Comprehensive Characterization of Phytochemical Composition, Membrane Permeability, and Antiproliferative Activity of Juglans nigra Polyphenols
Abstract
:1. Introduction
2. Results
2.1. Qualitative Analysis of Juglans nigra Polyphenols by UHPLC-DAD-ESI-MS/MS
2.1.1. Characterization and Analysis of Flavonoids
2.1.2. Characterization and Analysis of Catechin Derivatives
2.1.3. Characterization and Analysis of Gallic Acid Derivates
2.1.4. Characterization and Analysis of Naphthoquinones and Tetralones
2.1.5. Characterization and Analysis of Caffeic Acid Derivatives
2.1.6. Characterization and Analysis of Benzoic Acid and Other Organic Derivatives
2.1.7. Characterization and Analysis of Diarylheptanoids
2.2. Structural Characterization of the Isolated Compounds
2.3. Determination of the In Vitro Antiproliferative Activity
2.4. Parallel Artificial Membrane Permeability Assay (PAMPA)
3. Discussion
4. Materials and Methods
4.1. Solvents and Chemicals
4.2. Plant Material and Sample Preparation
4.3. Isolation of Compounds from J. nigra Pericarp
4.4. NMR Conditions
4.5. UHPLC-DAD-HR-MS/MS Analyses
4.6. Quantitative UHPLC-DAD Conditions
4.7. Validation of the Quantitative Method
4.7.1. Preparation of Standard Solutions, Linearity, and Selectivity
4.7.2. Precision, Accuracy, and Repeatability
4.8. Evaluation of the In Vitro Activity of the Isolated Compounds
Cell Culturing and Evaluation of In Vitro Cytostasis on Carcinoma Cell Lines
4.9. Parallel Artificial Membrane Permeability Assay (PAMPA)
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grimshaw, J.M. Notes on the temperate species of Juglans. In International Dendrology Society Yearbook 2003; International Dendrology Society: Kington, UK, 2004; pp. 107–130. [Google Scholar]
- Nicolescu, V.-N.; Rédei, K.; Vor, T.; Bastien, J.-C.; Brus, R.; Benčať, T.; Đodan, M.; Cvjetkovic, B.; Andrašev, S.; La Porta, N.; et al. A review of black walnut (Juglans nigra L.) ecology and management in Europe. Trees–Struct. Funct. 2020, 34, 1087–1112. [Google Scholar] [CrossRef]
- Williams, R.D. Juglans nigra L. In Silvics of North America: 2 Hardwoods. Agriculture Handbook 654; Burns, R.M., Honkala, B.H., Eds.; United States Department of Agriculture Forest Service: Washington, DC, USA, 1990; Volume 2, pp. 391–399. [Google Scholar]
- Bi, D.; Zhao, Y.; Jiang, R.; Wang, Y.; Tian, Y.; Chen, X.; Bai, S.; She, G. Phytochemistry, Bioactivity and Potential Impact on Health of Juglans: The Original Plant of Walnut. Nat. Prod. Commun. 2016, 11, 869–889. [Google Scholar] [CrossRef] [PubMed]
- Jahanban-Esfahlan, A.; Ostadrahimi, A.; Tabibiazar, M.; Amarowicz, R. A Comprehensive Review on the Chemical Constituents and Functional Uses of Walnut (Juglans spp.) Husk. Int. J. Mol. Sci. 2019, 20, 3920. [Google Scholar] [CrossRef]
- Paulsen, M.T.; Ljungman, M. The natural toxin juglone causes degradation of p53 and induces rapid H2AX phosphorylation and cell death in human fibroblasts. Toxicol. Appl. Pharmacol. 2005, 209, 1–9. [Google Scholar] [CrossRef]
- Ji, Y.B.; Qu, Z.Y.; Zou, X. Juglone-induced apoptosis in human gastric cancer SGC-7901 cells via the mitochondrial pathway. Exp. Toxicol. Pathol. 2011, 63, 69–78. [Google Scholar] [CrossRef]
- Xu, H.L.; Yu, X.F.; Qu, S.C.; Zhang, R.; Qu, X.R.; Chen, Y.P.; Ma, X.Y.; Sui, D.Y. Anti-proliferative effect of Juglone from Juglans mandshurica Maxim on human leukemia cell HL-60 by inducing apoptosis through the mitochondria-dependent pathway. Eur. J. Pharmacol. 2010, 645, 14–22. [Google Scholar] [CrossRef]
- Xu, H.L.; Yu, X.F.; Qu, S.C.; Qu, X.R.; Jiang, Y.F.; Sui, D.Y. Juglone, from Juglans mandshurica Maxim, inhibits growth and induces apoptosis in human leukemia cell HL-60 through a reactive oxygen species-dependent mechanism. Food Chem. Toxicol. 2012, 50, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.T.; Li, Y.C.; Peng, M.; Xiao, D.T.; Ze, Y.S.; Zhao, L. Molecular biological mechanism of action in cancer therapies: Juglone and its derivatives, the future of development. Biomed. Pharmacother. 2022, 148, 112785. [Google Scholar] [CrossRef] [PubMed]
- Fila, C.; Metz, C.; van der Sluijs, P. Juglone Inactivates Cysteine-rich Proteins Required for Progression through Mitosis. J. Biol. Chem. 2008, 283, 21714–21724. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, B.; Jiang, Y.; Liu, Z.; Liu, Y.; Wang, X.; Kuang, H. Studies on Cytotoxic Activity against HepG-2 Cells of Naphthoquinones from Green Walnut Husks of Juglans mandshurica Maxim. Molecules 2015, 20, 15572–15588. [Google Scholar] [CrossRef]
- Zhou, Y.-Y.; Guo, S.; Wang, Y.; Song, H.-J.; Gao, H.-R.; Zhang, X.-J.; Sun, Y.-P.; Liu, Y.; Yang, B.-Y.; Kuang, H.-X. α-Tetralone glycosides from the green walnut husks of Juglans mandshurica Maxim. and their cytotoxic activities. Nat. Prod. Res. 2020, 34, 1805–1813. [Google Scholar] [CrossRef] [PubMed]
- Pavan, V.; Ribaudo, G.; Zorzan, M.; Redaelli, M.; Pezzani, R.; Mucignat-Caretta, C.; Zagotto, G. Antiproliferative activity of Juglone derivatives on rat glioma. Nat. Prod. Res. 2017, 31, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Jahng, Y.; Park, J.G. Recent Studies on Cyclic 1,7-Diarylheptanoids: Their Isolation, Structures, Biological Activities, and Chemical Synthesis. Molecules 2018, 23, 3107. [Google Scholar] [CrossRef] [PubMed]
- Alberti, Á.; Riethmüller, E.; Béni, S. Characterization of diarylheptanoids: An emerging class of bioactive natural products. J. Pharm. Biomed. Anal. 2018, 147, 13–34. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-S.; Li, G.; Kim, S.H.; Lee, C.-S.; Woo, M.-H.; Lee, S.-H.; Jhang, Y.-D.; Son, J.-K. Cytotoxic Diarylheptanoids from the Roots of Juglans mandshurica. J. Nat. Prod. 2002, 65, 1707–1708. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-X.; Di, D.-L.; Wei, X.-N.; Han, Y. Cytotoxic Diarylheptanoids from the Pericarps of Walnuts (Juglans regia). Planta Med. 2008, 74, 754–759. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Peng, X.; Zhou, J.; Zhou, M.; Ruan, H. Diarylheptanoids from the fresh pericarps of Juglans sigillata. Nat. Prod. Res. 2018, 32, 2457–2463. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.-V.; Schreiber, K.L.; Vu, D.C.; Rottinghaus, S.M.; Jackson, D.E.; Brown, C.R.; Lei, Z.; Sumner, L.W.; Coggeshall, M.V.; Lin, C.-H. Black Walnut (Juglans nigra) Extracts Inhibit Proinflammatory Cytokine Production from Lipopolysaccharide-Stimulated Human Promonocytic Cell Line U-937. Front. Pharmacol. 2019, 10, 1059. [Google Scholar] [CrossRef]
- Vu, D.C.; Park, J.; Ho, K.-V.; Sumner, L.W.; Lei, Z.; Greenlief, C.M.; Mooney, B.; Coggeshall, M.V.; Lin, C.-H. Identification of health-promoting bioactive phenolics in black walnut using cloud-based metabolomics platform. J. Food Meas. Charact. 2019, 14, 770–777. [Google Scholar] [CrossRef]
- Vu, D.C.; Vo, P.H.; Coggeshall, M.V.; Lin, C.-H. Identification and Characterization of Phenolic Compounds in Black Walnut Kernels. J. Agric. Food Chem. 2018, 66, 4503–4511. [Google Scholar] [CrossRef]
- Antora, S.A.; Ho, K.-V.; Lin, C.-H.; Thomas, A.L.; Lovell, S.T.; Krishnaswamy, K. Quantification of Vitamins, Minerals, and Amino Acids in Black Walnut (Juglans nigra). Front. Nutr. 2022, 9, 936189. [Google Scholar] [CrossRef] [PubMed]
- Rorabaugh, J.M.; Singh, A.P.; Sherrell, I.M.; Freeman, M.R.; Vorsa, N.; Fitschen, P.; Malone, C.; Maher, M.A.; Wilson, T. English and Black Walnut Phenolic Antioxidant Activity in Vitro and Following Human Nut Consumption. Food Nutr. Sci. 2011, 2, 193–200. [Google Scholar] [CrossRef]
- Bishay, D.W.; Attia, A.A.; Youssef, S.A.; Khallaf, I.S.A. Flavonoid glycosides and hypotensive effect of Juglans nigra L. cultivated in Egypt. Bull. Pharm. Sci. 2002, 25, 15–21. [Google Scholar] [CrossRef]
- Kurkin, V.A.; Zimenkina, N.I. Flavonoids and Naphthoquinones from Leaves of Juglans nigra. Chem. Nat. Compd. 2022, 58, 141–142. [Google Scholar] [CrossRef]
- Kurkin, V.A.; Zimenkina, N.I. Flavonoids and Naphthoquinones from Juglans nigra Bark. Chem. Nat. Compd. 2021, 57, 1128–1129. [Google Scholar] [CrossRef]
- Kurkin, V.A.; Zimenkina, N.I. HPLC Determination of Myricitrin in Juglans nigra L. Bark. Pharm. Chem. J. 2021, 55, 881–885. [Google Scholar] [CrossRef]
- Lal, C.; Raja, A.S.M.; Pareek, P.K.; Shakyawar, D.B.; Sharma, K.K.; Sharma, M.C. Juglans nigra: Chemical constitution and its application on Pashmina (Cashmere) fabric as a dye. J. Nat. Prod. Plant Resour. 2011, 1, 13–19. [Google Scholar]
- Binder, R.G.; Benson, M.E.; Flath, R.A. Eight 1,4-naphthoquinones from Juglans. Phytochemistry 1989, 28, 2799–2801. [Google Scholar] [CrossRef]
- Gupta, S.R.; Ravindrana, B.; Seshadri, T.R. Polyphenols of Juglans nigra. Phytochemistry 1972, 11, 2634–2636. [Google Scholar] [CrossRef]
- Ho, K.-V.; Lei, Z.; Sumner, L.W.; Coggeshall, M.V.; Hsieh, H.-Y.; Stewart, G.C.; Lin, C.-H. Identifying Antibacterial Compounds in Black Walnuts (Juglans nigra) Using a Metabolomics Approach. Metabolites 2018, 8, 58. [Google Scholar] [CrossRef]
- Abedi, P.; Yaralizadeh, M.; Fatahinia, M.; Namjoyan, F.; Nezamivand-Chegini, S.; Yaralizadeh, M. Comparison of the effects of Juglans nigra green husk and clotrimazole on Candida albicans in rats. Jundishapur J. Microbiol. 2017, 11, e58151. [Google Scholar] [CrossRef]
- Wenzel, J.; Samaniego, C.S.; Wang, L.; Burrows, L.; Tucker, E.; Dwarshuis, N.; Ammerman, M.; Zand, A. Antioxidant potential of Juglans nigra, black walnut, husks extracted using supercritical carbon dioxide with an ethanol modifier. Food Sci. Nutr. 2017, 5, 223–232. [Google Scholar] [CrossRef]
- Pozdnyakov, D.I.; Dayronas, Z.V.; Zolotych, D.S.; Geraschenko, A.D.; Shabanova, N.B. Neuroprotective effects of a 40% ethanol extract of the black walnut bark (Juglans nigra L.). Res. Res. Pharmacol. 2022, 8, 59–68. [Google Scholar] [CrossRef]
- Srebro, D.; Rajković, K.; Dožić, B.; Savić Vujović, K.; Medić Brkić, B.; Milić, P.; Vučković, S. Investigation of the Antinociceptive Activity of the Hydroethanolic Extract of Juglans nigra Leaf by the Tail-Immersion and Formalin Pain Tests in Rats. Dose-Response 2022, 20, 1–8. [Google Scholar] [CrossRef]
- Ho, K.-V.; Roy, A.; Foote, S.; Vo, P.H.; Lall, N.; Lin, C.-H. Profiling Anticancer and Antioxidant Activities of Phenolic Compounds Present in Black Walnuts (Juglans nigra) Using a High-Throughput Screening Approach. Molecules 2020, 25, 4516. [Google Scholar] [CrossRef]
- Felegyi-Tóth, C.A.; Garádi, Z.; Darcsi, A.; Csernák, O.; Boldizsár, I.; Béni, S.; Alberti, Á. Isolation and quantification of diarylheptanoids from European hornbeam (Carpinus betulus L.) and HPLC-ESI-MS/MS characterization of its antioxidative phenolics. J. Pharm. Biomed. Anal. 2022, 210, 12. [Google Scholar] [CrossRef]
- Alberti, Á.; Riethmüller, E.; Béni, S.; Kéry, Á. Evaluation of Radical Scavenging Activity of Sempervivum tectorum and Corylus avellana Extracts with Different Phenolic Composition. Nat. Prod. Commun. 2016, 11, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Bylund, D.; Norström, S.H.; Essén, S.A.; Lundström, U.S. Analysis of low molecular mass organic acids in natural waters by ion exclusion chromatography tandem mass spectrometry. J. Chromatogr. A 2007, 1176, 89–93. [Google Scholar] [CrossRef]
- Ambigaipalan, P.; de Camargo, A.C.; Shahidi, F. Phenolic Compounds of Pomegranate Byproducts (Outer Skin, Mesocarp, Divider Membrane) and Their Antioxidant Activities. J. Agric. Food Chem. 2016, 64, 6584–6604. [Google Scholar] [CrossRef]
- Singh, A.; Bajpai, V.; Kumar, S.; Sharma, K.R.; Kumar, B. Profiling of Gallic and Ellagic Acid Derivatives in Different Plant Parts of Terminalia arjuna by HPLC-ESI-QTOF-MS/MS. Nat. Prod. Commun. 2016, 11, 239–244. [Google Scholar] [CrossRef]
- Huo, J.H.; Du, X.W.; Sun, G.D.; Meng, Y.L.; Wang, W.M. Comparison of the chemical profiles of fresh-raw and dry-processed Juglans mandshurica. J. Sep. Sci. 2017, 40, 646–662. [Google Scholar] [CrossRef]
- Alvarez-Fernández, M.A.; Hornedo-Ortega, R.; Cerezo, A.B.; Troncoso, A.M.; García-Parrilla, M.C. Non-anthocyanin phenolic compounds and antioxidant activity of beverages obtained by gluconic fermentation of strawberry. Innov. Food Sci. Emerg. Technol. 2014, 26, 469–481. [Google Scholar] [CrossRef]
- Rush, M.D.; Rue, E.A.; Wong, A.; Kowalski, P.; Glinsk, J.A.; van Breemen, R.B. Rapid Determination of Procyanidins Using MALDI-ToF/ToF Mass Spectrometry. J. Agric. Food Chem. 2018, 66, 11355–11361. [Google Scholar] [CrossRef]
- Abid, M.; Yaich, H.; Cheikhrouhou, S.; Khemakhem, I.; Bouaziz, M.; Attia, H.; Ayadi, M.A. Antioxidant properties and phenolic profile characterization by LC-MS/MS of selected Tunisian pomegranate peels. J. Food Sci. Technol.-Mysore 2017, 54, 2890–2901. [Google Scholar] [CrossRef]
- García, Y.M.; Ramos, A.; de Oliveira, A.H.; de Paula, A.; de Melo, A.C.; Andrino, M.A.; Silva, M.R.; Augusti, R.; de Araújo, R.L.B.; de Lemos, E.E.P.; et al. Physicochemical Characterization and Paper Spray Mass Spectrometry Analysis of Myrciaria Floribunda (H. West ex Willd.) O. Berg Accessions. Molecules 2021, 26, 15. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Seeram, N.P. Liquid chromatography coupled with time-of-flight tandem mass spectrometry for comprehensive phenolic characterization of pomegranate fruit and flower extracts used as ingredients in botanical dietary supplements. J. Sep. Sci. 2018, 41, 3022–3033. [Google Scholar] [CrossRef]
- Jaiswal, R.; Müller, H.; Müller, A.; Karar, M.G.E.; Kuhnert, N. Identification and characterization of chlorogenic acids, chlorogenic acid glycosides and flavonoids from Lonicera henryi L. (Caprifoliaceae) leaves by LC-MSn. Phytochemistry 2014, 108, 252–263. [Google Scholar] [CrossRef]
- Clifford, M.N.; Johnston, K.L.; Knight, S.; Kuhnert, N. Hierarchical scheme for LC-MSn identification of chlorogenic acids. J. Agric. Food Chem. 2003, 51, 2900–2911. [Google Scholar] [CrossRef]
- Sheng, F.; Hu, B.Y.; Jin, Q.; Wang, J.B.; Wu, C.Y.; Luo, Z.R. The Analysis of Phenolic Compounds in Walnut Husk and Pellicle by UPLC-Q-Orbitrap HRMS and HPLC. Molecules 2021, 26, 18. [Google Scholar] [CrossRef]
- Pereira, P.; Cebola, M.J.; Oliveira, M.C.; Gil, M.G.B. Antioxidant capacity and identification of bioactive compounds of Myrtus communis L. extract obtained by ultrasound-assisted extraction. J. Food Sci. Technol.-Mysore 2017, 54, 4362–4369. [Google Scholar] [CrossRef]
- Wang, T.M.; Fu, Y.; Yu, W.J.; Chen, C.; Di, X.; Zhang, H.; Zhai, Y.J.; Chu, Z.Y.; Kang, T.G.; Chen, H.B. Identification of Polar Constituents in the Decoction of Juglans mandshurica and in the Medicated Egg Prepared with the Decoction by HPLC-Q-TOF MS2. Molecules 2017, 22, 16. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, W.; Koike, K.; Zhang, S.; Nikaido, T. New α-tetralonyl glucosides from the fruit of Juglans mandshurica. Chem. Pharm. Bull. 2004, 52, 566–569. [Google Scholar] [CrossRef] [PubMed]
- Huo, J.H.; Du, X.W.; Sun, G.D.; Dong, W.T.; Wang, W.M. Identification and characterization of major constituents in Juglans mandshurica using ultra performance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC-ESI-Q-TOF/MS). Chin. J. Nat. Med. 2018, 16, 525–545. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Riaguas, A.; Zengin, G.; Sinan, K.I.; Salazar-Mendías, C.; Llorent-Martínez, E.J. Phenolic Profile, Antioxidant Activity, and Enzyme Inhibitory Properties of Limonium delicatulum (Girard) Kuntze and Limonium quesadense Erben. J. Chem. 2020, 2020, 10. [Google Scholar] [CrossRef]
- Medic, A.; Jakopic, J.; Solar, A.; Hudina, M.; Veberic, R. Walnut (J. regia) Agro-Residues as a Rich Source of Phenolic Compounds. Biology 2021, 10, 24. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.Z.; Li, L.L.; Song, L.J.; Sun, X.T.; Yan, S.J.; Huang, W.J. Characterisation of phenolics in fruit septum of Juglans regia Linn. by ultra performance liquid chromatography coupled with Orbitrap mass spectrometer. Food Chem. 2019, 286, 669–677. [Google Scholar] [CrossRef]
- Végh, K.; Riethmüller, E.; Hosszú, L.; Darcsi, A.; Müller, J.; Alberti, Á.; Tóth, A.; Béni, S.; Könczöl, Á.; Balogh, G.T.; et al. Three newly identified lipophilic flavonoids in Tanacetum parthenium supercritical fluid extract penetrating the Blood-Brain Barrier. J. Pharm. Biomed. Anal. 2018, 149, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Rue, E.A.; Rush, M.D.; van Breemen, R.B. Procyanidins: A comprehensive review encompassing structure elucidation via mass spectrometry. Phytochem. Rev. 2018, 17, 1–16. [Google Scholar] [CrossRef]
- Jandrić, Z.; Islam, M.; Singh, D.K.; Cannavan, A. Authentication of Indian citrus fruit/fruit juices by untargeted and targeted metabolomics. Food Control 2017, 72 Pt B, 181–188. [Google Scholar] [CrossRef]
- Ye, L.H.; He, X.X.; Yan, M.Z.; Chang, Q. Identification of in vivo components in rats after oral administration of lotus leaf flavonoids using ultra fast liquid chromatography with tandem mass spectrometry. Anal. Methods 2014, 6, 6088–6094. [Google Scholar] [CrossRef]
- Raslan, M.A.; Abdel-Rahman, R.F.; Fayed, H.M.; Ogaly, H.A.; Taher, R.F. Metabolomic Profiling of Sansevieria trifasciata hort ex. Prain Leaves and Roots by HPLC-PAD-ESI/MS and its Hepatoprotective Effect via Activation of the NRF2/ARE Signaling Pathway in an Experimentally Induced Liver Fibrosis Rat Model. Egypt. J. Chem. 2021, 64, 6647–6671. [Google Scholar] [CrossRef]
- Sun, J.H.; Liu, X.J.; Yang, T.B.; Slovin, J.; Chen, P. Profiling polyphenols of two diploid strawberry (Fragaria vesca) inbred lines using UHPLC-HRMSn. Food Chem. 2014, 146, 289–298. [Google Scholar] [CrossRef]
- Serrano, C.A.; Villena, G.K.; Rodríguez, E.F. Phytochemical profile and rosmarinic acid purification from two Peruvian Lepechinia Willd. species (Salviinae, Mentheae, Lamiaceae). Sci. Rep. 2021, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Winekenstädde, D.; Angelis, A.; Waltenberger, B.; Schwaiger, S.; Tchoumtchoua, J.; König, S.; Werz, O.; Aligiannis, N.; Skaltsounis, A.L.; Stuppner, H. Phytochemical Profile of the Aerial Parts of Sedum sediforme and Anti-inflammatory Activity of Myricitrin. Nat. Prod. Commun. 2015, 10, 83–88. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, M.F.; Tua, Z.C.; Zhao, Y.; Wang, H.; Li, G.J.; Sha, X.M. α-Glucosidase inhibition, anti-glycation and antioxidant activities of Liquidambar formosana Hance leaf, and identification of phytochemical profile. S. Afr. J. Bot. 2017, 113, 239–247. [Google Scholar] [CrossRef]
- De Marchi, F.; De Rosso, M.; Flamini, R. Coupling between high-resolution mass spectrometry and focalized data-analysis methods provides the identification of new putative glycosidic non-anthocyanic flavonoids in grape. Metabolomics 2022, 18, 37. [Google Scholar] [CrossRef]
- Gu, R.H.; Rybalov, L.; Negrin, A.; Morcol, T.; Long, W.W.; Myers, A.K.; Isaac, G.; Yuk, J.; Kennelly, E.J.; Long, C.L. Metabolic Profiling of Different Parts of Acer truncatum from the Mongolian Plateau Using UPLC-QTOF-MS with Comparative Bioactivity Assays. J. Agric. Food Chem. 2019, 67, 1585–1597. [Google Scholar] [CrossRef] [PubMed]
- Montoro, P.; D’Urso, G.; Kowalczyk, A.; Tuberoso, C.I.G. LC-ESI/LTQ-Orbitrap-MS Based Metabolomics in Evaluation of Bitter Taste of Arbutus unedo Honey. Molecules 2021, 26, 2765. [Google Scholar] [CrossRef]
- Ben Said, R.; Hamed, A.I.; Mahalel, U.A.; Al-Ayed, A.S.; Kowalczyk, M.; Moldoch, J.; Oleszek, W.; Stochmal, A. Tentative Characterization of Polyphenolic Compounds in the Male Flowers of Phoenix dactylifera by Liquid Chromatography Coupled with Mass Spectrometry and DFT. Int. J. Mol. Sci. 2017, 18, 18. [Google Scholar] [CrossRef]
- Park, S.K.; Ha, J.S.; Kim, J.M.; Kang, J.Y.; Lee, D.; Guo, T.J.; Lee, U.; Kim, D.O.; Heo, H.J. Antiamnesic Effect of Broccoli (Brassica oleracea var. italica) Leaves on Amyloid Beta (Aβ)1-42-Induced Learning and Memory Impairment. J. Agric. Food Chem. 2016, 64, 3353–3361. [Google Scholar] [CrossRef]
- Hvattum, E.; Ekeberg, D. Study of the collision-induced radical cleavage of flavonoid glycosides using negative electrospray ionization tandem quadrupole mass spectrometry. J. Mass Spectrom. 2003, 38, 43–49. [Google Scholar] [CrossRef]
- Alberti, Á.; Béni, S.; Lackó, E.; Riba, P.; Al-Khrasani, M.; Kéry, Á. Characterization of phenolic compounds and antinociceptive activity of Sempervivum tectorum L. leaf juice. J. Pharm. Biomed. Anal. 2012, 70, 143–150. [Google Scholar] [CrossRef]
- Alberti, Á.; Blazics, B.; Kéry, Á. Evaluation of Sempervivum tectorum L. Flavonoids by LC and LC-MS. Chromatographia 2008, 68, S107–S111. [Google Scholar] [CrossRef]
- Trendafilova, A.; Staleva, P.; Petkova, Z.; Ivanova, V.; Evstatieva, Y.; Nikolova, D.; Rasheva, I.; Atanasov, N.; Topouzova-Hristova, T.; Veleva, R.; et al. Phytochemical Profile, Antioxidant Potential, Antimicrobial Activity, and Cytotoxicity of Dry Extract from Rosa damascena Mill. Molecules 2023, 28, 21. [Google Scholar] [CrossRef]
- Lauberte, L.; Ponomarenko, J.; Arshanitsa, A. Screening method for chromatographic analysis of diarylheptanoids in alder bark extracts. J. Pharm. Biomed. Anal. 2022, 214, 9. [Google Scholar] [CrossRef]
- Yang, H.; Ma, Y.; Ga, C.J.; Wang, B.H.; Aruhan; Lin, C.C.; Feng, H.; Wang, L.B.; Huang, J.; Wang, J.H. Five novel diarylheptanoids from green walnut husks (Juglans regia L.). Fitoterapia 2019, 134, 221–225. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, P.; Li, X.C.; Jacob, M.R.; Yang, C.R.; Zhang, Y.J. New α-Tetralone Galloylglucosides from the Fresh Pericarps of Juglans sigillata. Helv. Chim. Acta 2010, 93, 265–271. [Google Scholar] [CrossRef]
- van der Zanden, S.Y.; Qiao, X.; Neefjes, J. New insights into the activities and toxicities of the old anticancer drug doxorubicin. FEBS J. 2021, 288, 6095–6111. [Google Scholar] [CrossRef]
- Enna, S.J.; Bylund, D.B. Elsevier Science (Firm). In XPharm: The Comprehensive Pharmacology Reference; Elsevier: Amsterdam, The Netherlands, 2008; pp. 1–4. Available online: https://www.sciencedirect.com/science/referenceworks/9780080552323 (accessed on 29 February 2024).
- Bourassa, P.; Thomas, T.J.; Tajmir-Riahi, H.A. Locating the binding sites of antitumor drug tamoxifen and its metabolites with DNA. J. Pharm. Biomed. Anal. 2014, 95, 193–199. [Google Scholar] [CrossRef]
- Könczöl, Á.; Müller, J.; Földes, E.; Béni, Z.; Végh, K.; Kéry, Á.; Balogh, G.T. Applicability of a Blood-Brain Barrier Specific Artificial Membrane Permeability Assay at the Early Stage of Natural Product-Based CNS Drug Discovery. J. Nat. Prod. 2013, 76, 655–663. [Google Scholar] [CrossRef]
- Felegyi-Tóth, C.A.; Tóth, Z.; Garádi, Z.; Boldizsár, I.; Nedves, A.N.; Simon, A.; Felegyi, K.; Alberti, Á.; Riethmüller, E. Membrane Permeability and Aqueous Stability Study of Linear and Cyclic Diarylheptanoids from Corylus maxima. Pharmaceutics 2022, 14, 1250. [Google Scholar] [CrossRef]
- Čižmáriková, M.; Michalková, R.; Mirossay, L.; Mojžišová, G.; Zigová, M.; Bardelčíková, A.; Mojžiš, J. Ellagic Acid and Cancer Hallmarks: Insights from Experimental Evidence. Biomolecules. 2023, 13, 1653. [Google Scholar] [CrossRef]
- Abotaleb, M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Therapeutic Potential of Plant Phenolic Acids in the Treatment of Cancer. Biomolecules 2020, 10, 221. [Google Scholar] [CrossRef]
- Chen, J.; Li, G.; Sun, C.; Peng, F.; Yu, L.; Chen, Y.; Tan, Y.; Cao, X.; Tang, Y.; Xie, X.; et al. Chemistry, pharmacokinetics, pharmacological activities, and toxicity of Quercitrin. Phytother. Res. 2022, 36, 1545–1575. [Google Scholar] [CrossRef]
- Berek-Nagy, P.J.; Tóth, G.; Bősze, S.; Horváth, L.B.; Darcsi, A.; Csíkos, S.; Knapp, D.G.; Kovács, G.M.; Boldizsár, I. The Grass Root Endophytic Fungus Flavomyces fulophazii: An Abundant Source of Tetramic Acid and Chlorinated Azaphilone Derivatives. Phytochemistry 2021, 190, 112851. [Google Scholar] [CrossRef]
- Felegyi-Tóth, C.A.; Heilmann, T.; Buda, E.; Stipsicz, B.; Simon, A.; Boldizsár, I.; Bősze, S.; Riethmüller, E.; Alberti, Á. Evaluation of the Chemical Stability, Membrane Permeability and Antiproliferative Activity of Cyclic Diarylheptanoids from European Hornbeam (Carpinus betulus L.). Int. J. Mol. Sci. 2023, 24, 13489. [Google Scholar] [CrossRef]
- Barciszewska, A.-M.; Belter, A.; Gawrońska, I.; Giel-Pietraszuk, M.; Naskręt-Barciszewska, M.Z. Juglone in Combination with Temozolomide Shows a Promising Epigenetic Therapeutic Effect on the Glioblastoma Cell Line. Int. J. Mol. Sci. 2023, 24, 6998. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, M.; Wu, J.; Fan, F.; Zhang, X.; Li, C.; Yang, H.; Wu, Y.; Yin, Y.; Hua, W. The Anti-Glioma Effect of Juglone Derivatives through ROS Generation. Front. Pharmacol. 2022, 13, 911760. [Google Scholar] [CrossRef]
- Xiang, Z.; Guan, H.; Zhao, X.; Xie, Q.; Xie, Z.; Cai, F.; Dang, R.; Li, M.; Wang, C. Dietary gallic acid as an antioxidant: A review of its food industry applications, health benefits, bioavailability, nano-delivery systems, and drug interactions. Food Res. Int. 2024, 180, 114068. [Google Scholar] [CrossRef]
- Konishi, Y.; Kobayashi, S.; Shimizu, M. Transepithelial Transport of p-Coumaric Acid and Gallic Acid in Caco-2 Cell Monolayers. Biosci. Biotechnol. Biochem. 2003, 67, 2317–2324. [Google Scholar] [CrossRef]
- Wu, D.; Chen, Q.; Chen, X.; Han, F.; Chen, Z.; Wang, Y. The blood–brain barrier: Structure, regulation, and drug delivery. Sig. Transduct. Target. Ther. 2023, 8, 217. [Google Scholar] [CrossRef] [PubMed]
- Simu, S.; Marcovici, I.; Dobrescu, A.; Malita, D.; Dehelean, C.A.; Coricovac, D.; Olaru, F.; Draghici, G.A.; Navolan, D. Insights into the Behavior of Triple-Negative MDA-MB-231 Breast Carcinoma Cells Following the Treatment with 17β-Ethinylestradiol and Levonorgestrel. Molecules 2021, 26, 2776. [Google Scholar] [CrossRef] [PubMed]
- Roomi, M.W.; Kalinovsky, T.; Niedzwiecki, A.; Rath, M. Modulation of MMP-2 and -9 secretion by cytokines, inducers and inhibitors in human melanoma A-2058 cells. Oncol. Rep. 2017, 37, 3681–3687. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Maqueda, D.; Miralles, B.; Recio, I. HT29 Cell Line. In The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Verhoeckx, K., Cotter, P., López-Expósito, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D., Wichers, H., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 113–124. [Google Scholar] [CrossRef]
- Ogando, N.S.; Dalebout, T.J.; Zevenhoven-Dobbe, J.C.; Limpens, R.W.A.L.; van der Meer, Y.; Caly, L.; Druce, J.; de Vries, J.J.C.; Kikkert, M.; Bárcena, M.; et al. SARS-coronavirus-2 Replication in Vero E6 Cells: Replication Kinetics, Rapid Adaptation and Cytopathology. J. Gen. Virol. 2020, 101, 925–940. [Google Scholar] [CrossRef]
- O’Brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 2000, 267, 5421–5426. [Google Scholar] [CrossRef]
- Avdeef, A. Permeability—PAMPA. In Absorption and Drug Development, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 319–498. [Google Scholar]
No. | Tentative Characterization | tR (min) | [M−H]− (m/z) | Fragment Ions (m/z) | Presence of Compounds a | References | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
JnLC | JnLE | JnLM | JnBC | JnBE | JnBM | JnPC | JnPE | JnPM | ||||||
1 | caffeoyl-O-hexose | 1.05 | 341 | 387 [M+HCOOH−H]−, 377 [M+Cl]−, 179, 135, 119 | + | + | + | + | + | + | + | + | + | [38] |
2 | malic acid | 1.10 | 133 | 125, 115, 105, 99, 89, 75, 73 | + | + | + | + | + | + | [39,40] | |||
3 | monogalloyl-hexose | 1.11 | 331 | 271, 211, 169, 125 | + | + | [41] | |||||||
4 | monogalloyl-hexose | 1.21 | 331 | 271, 241, 211, 169, 125, 113, 107 | + | + | + | [41] | ||||||
5 | monogalloyl-hexose | 1.33 | 331 | 271, 241, 211, 169, 125, 107 | + | + | + | [41] | ||||||
6 | mono-HHDP-hexose | 1.41 | 481 | 301, 275, 257, 247, 229, 203 | + | + | + | + | + | [42] | ||||
7 | monogalloyl-hexose | 1.60 | 331 | 271, 211, 169 | + | + | + | + | + | [41] | ||||
8 | mono-HHDP-hexose | 1.71 | 481 | 301, 275, 257, 249, 229, 203 | + | + | + | + | + | [42] | ||||
9 | dihydroxy-naphthoquinone | 1.73 | 189 | 379 [2M−H]−, 173, 117 | + | + | + | [43] | ||||||
10 | monogalloyl-hexose | 1.85 | 331 | 663 [2M−H]−, 271, 241, 211, 169, 151, 139, 125, 123 | + | + | + | + | + | [41] | ||||
11 | monogalloyl-hexose | 2.01 | 331 | 271, 211, 169, 125 | + | [41] | ||||||||
12 | monogalloyl-hexose | 2.19 | 331 | 271, 211, 169, 125 | + | + | + | + | + | [41] | ||||
13 | monogalloyl-dihexose | 2.49 | 493 | 331, 271 | + | [44] | ||||||||
14 | gallic acid b | 2.50 | 169 | 339 [2M−H]−, 125, 113 | + | + | + | + | + | [38] | ||||
15 | monogalloyl-hexose | 2.64 | 331 | 271, 211, 169, 125 | + | + | + | + | + | [41] | ||||
16 | monogalloyl-dihexose c | 2.74 | 493 | 465, 331, 271, 211, 169 | + | + | [44] | |||||||
17 | digalloyl-hexose | 2.81 | 483 | 465, 331, 313, 271, 211, 169 | + | + | + | + | + | [42] | ||||
18 | linear diarylheptanoid hexoside c | 2.86 | 493 | 331, 313, 283 | + | + | + | [16,38] | ||||||
19 | monogalloyl-dihexose | 2.93 | 493 | 313, 301, 271, 169, 125 | + | + | + | [44] | ||||||
20 | dihydroxybenzoyl-O-hexoside | 3.28 | 315 | 153, 152, 108 | + | + | + | + | + | [38,41] | ||||
21 | A-type procyanidin dimer c | 3.30 | 575 | 401, 309, 287, 243, 169, 135, 125, 107 | + | + | + | [45] | ||||||
22 | bis-HHDP-hexose | 3.31 | 783 | 301, 275 | + | + | + | + | [46,47] | |||||
23 | methylgalloyl-O-hexose c | 3.37 | 345 | 331, 271, 211, 183 | + | + | + | + | + | + | + | [38,42] | ||
24 | digalloyl-hexose | 3.39 | 483 | 465, 331, 313, 271, 211, 169 | + | + | + | + | + | [42] | ||||
25 | galloyl-HHDP-hexose | 3.53 | 633 | 483, 301, 275, 169 | + | + | + | [46,48] | ||||||
26 | bis-HHDP-hexose | 3.61 | 783 | 633, 481, 391, 305, 301, 291, 281, 275, 273 257, 229, 201, 193, 175, 173, 169, 161, 125 | + | + | [46,47] | |||||||
27 | unknown | 3.66 | 337 | 299, 179, 174, 147, 133 | + | + | + | |||||||
28 | bis-HHDP-hexose | 3.68 | 783 | 633, 481, 391, 305, 301, 291, 281, 275, 273 257, 229, 201, 193, 175, 173, 169, 161, 125 | + | + | [46,47] | |||||||
29 | digalloyl-hexose | 3.77 | 483 | 465, 331, 313, 271, 211, 169 | + | + | + | + | + | [42] | ||||
30 | 3-O-caffeoylquinic acid | 3.81 | 353 | 707 [2M−H]−, 191, 179, 135 | + | + | + | [49,50] | ||||||
31 | galloyl-HHDP-hexose | 3.84 | 633 | 481, 463, 301, 275, 273, 169, 125 | + | + | + | + | [46,48] | |||||
32 | galloyl-HHDP-DHHDP-hexose c | 3.90 | 951 | 783, 633, 483, 475, 391 | + | [48] | ||||||||
33 | hydroxy-dimethoxybenzoyl-O-hexose c | 3.92 | 359 | 719 [2M−H]−, 197, 182 | + | + | + | + | + | + | [38,51] | |||
34 | monogalloyl-pentose | 4.01 | 301 | 415 [M+TFA−H]−, 275, 271, 241, 211, 169, 139, 125 | + | + | + | + | [38] | |||||
35 | monogalloyl-hexose | 4.02 | 331 | 663 [2M−H]−, 241, 169 | + | + | + | [41] | ||||||
36 | galloyl-HHDP-DHHDP-hexose | 4.03 | 951 | 783, 633, 483, 475, 391 | + | + | [48] | |||||||
37 | hydroxy-dimethoxybenzoyl-O-hexoside c | 4.10 | 359 | 719 [2M−H]−, 197, 182 | + | + | + | [38,51] | ||||||
38 | bis-HHDP-hexose | 4.13 | 783 | 481, 391, 301, 275, 273, 257, 249, 169, 125 | + | + | + | + | [46,47] | |||||
39 | galloyl-HHDP-DHHDP-hexose | 4.21 | 951 | 783, 673, 483, 301, 275, 239, 169 | + | + | [48] | |||||||
40 | trigalloyl-hexose | 4.28 | 635 | 465, 313, 271, 169, 125 | + | [41,48] | ||||||||
41 | 3-O-coumaroylquinic acid | 4.29 | 337 | 675 [2M−H]−, 191. 163, 119 | + | [49,50] | ||||||||
42 | galloyl-HHDP-DHHDP-hexose | 4.29 | 951 | 783, 673, 483, 301, 275, 239, 169 | + | [48] | ||||||||
43 | digalloyl-HHDP-hexose | 4.34 | 785 | 633, 453, 301, 275, 249 | + | + | [47,52] | |||||||
44 | galloyl-HHDP-hexose | 4.38 | 633 | 463, 301, 275, 249, 169, 151 | + | + | + | + | [46,48] | |||||
45 | hydroxy-dimethoxybenzoyl-O-hexoside c | 4.39 | 359 | 719 [2M−H]−, 197, 182 | + | + | + | + | + | [38,51] | ||||
46 | gallotannin | 4.42 | 829 | 414 [M−2H]2−, 673, 483, 423, 363, 301, 275, 217, 210, 183 | + | + | + | + | + | [41,42] | ||||
47 | 5-O-caffeoylquinic acid | 4.44 | 353 | 375 [M+Na−2H]−,, 191, 179, 173, 135 | + | + | [49,50] | |||||||
48 | trigalloyl-hexose | 4.48 | 635 | 465, 313, 271, 169, 125 | + | [41,48] | ||||||||
49 | digalloyl-HHDP-hexose | 4.56 | 785 | 635, 467, 465, 301, 275, 249, 183, 169 | + | [47,52] | ||||||||
50 | trihydroxy-tetralone-O-hexoside isomer c | 4.57 | 355 | 295, 235, 193, 175, 174, 165, 160, 147, 145, 131 | + | + | + | [53,54] | ||||||
51 | gallotannin | 4.60 | 451 | 565 [M+TFA−H]−, 313, 193, 169, 125 | + | + | + | [41,42] | ||||||
52 | trihydroxy-tetralone-O-hexoside isomer c | 4.62 | 355 | 401 [M+HCOOH−H]−, 193, 175, 131, 113 | + | + | + | [53,54] | ||||||
53 | methylgallic acid | 4.63 | 183 | 169, 168, 139, 137, 127, 123 | + | + | + | + | + | + | + | [38,51] | ||
54 | trigalloyl-hexose | 4.63 | 635 | 483, 331, 271, 169 | + | + | [41,48] | |||||||
55 | digalloyl-HHDP-hexose | 4.68 | 785 | 635, 467, 465, 301, 275, 249 | + | [47,52] | ||||||||
56 | galloyl-HHDP-hexose | 4.72 | 633 | 463, 301, 275, 169 | + | [46,48] | ||||||||
57 | trigalloyl-hexose | 4.72 | 635 | 465, 313, 271, 169, 125 | + | + | [41,48] | |||||||
58 | ethylgallic acid b | 4.73 | 197 | 169, 125 | + | + | + | + | [38,51] | |||||
59 | gallotannin c | 4.75 | 925 | 835, 785, 635, 509, 505, 489, 477, 467, 457, 301, 275, 179, 169, 151, 125 | + | + | + | [41,42] | ||||||
60 | digalloyl-HHDP-hexose | 4.78 | 785 | 635, 467, 465, 301, 275, 249 | + | + | + | + | + | [47,52] | ||||
61 | trigalloyl-hexose | 4.83 | 635 | 483, 465, 331, 313, 301, 271, 211, 169, 125 | + | + | + | + | [41,48] | |||||
62 | trigalloyl-hexose | 4.89 | 635 | 483, 465, 331, 313, 301, 271, 211, 169, 125 | + | + | + | + | [41,48] | |||||
63 | linear diarylheptanoid pentoside c | 4.94 | 463 | 313, 207, 175, 149 | + | + | + | [16,38] | ||||||
64 | hydroxy-naphthyl-O-hexoside c | 4.97 | 321 | 367 [M+HCOOH−H]−, 213, 201, 158 | + | + | + | + | [55] | |||||
65 | monogalloyl-dihexose | 4.98 | 493 | 391, 313, 301, 271, 211 | + | + | + | + | + | + | + | + | [44] | |
66 | trigalloyl-hexose | 5.03 | 635 | 483, 465, 313, 301, 275, 271, 211, 169 | + | + | + | + | + | + | + | [41,48] | ||
67 | gallocatechin-O-gallate/epigallocatechin-O-gallate c | 5.08 | 457 | 339, 331, 305, 169, 125 | + | + | + | + | + | + | + | [56] | ||
68 | digalloyl-HHDP-hexose | 5.05 | 785 | 831 [M+HCOOH−H]−, 635, 301, 275, 169 | + | + | + | + | + | [47,52] | ||||
69 | galloyl-methylgallic acid isomer | 5.08 | 335 | 183, 168 | + | [42] | ||||||||
70 | digalloylshikimic acid | 5.09 | 477 | 313, 169, 125 | + | + | [42] | |||||||
71 | gallotannin c | 5.14 | 925 | 835, 785, 635, 509, 489, 467, 457, 301, 275, 179, 169, 151, 125 | + | + | + | [41,42] | ||||||
72 | ellagitannin (castalagin) derivative c | 5.15 | 965 | 933, 445, 301 | + | + | [38,46] | |||||||
73 | galloyl-bis-HHDP-hexose c | 5.18 | 935 | 785, 663, 551, 467, 451, 301, 275 | + | + | + | [48] | ||||||
74 | quercetin-3-O-xyloside (reynoutrin) b | 5.21 | 433 | 301, 300 | + | + | + | + | + | + | + | + | [38] | |
75 | hydrojuglone-O-hexoside | 5.26 | 337 | 675 [2M−H]−, 451 [M+TFA−H]−, 175, 174, 173, 145, 131 | + | + | + | + | + | + | + | + | [31,53,57] | |
76 | galloyl-bis-HHDP-hexose c | 5.28 | 935 | 785, 633, 467, 433, 301, 275, 203, 175, 169 | + | + | + | [48] | ||||||
77 | myricetin-3-O-hexoside | 5.31 | 479 | 317, 316 | + | + | + | + | + | + | [39] | |||
78 | tetragalloyl-hexose c | 5.32 | 787 | 635, 465, 313, 301, 271, 169 | + | + | + | + | [48] | |||||
79 | galloyl-bis-HHDP-hexose c | 5.41 | 935 | 636 [M−2H]2−, 897, 787, 643, 467, 463, 393 | + | + | + | + | + | [48] | ||||
80 | quercetin-3-O-hexosyl-deoxyhexoside | 5.45 | 609 | 301, 300, 271, 255 | + | + | + | + | + | + | + | [38] | ||
81 | trigalloyl-HHDP-hexose c | 5.46 | 937 | 787, 491, 468, 393, 301, 275, 169 | + | + | + | [48,58] | ||||||
82 | galloyl-bis-HHDP-hexose c | 5.47 | 935 | 785, 655, 633, 493, 467, 391, 301, 275, 169 | + | [48] | ||||||||
83 | trihydroxy-tetralone | 5.51 | 193 | 307 [M+TFA−H]−, 175, 149, 113 | + | + | + | + | + | + | + | [53] | ||
84 | galloyl-bis-HHDP-hexose c | 5.54 | 935 | 785, 655, 633, 491, 301, 275, 169 | + | + | + | [48] | ||||||
85 | tetragalloyl-hexose c | 5.63 | 787 | 635, 617, 483, 465, 331, 313, 301, 275, 169 | + | + | + | + | + | [48] | ||||
86 | myricetin-3-O-rhamnoside (myricitrin) b | 5.64 | 463 | 927 [2M−H]−, 317, 316, 179, 151 | + | + | + | + | + | + | + | + | [38] | |
87 | trihydroxy-dimethoxyflavone c | 5.69 | 329 | 314, 299, 284, 195, 165, 149 | + | + | [59] | |||||||
88 | ellagic acid hexoside c | 5.69 | 463 | 301 | + | + | + | + | + | + | + | + | [38,51] | |
89 | tetragalloyl-hexose c | 5.69 | 787 | 635, 617, 465, 313, 301, 169, 125 | + | + | + | [48] | ||||||
90 | quercetin-3-O-hexoside | 5.73 | 463 | 927 [2M−H]−, 301, 300, 271, 255 | + | + | + | + | + | + | + | + | + | [39] |
91 | trigalloyl-HHDP-hexose c | 5.75 | 937 | 787, 491, 468, 393, 301, 275, 169 | + | + | + | + | + | [48,58] | ||||
92 | 1,2,3,4-tetrahydro-7,8-dihydroxy-4-oxonaphthalen-1-yl-6-O-galloyl-glucoside b,c | 5.77 | 507 | 621 [M+TFA−H]−, 331, 271, 211, 169, 125 | + | + | + | + | + | + | + | [53] | ||
93 | catechin-gallate/epicatechin-gallate c | 5.82 | 441 | 289, 195, 169, 150, 125289, 245, 229, 169, 125 | + | + | + | + | + | [60] | ||||
94 | pentagalloyl-hexose | 5.82 | 939 | 787, 469, 335, 183 | + | + | + | [41,48] | ||||||
95 | galloylquinic acid derivative | 5.83 | 573 | 525, 482, 391, 377, 343, 329, 195, 181, 165 | + | + | + | [49] | ||||||
96 | galloyl-HHDP-DHHDP-hexose c | 5.85 | 951 | 933, 507, 469, 271, 211, 331 | + | [48] | ||||||||
97 | trigalloyl-HHDP-hexose c | 5.87 | 937 | 787, 657, 301, 275, 169 | + | + | + | [48,58] | ||||||
98 | pentagalloyl-hexose | 5.88 | 939 | 787, 469, 335, 316, 213, 183, 167 | + | + | [41,48] | |||||||
99 | tetramethoxyflavone derivative c | 5.92 | 567 | 341, 326, 311, 179, 119 | + | + | + | [59] | ||||||
100 | dihydroxy-methoxyflavanone-O-hexosyl-deoxyhexoside c | 5.94 | 593 | 285 | + | + | [61] | |||||||
101 | tetragalloyl-hexose c | 5.94 | 787 | 635, 617, 465, 447, 301, 211, 169, 125 | + | + | [48] | |||||||
102 | pentagalloyl-hexose | 5.99 | 939 | 787, 769, 635, 617, 469, 301, 275, 169, 125 | + | + | + | + | + | [41,48] | ||||
103 | tetrahydroxy-methoxyflavone-O-hexuronoside c | 6.00 | 491 | 315, 300 | + | + | + | + | + | + | [62] | |||
104 | unknown | 6.07 | 361 | 343, 179, 165, 145 | + | + | + | |||||||
105 | pentagalloyl-hexose | 6.10 | 939 | 769, 617, 169, 469, 440, 425, 416, 388, 376, 297, 295, 236, 227, 214, 205, 194, 113 | + | + | + | + | + | [41,48] | ||||
106 | quercetin-3-O-rhamnoside (quercitrin) b | 6.12 | 447 | 895 [2M−H]−, 561 [M+TFA−H]−, 493 [M+HCOOH−H]−, 301, 300, 271, 255, 179 | + | + | + | + | + | + | + | + | + | [38] |
107 | galloyl-methylgallic acid isomer | 6.14 | 335 | 449 [M+TFA−H]−, 183 | + | + | + | + | [42] | |||||
108 | unknown | 6.15 | 391 | 373, 193, 183, 179, 175 | + | + | + | + | ||||||
109 | trihydroxy-methoxychalcone-O-hexoside | 6.24 | 447 | 285, 165, 119 | + | + | + | [31] | ||||||
110 | caffeoyl–feruloyltartaric acid | 6.25 | 487 | 325, 324 | + | + | + | + | + | + | [63] | |||
111 | galloyl-methylgallic acid isomer | 6.25 | 335 | 671 [2M−H]−, 183 | + | [42] | ||||||||
112 | tetramethoxyflavone-O-deoxyhexoside c | 6.30 | 487 | 341, 326, 311, 271 | + | + | [59,64] | |||||||
113 | pentagalloyl-hexose | 6.37 | 939 | 787, 735, 683, 635, 487, 301, 169 | + | + | + | [41,48] | ||||||
114 | hexahydroxy-methoxyflavone c | 6.39 | 347 | 461 [M+TFA−H]−, 249, 227, 187, 243, 229, 215, 201, 173, 145, 113 | + | + | [59] | |||||||
115 | rosmarinic acid | 6.44 | 359 | 719 [2M−H]−, 197, 179, 161, 135 | + | [65] | ||||||||
116 | myricetin-3-O-galloyl-deoxyhexoside isomer c | 6.45 | 615 | 463, 317, 179, 169, 151, 137, 125 | + | + | + | + | + | + | + | + | [66,67] | |
117 | myricetin-3-O-galloyl-deoxyhexoside isomer c | 6.54 | 615 | 317, 179, 169, 151 | + | + | + | + | + | + | + | + | [66,67] | |
118 | unknown | 6.55 | 673 | 511, 347, 329, 317, 316, 169 | + | + | ||||||||
119 | linear diarylheptanoid pentoside c | 6.55 | 463 | 331, 313, 161 | + | + | + | + | + | [16,38] | ||||
120 | kaempferol-3-O-deoxyhexoside c | 6.56 | 431 | 863 [2M−H]−, 545 [M+TFA−H]−, 285, 284, 255, 227, 161 | + | + | + | + | + | + | + | + | + | [38] |
121 | tetrahydroxy-methoxyflavanone-O-hexoside c | 6.69 | 479 | 317, 165, 151 | + | + | + | [68] | ||||||
122 | pentagalloyl-hexose | 6.70 | 939 | 787, 635, 617, 331, 301, 169, 125 | + | [41,48] | ||||||||
123 | kaempferol-3-O-galloyl-hexoside c | 6.74 | 599 | 437, 285 | + | + | [67,69] | |||||||
124 | digalloylshikimic acid | 6.79 | 477 | 313, 183, 169, 125 | + | + | [42] | |||||||
125 | gallotannin c | 6.83 | 673 | 657, 631, 630, 493, 478, 301, 275, 169, 125 | + | + | ||||||||
126 | quercetin-3-O-galloyl-deoxyhexoside isomer c | 6.91 | 599 | 301, 179, 169, 151 | + | + | + | + | + | + | + | + | [67,69] | |
127 | gallotannin c | 7.03 | 517 | 631 [M+TFA−H]−, 539[M+Na−2H]−, 469, 301, 175 | + | + | + | |||||||
128 | quercetin-3-O-galloyl-deoxyhexoside isomer c | 7.02 | 599 | 301, 179, 169, 151 | + | + | + | + | + | + | + | [67,69] | ||
129 | hydrojuglone | 7.10 | 175 | 113 | + | + | + | [57] | ||||||
130 | dihydroxy-methoxyflavanone-O-hexoside | 7.31 | 447 | 561 [M+TFA−H]−, 285, 165, 119 | + | + | + | [31,70] | ||||||
131 | trihydroxy-methoxyflavanone-O-hexoside c | 7.38 | 463 | 577 [M+TFA−H]−, 509 [M+HCOOH−H]−, 301, 165, 135 | + | + | + | |||||||
132 | caffeoylquinic acid shikimate isomer c | 7.39 | 509 | 615 [M+TFA−H]−, 353, 347, 346, 329, 317, 161 | + | + | + | + | + | [71] | ||||
133 | caffeoylquinic acid shikimate isomer c | 7.59 | 509 | 615 [M+TFA−H]−, 353, 347, 346, 329, 317, 173, 161 | + | + | + | + | + | [71] | ||||
134 | diarylheptanoid aglycone c | 7.72 | 343 | 179, 167, 165, 164, 135, 121, 119 | + | + | + | + | + | + | ||||
135 | oxo-dihydroxy-octadecenoic acid c | 7.82 | 327 | 373 [M+HCOOH−H]−, 311, 229, 221, 211, 193, 189, 183, 171, 167 | + | + | + | + | + | + | + | + | + | [72] |
136 | caffeoylquinic acid shikimate isomer c | 7.90 | 509 | 353, 347, 329, 317, 173, 171, 161 | + | + | + | + | + | + | [71] | |||
137 | caffeoylquinic acid shikimate isomer c | 8.00 | 509 | 353, 347, 329, 317, 173, 171, 161 | + | + | + | + | + | + | [71] | |||
138 | diarylheptanoid aglycone c | 8.16 | 329 | 193, 171, 139, 135, 121, 119 | + | + | + | + | + | + | ||||
139 | trihydroxy-octadecenoic acid c | 8.25 | 329 | 473, 357, 329, 313, 281, 229, 211, 171, 139 | + | + | + | + | + | + | + | + | + | [72] |
140 | juglanin G c | 8.73 | 341 | 297, 269, 267, 237, 217, 183, 182 | + | |||||||||
141 | juglone b | 8.76 | 173 | 145, 154, 128, 117, 111 | + | + | [31,38,54,55] | |||||||
142 | trihydroxy-octadecanoic acid c | 9.05 | 329 | 314, 267, 249, 207, 193, 165, 135, 119 | + | + | + | + | + | + | + | + | + | [71] |
143 | ellagic acid b | 9.06 | 301 | 165, 153 | + | + | + | + | + | + | + | + | + | [38] |
144 | unknown | 9.08 | 619 | 473, 301, 165, 135 | + | |||||||||
145 | juglanin B c | 9.31 | 327 | 313, 312, 295, 294, 272, 254, 253, 249, 241, 239, 225, 221, 211, 207, 201, 195, 189, 183 | + | + | + | + | + | + | + | + | + | [43,55] |
146 | epicatechin/catechin derivative c | 9.48 | 345 | 363 [M+Na−2H]−, 319, 317, 301, 289, 245, 189, 175, 161 | + | + | + | |||||||
147 | unknown | 9.77 | 327 | 221, 206, 153, 135, 121 | + | + | ||||||||
148 | unknown | 9.79 | 347 | 329, 327, 305, 303, 223, 221 | + | + | + | |||||||
149 | unknown | 10.01 | 285 | 165, 155, 119, 113 | + | + | + | + | ||||||
150 | trihydroxy-binaphthalene-tetrone c | 10.04 | 361 | 343, 333, 317, 316, 289, 273, 261, 249, 233 | + | + | + | [55] | ||||||
151 | diarylheptanoid aglycone c | 10.07 | 293 | 236, 221, 220, 205, 177, 164, 155, 148, 113 | + | + | + | + | + | + | ||||
152 | unknown | 10.33 | 325 | 311, 310, 253, 249, 213, 183, 167, 155, 113 | + | + | + | + | + | + | ||||
153 | unknown | 10.39 | 293 | 265, 255, 249, 209, 207, 205, 189, 167, 155, 147, 119 | + | + | + | |||||||
154 | secoisolariciresol c | 10.48 | 361 | 343, 333, 317, 316, 289, 273, 261, 249, 233 | + | + | + | [53] | ||||||
155 | unknown | 10.97 | 293 | 249, 193 | + | + | + | |||||||
155 | epicatechin/catechin derivative c | 11.61 | 345 | 367 [M+Na−2H]−, 317, 301, 289, 273, 261, 249, 245, 197, 155, 141 | + | + | ||||||||
156 | bisjuglone isomer c | 11.62 | 345 | 367, 317, 301, 289, 273, 261, 249, 245, 197, 155 | + | + | [55] | |||||||
157 | unknown | 11.64 | 293 | 285, 265, 167, 155, 113 | + | + | + | + | + | + | ||||
158 | unknown | 11.85 | 293 | 275, 171, 155, 121 | + | + | + | + | ||||||
159 | bisjuglone isomer c | 12.02 | 345 | 317, 301, 289, 273, 261, 249, 245, 155 | + | + | [55] | |||||||
160 | unknown | 12.65 | 295 | 277, 265, 249, 171, 155, 113 | + | + | + | + | + | + | + | |||
161 | trisjuglone c | 13.46 | 515 | 537 [M+Na−2H]−, 487, 471, 459, 443, 415, 401, 387, 379, 249, 155 | + | + | [55] |
Compound | [M−H]− (m/z) Experimental | [M−H]− (m/z) Calculated | Error (ppm) | Molecular Formula | Fragment ions (m/z) |
---|---|---|---|---|---|
gallic acid (14) | 169.01321 | 169.01315 | 0.060 | C7H6O5 | 125.02304 (C6H5O3) |
ethyl gallate (58) | 197.04501 | 197.04445 | 0.560 | C9H10O5 | 169.0129 (C7H5O5) |
myricetin-3-O-rhamnoside (86) | 463.08853 | 463.087102 | 1.428 | C21H20O12 | 317.02808 (C15H9O8), 316.02249 (C15H8O8), 271.02472 (C14H7O6), 178.99770 (C8H3O5) |
1,2,3,4-tetrahydro-7,8-dihydroxy-4-oxonaphthalen-1-yl-6-O- galloyl-glucoside (92) | 507.11368 | 507.113317 | 0.363 | C23H24O13 | 331.0676(C13H15O10), 271.0464 (C11H11O8), 211.02445 (C9H7O6), 169.0134 (C7H5O5), 125.0232 (C6H5O3) |
quercetin-3-O-rhamnoside (106) | 447.09314 | 447.092188 | 0.952 | C21H20O11 | 301.03458 (C15H9O7), 300.02753 (C15H8O7), 271.02484 (C14H7O6), 255.02982 (C14H7O5) |
ellagic acid (143) | 300.99902 | 300.997894 | 1.126 | C14H6O8 | - |
juglone (141) | 173.02351 | 173.023321 | 0.189 | C10H6O3 | 154.97263 (C10H3O2), 145.02817 (C9H5O2), 126.88013 (C9H3O), 116.92687 (C8H5O) |
quercetin-3-O-xyloside (74) | 433.04187 | 433.07653 | −4.668 | C20H18O11 | 300.9992 (C15H9O7) |
Compound | IC50 (µM) | |||
---|---|---|---|---|
Cell Culture | ||||
MDA-MB 231 | A2058 | HT-29 | VERO E6 Non Tumorous | |
quercetin-3-O-rhamnoside (106) | >100 | >100 | >100 | 15.9 ± 0.7 |
ellagic acid (143) | >100 | >100 | >100 (33.0% inhibition at 100 µM) | >100 |
myricetin-3-O-rhamnoside (86) | >100 | >100 | >100 | 3.7 ± 0.7 |
juglone (141) | 9.9 ± 0.7 | 13.5 ± 0.7 | 0.53 ± 0.1 | 3.7 ± 0.7 |
1,2,3,4-tetrahydro-7,8-dihydroxy-4-oxonaphthalen-1-yl-6-O- galloyl-glucoside (92) | >100 | >100 | >100 | 61.1 ± 5.3 |
gallic acid (14) | 49.8 ± 3.5 | 57.2 ± 4.7 | 71.2 ± 7.9 | 49.9 ± 2.8 |
ethyl gallate (58) | >100 | 102.5 ± 0.7 (56.4% inhibition at 100 µM) | >100 | 82.1 ± 5.7 |
quercetin-3-O-xyloside (74) | >100 | >100 | >100 | >100 |
Daunomycin | 0.7 ± 0.1 | 0.9 ± 0.1 | 0.2 ± 0.05 | 1.1 ± 0.05 |
Tamoxifen | 3.4 ± 0.7 | 1.0 ± 0.2 | n.d. | 3.5 ± 0.6 |
Compound | logPe PAMPA-BBB (n = 9) | logPe PAMPA-GI (n = 9) |
---|---|---|
gallic acid (14) | n.d. | n.d. |
ethyl gallate (58) | −5.77 ± 0.31 | −5.43 ± 0.26 |
myricetin-3-O-rhamnoside(86) | n.d. | n.d. |
1,2,3,4-tetrahydro-7,8-dihydroxy-4-oxonaphthalen-1-yl-6-O- galloyl-glucoside (92) | n.d. | n.d. |
quercetin-3-O-rhamnoside(106) | n.d. | n.d. |
ellagic acid (143) | −6.65 ± 0.50 | −6.13 ± 0.61 |
juglone (141) | −4.11 ± 0.19 | −4.41 ± 0.10 |
quercetin-3-O-xyloside(74) | n.d. | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osztie, R.; Czeglédi, T.; Ross, S.; Stipsicz, B.; Kalydi, E.; Béni, S.; Boldizsár, I.; Riethmüller, E.; Bősze, S.E.; Alberti, Á. Comprehensive Characterization of Phytochemical Composition, Membrane Permeability, and Antiproliferative Activity of Juglans nigra Polyphenols. Int. J. Mol. Sci. 2024, 25, 6930. https://doi.org/10.3390/ijms25136930
Osztie R, Czeglédi T, Ross S, Stipsicz B, Kalydi E, Béni S, Boldizsár I, Riethmüller E, Bősze SE, Alberti Á. Comprehensive Characterization of Phytochemical Composition, Membrane Permeability, and Antiproliferative Activity of Juglans nigra Polyphenols. International Journal of Molecular Sciences. 2024; 25(13):6930. https://doi.org/10.3390/ijms25136930
Chicago/Turabian StyleOsztie, Rita, Tamás Czeglédi, Sarah Ross, Bence Stipsicz, Eszter Kalydi, Szabolcs Béni, Imre Boldizsár, Eszter Riethmüller, Szilvia E. Bősze, and Ágnes Alberti. 2024. "Comprehensive Characterization of Phytochemical Composition, Membrane Permeability, and Antiproliferative Activity of Juglans nigra Polyphenols" International Journal of Molecular Sciences 25, no. 13: 6930. https://doi.org/10.3390/ijms25136930
APA StyleOsztie, R., Czeglédi, T., Ross, S., Stipsicz, B., Kalydi, E., Béni, S., Boldizsár, I., Riethmüller, E., Bősze, S. E., & Alberti, Á. (2024). Comprehensive Characterization of Phytochemical Composition, Membrane Permeability, and Antiproliferative Activity of Juglans nigra Polyphenols. International Journal of Molecular Sciences, 25(13), 6930. https://doi.org/10.3390/ijms25136930