James, R.; Beck, C.; Gallego, P.; Witte, M.E.; van Horssen, J.; Mazarakis, N.D.; Reynolds, R. Neuron-specific activation of necroptosis signaling in multiple sclerosis cortical grey matter. Acta Neuropathol. 2021, 141, 585–604. [Google Scholar] [CrossRef] [PubMed]
- Asimakidou, E.; Reynolds, R.; Barron, A.M.; Lo, C.H. Autolysosomal acidification impairment as a mediator for tnfr1 induced neuronal necroptosis in alzheimer’s disease. Neural Regen. Res. 2024, 19, 1690–1870. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Pei, L.; Yao, S.; Wu, Y.; Shang, Y. Nlrp3 inflammasome in neurological diseases, from functions to therapies. Front. Cell. Neurosci. 2017, 11, 63. [Google Scholar] [CrossRef]
- Tripathi, P.; Rodriguez-Muela, N.; Klim, J.R.; de Boer, A.S.; Agrawal, S.; Sandoe, J.; Lopes, C.S.; Ogliari, K.S.; Williams, L.A.; Shear, M. Reactive astrocytes promote als-like degeneration and intracellular protein aggregation in human motor neurons by disrupting autophagy through tgf-β1. Stem Cell Rep. 2017, 9, 667–680. [Google Scholar] [CrossRef]
- Feng, T.; Lacrampe, A.; Hu, F. Physiological and pathological functions of tmem106b: A gene associated with brain aging and multiple brain disorders. Acta Neuropathol. 2021, 141, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, A.; Dittlau, K.S.; Corsi, G.I.; Haukedal, H.; Doncheva, N.T.; Ramakrishna, S.; Ambardar, S.; Salcedo, C.; Schmidt, S.I.; Zhang, Y. Astrocytic reactivity triggered by defective autophagy and metabolic failure causes neurotoxicity in frontotemporal dementia type 3. Stem Cell Rep. 2021, 16, 2736–2751. [Google Scholar] [CrossRef] [PubMed]
- Iyer, H.; Shen, K.; Meireles, A.M.; Talbot, W.S. A lysosomal regulatory circuit essential for the development and function of microglia. Sci. Adv. 2022, 8, eabp8321. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, A.; Reynolds, R. Diverse pathways to neuronal necroptosis in alzheimer’s disease. Eur. J. Neurosci. 2022, 56, 5428–5441. [Google Scholar] [CrossRef] [PubMed]
- Udeochu, J.C.; Shea, J.M.; Villeda, S.A. Microglia communication: Parallels between aging and alzheimer’s disease. Clin. Exp. Neuroimmunol. 2016, 7, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Chan, S.L.; Mattson, M.P. Adverse effect of a presenilin-1 mutation in microglia results in enhanced nitric oxide and inflammatory cytokine responses to immune challenge in the brain. Neuromol. Med. 2002, 2, 29–45. [Google Scholar]
- Fung, S.; Smith, C.L.; Prater, K.E.; Case, A.; Green, K.; Osnis, L.; Winston, C.; Kinoshita, Y.; Sopher, B.; Morrison, R.S. Early-onset familial alzheimer disease variant psen2 n141i heterozygosity is associated with altered microglia phenotype. J. Alzheimer’s Dis. 2020, 77, 675–688. [Google Scholar] [CrossRef] [PubMed]
- Deus, C.M.; Yambire, K.F.; Oliveira, P.J.; Raimundo, N. Mitochondria–lysosome crosstalk: From physiology to neurodegeneration. Trends Mol. Med. 2020, 26, 71–88. [Google Scholar] [CrossRef] [PubMed]
- Quick, J.D.; Silva, C.; Wong, J.H.; Lim, K.L.; Reynolds, R.; Barron, A.M.; Zeng, J.; Lo, C.H. Lysosomal acidification dysfunction in microglia: An emerging pathogenic mechanism of neuroinflammation and neurodegeneration. J. Neuroinflamm. 2023, 20, 185. [Google Scholar] [CrossRef]
- Vest, R.T.; Chou, C.-C.; Zhang, H.; Haney, M.S.; Li, L.; Laqtom, N.N.; Chang, B.; Shuken, S.; Nguyen, A.; Yerra, L. Small molecule c381 targets the lysosome to reduce inflammation and ameliorate disease in models of neurodegeneration. Proc. Natl. Acad. Sci. USA 2022, 119, e2121609119. [Google Scholar] [CrossRef]
- Chen, C.-C.; Keller, M.; Hess, M.; Schiffmann, R.; Urban, N.; Wolfgardt, A.; Schaefer, M.; Bracher, F.; Biel, M.; Wahl-Schott, C. A small molecule restores function to trpml1 mutant isoforms responsible for mucolipidosis type iv. Nat. Commun. 2014, 5, 4681. [Google Scholar] [CrossRef] [PubMed]
- Tong, B.C.-K.; Huang, A.S.; Wu, A.J.; Iyaswamy, A.; Ho, O.K.-Y.; Kong, A.H.-Y.; Sreenivasmurthy, S.G.; Zhu, Z.; Su, C.; Liu, J. Tetrandrine ameliorates cognitive deficits and mitigates tau aggregation in cell and animal models of tauopathies. J. Biomed. Sci. 2022, 29, 85. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.C.; Xue, X.; Zhang, H.T.; Zhu, M.M.; Yang, X.W.; Wu, C.F.; Yang, J.Y. Pseudoginsenoside-f11 alleviates oligomeric β-amyloid-induced endosome-lysosome defects in microglia. Traffic 2019, 20, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Chin, M.Y.; Ang, K.-H.; Davies, J.; Alquezar, C.; Garda, V.G.; Rooney, B.; Leng, K.; Kampmann, M.; Arkin, M.R.; Kao, A.W. Phenotypic screening using high-content imaging to identify lysosomal ph modulators in a neuronal cell model. ACS Chem. Neurosci. 2022, 13, 1505–1516. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Shirihai, O.S.; Grinstaff, M.W. Modulating lysosomal ph: A molecular and nanoscale materials design perspective. J. Life Sci. 2020, 2, 25. [Google Scholar] [CrossRef] [PubMed]
- Brouillard, M.; Barthélémy, P.; Dehay, B.; Crauste-Manciet, S.; Desvergnes, V. Nucleolipid acid-based nanocarriers restore neuronal lysosomal acidification defects. Front. Chem. 2021, 9, 736554. [Google Scholar] [CrossRef]
- Cunha, A.; Gaubert, A.; Latxague, L.; Dehay, B. Plga-based nanoparticles for neuroprotective drug delivery in neurodegenerative diseases. Pharmaceutics 2021, 13, 1042. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.H.; Zeng, J. Defective lysosomal acidification: A new prognostic marker and therapeutic target for neurodegenerative diseases. Transl. Neurodegener. 2023, 12, 29. [Google Scholar] [CrossRef]
- Frost, G.R.; Li, Y.-M. The role of astrocytes in amyloid production and alzheimer’s disease. Open Biol. 2017, 7, 170228. [Google Scholar] [CrossRef]
- Jablonski, A.M.; Warren, L.; Usenovic, M.; Zhou, H.; Sugam, J.; Parmentier-Batteur, S.; Voleti, B. Astrocytic expression of the alzheimer’s disease risk allele, apoeε4, potentiates neuronal tau pathology in multiple preclinical models. Sci. Rep. 2021, 11, 3438. [Google Scholar] [CrossRef]
- Rojas-Gutierrez, E.; Muñoz-Arenas, G.; Treviño, S.; Espinosa, B.; Chavez, R.; Rojas, K.; Flores, G.; Díaz, A.; Guevara, J. Alzheimer’s disease and metabolic syndrome: A link from oxidative stress and inflammation to neurodegeneration. Synapse 2017, 71, e21990. [Google Scholar] [CrossRef]
- Ni, J.; Xie, Z.; Quan, Z.; Meng, J.; Qing, H. How brain ‘cleaners’ fail: Mechanisms and therapeutic value of microglial phagocytosis in alzheimer’s disease. Glia 2024, 72, 227–244. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, R.; Fryatt, G.; Cleal, M.; Obst, J.; Pipi, E.; Monzón-Sandoval, J.; Ribe, E.; Winchester, L.; Webber, C.; Nevado, A.; et al. Csf1r inhibitor jnj-40346527 attenuates microglial proliferation and neurodegeneration in p301s mice. Brain 2019, 142, 3243–3264. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhou, Y.; Mueller-Steiner, S.; Chen, L.-F.; Kwon, H.; Yi, S.; Mucke, L.; Gan, L. Sirt1 protects against microglia-dependent amyloid-β toxicity through inhibiting nf-κb signaling. J. Biol. Chem. 2005, 280, 40364–40374. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Fan, L.; Khawaja, R.R.; Liu, B.; Zhan, L.; Kodama, L.; Chin, M.; Li, Y.; Le, D.; Zhou, Y. Microglial nf-κb drives tau spreading and toxicity in a mouse model of tauopathy. Nat. Commun. 2022, 13, 1969. [Google Scholar] [CrossRef]
- Yan, S.D.; Bierhaus, A.; Nawroth, P.P.; Stern, D.M. Rage and alzheimer’s disease: A progression factor for amyloid-β-induced cellular perturbation? J. Alzheimer’s Dis. 2009, 16, 833–843. [Google Scholar] [CrossRef]
- Farmer, D.G.; Ewart, M.-A.; Mair, K.M.; Kennedy, S. Soluble receptor for advanced glycation end products (srage) attenuates haemodynamic changes to chronic hypoxia in the mouse. Pulm. Pharmacol. Ther. 2014, 29, 7–14. [Google Scholar] [CrossRef]
- Heilmann, R.M.; Otoni, C.C.; Jergens, A.E.; Grützner, N.; Suchodolski, J.S.; Steiner, J.M. Systemic levels of the anti-inflammatory decoy receptor soluble rage (receptor for advanced glycation end products) are decreased in dogs with inflammatory bowel disease. Vet. Immunol. Immunopathol. 2014, 161, 184–192. [Google Scholar] [CrossRef]
- Kook, S.-Y.; Seok Hong, H.; Moon, M.; Mook-Jung, I. Disruption of blood-brain barrier in alzheimer disease pathogenesis. Tissue Barriers 2013, 1, 8845–8854. [Google Scholar] [CrossRef]
- Wan, W.; Chen, H.; Li, Y. The potential mechanisms of aβ-receptor for advanced glycation end-products interaction disrupting tight junctions of the blood-brain barrier in alzheimer’s disease. Int. J. Neurosci. 2014, 124, 75–81. [Google Scholar] [CrossRef]
- Patel, M. Implications of the clearance methods for amyloid-beta plaques in alzheimer’s disease. Int. J. High Sch. Res. 2024, 6, 107–113. [Google Scholar]
- Munoz, L.; Ranaivo, H.R.; Roy, S.M.; Hu, W.; Craft, J.M.; McNamara, L.K.; Chico, L.W.; Van Eldik, L.J.; Watterson, D.M. A novel p38α mapk inhibitor suppresses brain proinflammatory cytokine up-regulation and attenuates synaptic dysfunction and behavioral deficits in an alzheimer’s disease mouse model. J. Neuroinflamm. 2007, 4, 21. [Google Scholar] [CrossRef] [PubMed]
- Puzzo, D.; Privitera, L.; Leznik, E.; Fa, M.; Staniszewski, A.; Palmeri, A.; Arancio, O. Picomolar amyloid-β positively modulates synaptic plasticity and memory in hippocampus. J. Neurosci. 2008, 28, 14537–14545. [Google Scholar] [CrossRef] [PubMed]
- Arancio, O.; Zhang, H.P.; Chen, X.; Lin, C.; Trinchese, F.; Puzzo, D.; Liu, S.; Hegde, A.; Yan, S.F.; Stern, A. Rage potentiates aβ-induced perturbation of neuronal function in transgenic mice. EMBO J. 2004, 23, 4096–4105. [Google Scholar] [CrossRef]
- Vincenz-Donnelly, L.; Hipp, M.S. The endoplasmic reticulum: A hub of protein quality control in health and disease. Free Radic. Biol. Med. 2017, 108, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Fregno, I.; Molinari, M. Proteasomal and lysosomal clearance of faulty secretory proteins: Er-associated degradation (erad) and er-to-lysosome-associated degradation (erlad) pathways. Crit. Rev. Biochem. Mol. Biol. 2019, 54, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Liu, H.; Wang, C.; Deng, Y.; Xu, B.; Yang, T.; Liu, W. Dual roles of uprer and uprmt in neurodegenerative diseases. J. Mol. Med. 2023, 101, 1499–1512. [Google Scholar] [CrossRef] [PubMed]
- Montibeller, L.; De Belleroche, J. Amyotrophic lateral sclerosis (als) and alzheimer’s disease (ad) are characterised by differential activation of er stress pathways: Focus on upr target genes. Cell Stress Chaperones 2018, 23, 897–912. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Dou, F.; Wang, Y.; Hou, L.; Chen, H. Ca2+-dependent endoplasmic reticulum stress correlation with astrogliosis involves upregulation of kca3. 1 and inhibition of akt/mtor signaling. J. Neuroinflamm. 2018, 15, 316. [Google Scholar] [CrossRef]
- Wan, Y.-W.; Al-Ouran, R.; Mangleburg, C.G.; Perumal, T.M.; Lee, T.V.; Allison, K.; Swarup, V.; Funk, C.C.; Gaiteri, C.; Allen, M. Meta-analysis of the alzheimer’s disease human brain transcriptome and functional dissection in mouse models. Cell Rep. 2020, 32, 107908. [Google Scholar] [CrossRef]
- Cissé, M.; Duplan, E.; Lorivel, T.; Dunys, J.; Bauer, C.; Meckler, X.; Gerakis, Y.; Lauritzen, I.; Checler, F. The transcription factor xbp1s restores hippocampal synaptic plasticity and memory by control of the kalirin-7 pathway in alzheimer model. Mol. Psychiatry 2017, 22, 1562–1575. [Google Scholar] [CrossRef] [PubMed]
- Cozachenco, D.; Ribeiro, F.C.; Ferreira, S.T. Defective proteostasis in alzheimer’s disease. Ageing Res. Rev. 2023, 85, 101862. [Google Scholar] [CrossRef]
- Ahn, J.H.; Cho, H.; Kim, J.-H.; Kim, S.H.; Ham, J.-S.; Park, I.; Suh, S.H.; Hong, S.P.; Song, J.-H.; Hong, Y.-K. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature 2019, 572, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Storck, S.E.; Meister, S.; Nahrath, J.; Meißner, J.N.; Schubert, N.; Di Spiezio, A.; Baches, S.; Vandenbroucke, R.E.; Bouter, Y.; Prikulis, I. Endothelial lrp1 transports amyloid-β 1–42 across the blood-brain barrier. J. Clin. Investig. 2016, 126, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Soto, I.; Grabowska, W.A.; Onos, K.D.; Graham, L.C.; Jackson, H.M.; Simeone, S.N.; Howell, G.R. Meox2 haploinsufficiency increases neuronal cell loss in a mouse model of alzheimer’s disease. Neurobiol. Aging 2016, 42, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Nixon, R.A.; Yang, D.-S. Autophagy failure in alzheimer’s disease—Locating the primary defect. Neurobiol. Dis. 2011, 43, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, P.; Loganathan, K.; Sekiguchi, M.; Matsuba, Y.; Hui, K.; Tsubuki, S.; Tanaka, M.; Iwata, N.; Saito, T.; Saido, T.C. Aβ secretion and plaque formation depend on autophagy. Cell Rep. 2013, 5, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, P.; Sekiguchi, M.; Akagi, T.; Izumi, S.; Komori, T.; Hui, K.; Sörgjerd, K.; Tanaka, M.; Saito, T.; Iwata, N. Autophagy-related protein 7 deficiency in amyloid β (aβ) precursor protein transgenic mice decreases aβ in the multivesicular bodies and induces aβ accumulation in the golgi. Am. J. Pathol. 2015, 185, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.; Nakamura, K.; Matsui, M.; Yamamoto, A.; Nakahara, Y.; Suzuki-Migishima, R.; Yokoyama, M.; Mishima, K.; Saito, I.; Okano, H. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006, 441, 885–889. [Google Scholar] [CrossRef]
- Komatsu, M.; Waguri, S.; Chiba, T.; Murata, S.; Iwata, J.-i.; Tanida, I.; Ueno, T.; Koike, M.; Uchiyama, Y.; Kominami, E. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006, 441, 880–884. [Google Scholar] [CrossRef]
- Harris, H.; Rubinsztein, D.C. Control of autophagy as a therapy for neurodegenerative disease. Nat. Rev. Neurol. 2012, 8, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, L. Targeting autophagy for the treatment of alzheimer’s disease: Challenges and opportunities. Front. Mol. Neurosci. 2019, 12, 203. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Wooten, M.C.; Gearing, M.; Wooten, M.W. Age-associated oxidative damage to the p62 promoter: Implications for alzheimer disease. Free Radic. Biol. Med. 2009, 46, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Rohn, T.T.; Wirawan, E.; Brown, R.J.; Harris, J.R.; Masliah, E.; Vandenabeele, P. Depletion of beclin-1 due to proteolytic cleavage by caspases in the alzheimer’s disease brain. Neurobiol. Dis. 2011, 43, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Esteves, A.; Palma, A.; Gomes, R.; Santos, D.; Silva, D.; Cardoso, S. Acetylation as a major determinant to microtubule-dependent autophagy: Relevance to alzheimer’s and parkinson disease pathology. Biochim. Et Biophys. Acta (BBA) Mol. Basis Dis. 2019, 1865, 2008–2023. [Google Scholar] [CrossRef] [PubMed]
- Sola-Sevilla, N.; Puerta, E. Sirt2 as a potential new therapeutic target for alzheimer’s disease. Neural Regen. Res. 2024, 19, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Alamro, H.; Thafar, M.A.; Albaradei, S.; Gojobori, T.; Essack, M.; Gao, X. Exploiting machine learning models to identify novel alzheimer’s disease biomarkers and potential targets. Sci. Rep. 2023, 13, 4979. [Google Scholar] [CrossRef] [PubMed]
- Long, J.M.; Holtzman, D.M. Alzheimer disease: An update on pathobiology and treatment strategies. Cell 2019, 179, 312–339. [Google Scholar] [CrossRef] [PubMed]
- Wojtunik-Kulesza, K.; Rudkowska, M.; Orzeł-Sajdłowska, A. Aducanumab—Hope or disappointment for alzheimer’s disease. Int. J. Mol. Sci. 2023, 24, 4367. [Google Scholar] [CrossRef]
- Van Dyck, C.H.; Swanson, C.J.; Aisen, P.; Bateman, R.J.; Chen, C.; Gee, M.; Kanekiyo, M.; Li, D.; Reyderman, L.; Cohen, S. Lecanemab in early alzheimer’s disease. N. Engl. J. Med. 2023, 388, 9–21. [Google Scholar] [CrossRef]
- Cummings, J.; Zhou, Y.; Lee, G.; Zhong, K.; Fonseca, J.; Cheng, F. Alzheimer’s disease drug development pipeline: 2023. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2023, 9, e12385. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, D.; Saraswat, N.; Vyawahare, N.; Shirode, D. Targeting the molecular web of alzheimer’s disease: Unveiling pathways for effective pharmacotherapy. Egypt. J. Neurol. Psychiatry Neurosurg. 2024, 60, 7. [Google Scholar] [CrossRef]
- Peng, Y.; Jin, H.; Xue, Y.-h.; Chen, Q.; Yao, S.-y.; Du, M.-q.; Liu, S. Current and future therapeutic strategies for alzheimer’s disease: An overview of drug development bottlenecks. Front. Aging Neurosci. 2023, 15, 1206572. [Google Scholar] [CrossRef]
- Jones, R.S.; Minogue, A.M.; Fitzpatrick, O.; Lynch, M.A. Inhibition of jak2 attenuates the increase in inflammatory markers in microglia from app/ps1 mice. Neurobiol. Aging 2015, 36, 2716–2724. [Google Scholar] [CrossRef] [PubMed]
- Arnold, S.E.; Arvanitakis, Z.; Macauley-Rambach, S.L.; Koenig, A.M.; Wang, H.-Y.; Ahima, R.S.; Craft, S.; Gandy, S.; Buettner, C.; Stoeckel, L.E. Brain insulin resistance in type 2 diabetes and alzheimer disease: Concepts and conundrums. Nat. Rev. Neurol. 2018, 14, 168–181. [Google Scholar] [CrossRef] [PubMed]
- Abolhassani, N.; Leon, J.; Sheng, Z.; Oka, S.; Hamasaki, H.; Iwaki, T.; Nakabeppu, Y. Molecular pathophysiology of impaired glucose metabolism, mitochondrial dysfunction, and oxidative DNA damage in alzheimer’s disease brain. Mech. Ageing Dev. 2017, 161, 95–104. [Google Scholar] [CrossRef]
- Butterfield, D.A.; Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and alzheimer disease. Nat. Rev. Neurosci. 2019, 20, 148–160. [Google Scholar] [CrossRef]
- Lee, J.-H.; Yang, D.-S.; Goulbourne, C.N.; Im, E.; Stavrides, P.; Pensalfini, A.; Chan, H.; Bouchet-Marquis, C.; Bleiwas, C.; Berg, M.J. Faulty autolysosome acidification in alzheimer’s disease mouse models induces autophagic build-up of aβ in neurons, yielding senile plaques. Nat. Neurosci. 2022, 25, 688–701. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, M.K.; Shin, Y.; Ju, S.; Han, S.; Kim, S.S.; Kang, I. Comprehensive Overview of Alzheimer’s Disease: Etiological Insights and Degradation Strategies. Int. J. Mol. Sci. 2024, 25, 6901. https://doi.org/10.3390/ijms25136901
Singh MK, Shin Y, Ju S, Han S, Kim SS, Kang I. Comprehensive Overview of Alzheimer’s Disease: Etiological Insights and Degradation Strategies. International Journal of Molecular Sciences. 2024; 25(13):6901. https://doi.org/10.3390/ijms25136901
Chicago/Turabian StyleSingh, Manish Kumar, Yoonhwa Shin, Songhyun Ju, Sunhee Han, Sung Soo Kim, and Insug Kang. 2024. "Comprehensive Overview of Alzheimer’s Disease: Etiological Insights and Degradation Strategies" International Journal of Molecular Sciences 25, no. 13: 6901. https://doi.org/10.3390/ijms25136901
APA StyleSingh, M. K., Shin, Y., Ju, S., Han, S., Kim, S. S., & Kang, I. (2024). Comprehensive Overview of Alzheimer’s Disease: Etiological Insights and Degradation Strategies. International Journal of Molecular Sciences, 25(13), 6901. https://doi.org/10.3390/ijms25136901