Natural Guardians: Natural Compounds as Radioprotectors in Cancer Therapy
Abstract
:1. Introduction
2. Mechanisms of Radioprotective Effects
2.1. Antioxidant Activity
2.2. DNA Protection
2.3. Apoptosis Inhibition
2.4. Antiinflammatory Effect
3. Radiomodulation In Vitro Models
4. Radioprotection in Animal Models
4.1. Studies Performed on Mice and Rats
4.2. Studies Performed on Dogs
4.3. Studies Performed on the Guinea Pig Model
4.4. Studies Performed on Rabbits
Substance/Plant | Application | Radioprotective Dose for Mouse (M) or Rat (R) | Time of Application | Proposed Mechanism |
---|---|---|---|---|
Aegle marmelos | Intraperitoneal [95] | 15 mg/kg M body weight (optimum) | For 5 days before irradiation | Free-radical scavenging, inhibition of lipid peroxidation, elevation of GSH, and increased activity of antioxidative enzymes |
Ageratum conyzoides | Intraperitoneal [96] | 75 mg/kg M body weight (optimum) | Before irradiation | Scavenging of ROS, increased antioxidant status, and stimulation of the immune system |
Borago officinalis | Oral [97] | 50 mg/kg R body weight | For one week before irradiation and 2 weeks after irradiation | Antioxidant activity, inhibition of MDA, and prevention against GSH depletion |
3 h after irradiation and daily for 2 weeks after irradiation | ||||
Eugenol | Oral [98] | 150 mg/kg body weight (optimal) | 3 h after irradiation and daily for 2 weeks | Protection against oxidative stress, induction of detoxifying enzymes, scavenging of free radicals, inhibition of lipid peroxidation |
Genistein | Subcutaneous [99] | 200 mg/kg body weight (optimal) | 24 h before irradiation | Estrogenic activity, antioxidant properties, immunostimulatory activity and its role in signal transduction pathways where it is an inhibitor of topoisomerase, protein kinase and caspases involved in apoptotic pathways, cytokine release |
Oral [100] | 160 mg/kg M body weight | For seven consecutive days before irradiation | ||
Glycyrrhiza glabra | Intraperitoneal [101] | 4 mg/kg M body weight | Before irradiation | Scavenging of free radicals |
Hippophae rhamnoides | Intraperitoneal [102] | 30 mg/kg M body weight | 30 min before irradiation | Free-radical scavenging, acceleration of stem cell proliferation, and immunostimulation |
Curcumin | Oral [103] | 20 mg/kg M body weight (optimal) | 2 h before irradiation and 24/30/48 h after irradiation | Scavenging of free radicals and the elevation of cellular antioxidants, upregulation of CAT, glutathione transferase (GST), GSHpx, SOD, and their mRNAs, reduction in lipid peroxidation, elevation in GSH and increase in sulphydryl groups, inhibition of activation of Protein Kinase C (PKC), Mitogen-Activated Protein Kinase (MAPK), and NO [k’] |
Folic acid | Intraperitoneal [104] | 1.6 mg/kg M body weight | For 10 days after irradiation | Scavenging of free radicals, mainly by peroxynitrite scavenging and lipid peroxidation inhibition |
luteolin | Oral [105] | 10 µmol/kg M body weight | 2 h before irradiation | Scavenging potency towards free radicals |
Orgotein | Subcutaneous [106] | 400 mg/kg M body weight (optimal) | 1 to 2 h before irradiation | Anti-inflammatory action of the drug |
Panax ginseng | Intraperitoneal [107] | 50 mg/kg M body weight | 36 and 12 h before irradiation | Antioxidant and free-radical-scavenging activities of the ginsenosides |
Intraperitoneal [108] | 10 mg/kg M body weight | For 4 days before irradiation | Inhibition of initiation of free-radical processes by antiradical actions, e.g., inhibition of lipid peroxidation | |
Resveratrol | Intraperitoneal [109] | 50 and 100 mg/kg M body weight | 2 h before irradiation | Antioxidant mechanisms |
Oral [110] | 20 mg/kg M body weight (optimal) | For 7 days before irradiation and 30 days after irradiation | Antioxidant properties: scavenging free radicals, regulation of the redox of a cell by differentially affecting the expression of various oxidases and antioxidant enzymes | |
Rutin | Oral [111] | 10 mg/kg M body weight (optimal) | For 5 days before irradiation | Scavenging of free radicals resulting in decreased oxidative stress in animals, normalization of intracellular antioxidant levels, anti-lipid peroxidative effect |
Quercetin | Oral [111] | 20 mg/kg M body weight (optimal) | For 5 days before irradiation | Scavenging of free radicals resulting in decreased oxidative stress in animals, normalization of intracellular antioxidant levels, anti-lipid peroxidative effect |
5. Forms of Administration of Radioprotectants
6. Compounds of Natural Origin Showing Radioprotective Activity
6.1. Terpenes
6.2. Carotenoids
6.3. Flavonoids
6.3.1. Hesperidin
6.3.2. Apigenin
6.3.3. Tangeretin
6.3.4. Quercetin
6.4. Isoflavonoids
6.5. Anthocyanins
6.6. Tannins
6.7. Alcaloids
6.8. Coumarins
7. Plant Materials
7.1. Glycyrrhiza glabra
7.2. Aloe barbadensis
7.3. Mentha piperita
7.4. Rosemarinus officinalis
7.5. Ficus racemosa
7.6. Ginkgo biloba
7.7. Hippophae rhamnoides
7.8. Ocimum sanctum
7.9. Emblica officinalis
7.10. Spinacia oleracea
7.11. Panax ginseng
7.12. Moringa oleifera
7.13. Mesua ferrera
7.14. Spatholobus suberectus
7.15. Camelia sinensis
7.16. Nigella sativa
8. Clinical Studies
9. Methods of Extraction
10. Toxicity, Efficacy, and Cost-Effectiveness of Radioprotectors
11. Natural Radioprotectants Patents
12. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Component |
ABTS | 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical |
A549 | Adenocarcinomic Human Alveolar Basal Epithelial Cells |
ATP | Adenosine 5γ-Triphosphate |
CAT | Catalase |
CGRP-TNF-α | Calcitonin Gene-Related Peptide-Tumor Necrosis Factor Alpha |
CHO | Chinese Hamster Ovary Cell Line |
CPK | Creatine Phosphokinase |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
FDA | US Food and Drug Administration |
GSH | Glutathione |
GSHpx | Glutathione Peroxidase |
GST | Glutathione S-Transferase |
HaCaT | Human Keratinocyte |
HEI-OC1 | House Ear Institute–Organ of Corti 1 |
HEL 299 | Normal Human Lung Cells |
HepG2 | Hepatocellular Carcinoma Cell Line |
HMGB1 | High Mobility Group Box 1 |
HO-1 | Heme Oxygenase-1 |
HRE | Haberlea rhodopensis Extract |
HT-29 | Human Colorectal Adenocarcinoma Cell Line |
IGF-1 | Insulin-like Growth Factor 1 |
IL-1β | Interleukin-1 Beta |
IR | Ionizing Radiation |
MAPK | Mitogen-Activated Protein Kinase |
MCF-10A | Non-transformed Human Mammary Epithelial Cell Line |
MCF-7 | Human Breast Cancer Cells |
MDA | Malondialdehyde |
MDA-MB-231 | Breast Cancer Cell Line |
MPG | 2-Mercaptopropionyl Glycine |
Nrf2 | Nuclear Factor Erythroid 2-Related Factor 2 |
NK | Natural Killer |
NO• | Nitroxyl Anion |
Ot | Orientin |
PANC-1 | Human Pancreatic Epithelioid Carcinoma Cell Line |
PC-3 | Human Prostate Cancer Cell Line |
PPAR-γ | Peroxisome Proliferator-Activated Receptor Gamma |
PKB | Protein Kinase B |
PKC | Protein Kinase C |
RIII | Radiation-Induced Intestinal Injury |
RN | Radiation Nephropathy |
ROS | Reactive Oxygen Species |
SMGs | Submandibular Glands |
SOD | Superoxide Dismutase |
STAT | Signal Transducer and Activator of Transcription |
T47D | Human Breast Cancer Cell Line |
TGF-β | Transforming Growth Factor Beta |
TNF-α | Tumor Necrosis Factor Alpha |
VEGF | Vascular Endothelial Growth Factor |
Vc | Vicenin |
WHO | World Health Organization |
YSE | Yuca schidigera Extract |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Cancer Statistics—NCI. Available online: https://www.cancer.gov/about-cancer/understanding/statistics (accessed on 14 June 2024).
- Zhang, Z.; Liu, X.; Chen, D.; Yu, J. Radiotherapy Combined with Immunotherapy: The Dawn of Cancer Treatment. Signal Transduct. Target. Ther. 2022, 7, 258. [Google Scholar] [CrossRef] [PubMed]
- Böhmer, D.; Wirth, M.; Miller, K.; Budach, V.; Heidenreich, A.; Wiegel, T. Radiotherapy and Hormone Treatment in Prostate Cancer. Dtsch. Arztebl. Int. 2016, 113, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.; Jung, S.; Baek, S.H. Combination Therapy of Radiation and Hyperthermia, Focusing on the Synergistic Anti-Cancer Effects and Research Trends. Antioxidants 2023, 12, 924. [Google Scholar] [CrossRef]
- Jagsi, R.; Griffith, K.A.; Harris, E.E.; Wright, J.L.; Recht, A.; Taghian, A.G.; Lee, L.; Moran, M.S.; Small, W.; Johnstone, C.; et al. Omission of Radiotherapy After Breast-Conserving Surgery for Women With Breast Cancer with Low Clinical and Genomic Risk: 5-Year Outcomes of IDEA. J. Clin. Oncol. 2023, JCO2302270. [Google Scholar] [CrossRef]
- Simone, C.B., II. Focus on Oncology: The Role of Palliative Radiation Therapy in Patients with Pancreatic Cancer. Ann. Palliat. Med. 2023, 12, 1122124. [Google Scholar] [CrossRef] [PubMed]
- Jaksic, A.; Nikolov, J.; Palma, A. Special Issue: Applications of Radiation in Science and Technology. Eur. Phys. J. Spec. Top. 2023, 232, 1459–1463. [Google Scholar] [CrossRef]
- Chaudhary, P.; Janmeda, P.; Docea, A.O.; Yeskaliyeva, B.; Abdull Razis, A.F.; Modu, B.; Calina, D.; Sharifi-Rad, J. Oxidative Stress, Free Radicals and Antioxidants: Potential Crosstalk in the Pathophysiology of Human Diseases. Front. Chem. 2023, 11, 1158198. [Google Scholar] [CrossRef]
- Cox, J.D.; Ang, K.K. Radiation Oncology E-Book: Rationale, Technique, Results; Elsevier Health Sciences: Amsterdam, The Netherlands, 2009; ISBN 978-0-323-07660-9. [Google Scholar]
- Sage, E.; Shikazono, N. Radiation-Induced Clustered DNA Lesions: Repair and Mutagenesis. Free Radic. Biol. Med. 2017, 107, 125–135. [Google Scholar] [CrossRef]
- Einor, D.; Bonisoli-Alquati, A.; Costantini, D.; Mousseau, T.A.; Møller, A.P. Ionizing Radiation, Antioxidant Response and Oxidative Damage: A Meta-Analysis. Sci. Total Environ. 2016, 548–549, 463–471. [Google Scholar] [CrossRef]
- Rezaeyan, A.; Haddadi, G.H.; Hosseinzadeh, M.; Moradi, M.; Najafi, M. Radioprotective Effects of Hesperidin on Oxidative Damages and Histopathological Changes Induced by X-Irradiation in Rats Heart Tissue. J. Med. Phys. 2016, 41, 182–191. [Google Scholar] [CrossRef]
- Shaban, N.Z.; Ahmed Zahran, A.M.; El-Rashidy, F.H.; Abdo Kodous, A.S. Protective Role of Hesperidin against γ-Radiation-Induced Oxidative Stress and Apoptosis in Rat Testis. J. Biol. Res. (Thessal.) 2017, 24, 5. [Google Scholar] [CrossRef]
- Szumiel, I. Ionizing Radiation-Induced Oxidative Stress, Epigenetic Changes and Genomic Instability: The Pivotal Role of Mitochondria. Int. J. Radiat. Biol. 2015, 91, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Aranda-Rivera, A.K.; Cruz-Gregorio, A.; Arancibia-Hernández, Y.L.; Hernández-Cruz, E.Y.; Pedraza-Chaverri, J. RONS and Oxidative Stress: An Overview of Basic Concepts. Oxygen 2022, 2, 437–478. [Google Scholar] [CrossRef]
- Nuszkiewicz, J.; Woźniak, A.; Szewczyk-Golec, K. Ionizing Radiation as a Source of Oxidative Stress-The Protective Role of Melatonin and Vitamin D. Int. J. Mol. Sci. 2020, 21, 5804. [Google Scholar] [CrossRef]
- Huang, R.; Chen, H.; Liang, J.; Li, Y.; Yang, J.; Luo, C.; Tang, Y.; Ding, Y.; Liu, X.; Yuan, Q.; et al. Dual Role of Reactive Oxygen Species and Their Application in Cancer Therapy. J. Cancer 2021, 12, 5543–5561. [Google Scholar] [CrossRef]
- Zarepisheh, M.; Hong, L.; Zhou, Y.; Huang, Q.; Yang, J.; Jhanwar, G.; Pham, H.D.; Dursun, P.; Zhang, P.; Hunt, M.A.; et al. Automated and Clinically Optimal Treatment Planning for Cancer Radiotherapy. INFORMS J. Appl. Anal. 2022, 52, 69–89. [Google Scholar] [CrossRef] [PubMed]
- Komorowska, D.; Radzik, T.; Kalenik, S.; Rodacka, A. Natural Radiosensitizers in Radiotherapy: Cancer Treatment by Combining Ionizing Radiation with Resveratrol. Int. J. Mol. Sci. 2022, 23, 10627. [Google Scholar] [CrossRef]
- Singh, V.K.; Seed, T.M. Pharmacological Management of Ionizing Radiation Injuries: Current and Prospective Agents and Targeted Organ Systems. Expert. Opin. Pharmacother. 2020, 21, 317–337. [Google Scholar] [CrossRef]
- Reshi, Z.A.; Ahmad, W.; Lukatkin, A.S.; Javed, S.B. From Nature to Lab: A Review of Secondary Metabolite Biosynthetic Pathways, Environmental Influences, and In Vitro Approaches. Metabolites 2023, 13, 895. [Google Scholar] [CrossRef]
- Hosseini, M.; Pereira, D.M. The Chemical Space of Terpenes: Insights from Data Science and AI. Pharmaceuticals 2023, 16, 202. [Google Scholar] [CrossRef] [PubMed]
- Masyita, A.; Mustika Sari, R.; Dwi Astuti, A.; Yasir, B.; Rahma Rumata, N.; Emran, T.B.; Nainu, F.; Simal-Gandara, J. Terpenes and Terpenoids as Main Bioactive Compounds of Essential Oils, Their Roles in Human Health and Potential Application as Natural Food Preservatives. Food Chem. X 2022, 13, 100217. [Google Scholar] [CrossRef] [PubMed]
- Proshkina, E.; Plyusnin, S.; Babak, T.; Lashmanova, E.; Maganova, F.; Koval, L.; Platonova, E.; Shaposhnikov, M.; Moskalev, A. Terpenoids as Potential Geroprotectors. Antioxidants 2020, 9, 529. [Google Scholar] [CrossRef]
- Liga, S.; Paul, C.; Péter, F. Flavonoids: Overview of Biosynthesis, Biological Activity, and Current Extraction Techniques. Plants 2023, 12, 2732. [Google Scholar] [CrossRef] [PubMed]
- Duta-Bratu, C.-G.; Nitulescu, G.M.; Mihai, D.P.; Olaru, O.T. Resveratrol and Other Natural Oligomeric Stilbenoid Compounds and Their Therapeutic Applications. Plants 2023, 12, 2935. [Google Scholar] [CrossRef] [PubMed]
- Heghes, S.C.; Vostinaru, O.; Mogosan, C.; Miere, D.; Iuga, C.A.; Filip, L. Safety Profile of Nutraceuticals Rich in Coumarins: An Update. Front. Pharmacol. 2022, 13, 803338. [Google Scholar] [CrossRef] [PubMed]
- Deng, P.; Cui, B.; Zhu, H.; Phommakoun, B.; Zhang, D.; Li, Y.; Zhao, F.; Zhao, Z. Accumulation Pattern of Amygdalin and Prunasin and Its Correlation with Fruit and Kernel Agronomic Characteristics during Apricot (Prunus armeniaca L.) Kernel Development. Foods 2021, 10, 397. [Google Scholar] [CrossRef] [PubMed]
- Urriolabeitia, A.; De Sancho, D.; López, X. Influence of the Nonprotein Amino Acid Mimosine in Peptide Conformational Propensities from Novel Amber Force Field Parameters. J. Phys. Chem. B 2022, 126, 2959–2967. [Google Scholar] [CrossRef]
- Faisal, S.; Badshah, S.L.; Kubra, B.; Emwas, A.-H.; Jaremko, M. Alkaloids as Potential Antivirals. A Comprehensive Review. Nat. Prod. Bioprospect. 2023, 13, 4. [Google Scholar] [CrossRef] [PubMed]
- Mahn, A.; Castillo, A. Potential of Sulforaphane as a Natural Immune System Enhancer: A Review. Molecules 2021, 26, 752. [Google Scholar] [CrossRef]
- Liao, A.; Li, L.; Wang, T.; Lu, A.; Wang, Z.; Wang, Q. Discovery of Phytoalexin Camalexin and Its Derivatives as Novel Antiviral and Antiphytopathogenic-Fungus Agents. J. Agric. Food Chem. 2022, 70, 2554–2563. [Google Scholar] [CrossRef] [PubMed]
- Seregin, I.V.; Kozhevnikova, A.D. Phytochelatins: Sulfur-Containing Metal(Loid)-Chelating Ligands in Plants. Int. J. Mol. Sci. 2023, 24, 2430. [Google Scholar] [CrossRef] [PubMed]
- Yousefvand, S.; Fattahi, F.; Hosseini, S.M.; Urech, K.; Schaller, G. Viscotoxin and Lectin Content in Foliage and Fruit of Viscum album L. on the Main Host Trees of Hyrcanian Forests. Sci. Rep. 2022, 12, 10383. [Google Scholar] [CrossRef] [PubMed]
- Dowlath, M.J.H.; Karuppannan, S.K.; Sinha, P.; Dowlath, N.S.; Arunachalam, K.D.; Ravindran, B.; Chang, S.W.; Nguyen-Tri, P.; Nguyen, D.D. Effects of Radiation and Role of Plants in Radioprotection: A Critical Review. Sci. Total Environ. 2021, 779, 146431. [Google Scholar] [CrossRef] [PubMed]
- Arora, R.; Gupta, D.; Chawla, R.; Sagar, R.K.; Sharma, A.; Kumar, R.; Prasad, J.; Singh, S.; Samanta, N.; Sharma, R. Radioprotection by Plant Products: Present Status and Future Prospects. Phytother. Res. 2005, 19, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Tavakkoli, A.; Iranshahi, M.; Hasheminezhad, S.H.; Hayes, A.W.; Karimi, G. The Neuroprotective Activities of Natural Products Through the Nrf2 Upregulation. Phytother. Res. 2019, 33, 2256–2273. [Google Scholar] [CrossRef]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive Oxygen Species, Toxicity, Oxidative Stress, and Antioxidants: Chronic Diseases and Aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef] [PubMed]
- de Amorim, E.L.C.; Cruz, P.; Filho, J.V.; Silva, I.C.; Costa, U.; Oliveira, J.; Medeiros, M.S.; Diniz, M.; Machado, K.; Xavier, A.C.; et al. Brazilian Caatinga: Phenolic Contents, Industrial and Therapeutic Applications. In Phenolic Compounds—Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications; IntechOpen: London, UK, 2021; ISBN 978-1-83969-347-2. [Google Scholar]
- Mamun, A.A.; Shao, C.; Geng, P.; Wang, S.; Xiao, J. Polyphenols Targeting NF-κB Pathway in Neurological Disorders: What We Know So Far? Int. J. Biol. Sci. 2024, 20, 1332–1355. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Z.; Cao, Y.; Lu, W.; Kuang, L.; Hua, D. Strategy for Highly Efficient Radioprotection by a Selenium-Containing Polymeric Drug with Low Toxicity and Long Circulation. Acs Appl. Mater. Interfaces 2020, 12, 44534–44540. [Google Scholar] [CrossRef]
- Saralamma, V.V.G.; Kim, E.H.; Lee, H.J.; Raha, S.; Lee, W.S.; Heo, J.D.; Lee, S.J.; Won, C.-K.; Kim, G.-S. Flavonoids: A New Generation Molecule to Stimulate Programmed Cell Deaths in Cancer Cells. J. Biomed. Transl. Res. 2017, 18, 30–37. [Google Scholar] [CrossRef]
- Cannan, W.J.; Pederson, D.S. Mechanisms and Consequences of Double-Strand DNA Break Formation in Chromatin. J. Cell Physiol. 2016, 231, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Toulany, M. Targeting DNA Double-Strand Break Repair Pathways to Improve Radiotherapy Response. Genes 2019, 10, 25. [Google Scholar] [CrossRef] [PubMed]
- Koukourakis, M.I. Radiation Damage and Radioprotectants: New Concepts in the Era of Molecular Medicine. Br. J. Radiol. 2012, 85, 313–330. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Collins, L.B.; Chen, T.; Herr, N.; Takeda, S.; Sun, W.; Swenberg, J.A.; Nakamura, J. Oxidative Stress at Low Levels Can Induce Clustered DNA Lesions Leading to NHEJ Mediated Mutations. Oncotarget 2016, 7, 25377–25390. [Google Scholar] [CrossRef] [PubMed]
- Lagunas-Rangel, F.A.; Bermúdez-Cruz, R.M. Natural Compounds That Target DNA Repair Pathways and Their Therapeutic Potential to Counteract Cancer Cells. Front. Oncol. 2020, 10, 598174. [Google Scholar] [CrossRef] [PubMed]
- Biau, J.; Chautard, E.; Verrelle, P.; Dutreix, M. Altering DNA Repair to Improve Radiation Therapy: Specific and Multiple Pathway Targeting. Front. Oncol. 2019, 9, 1009. [Google Scholar] [CrossRef] [PubMed]
- Merlin, J.P.J.; Mathavarajah, S.; Dellaire, G.; Murphy, K.P.J.; Rupasinghe, H.P.V. A Dietary Antioxidant Formulation Ameliorates DNA Damage Caused by γ-Irradiation in Normal Human Bronchial Epithelial Cells In Vitro. Antioxidants 2022, 11, 1407. [Google Scholar] [CrossRef] [PubMed]
- Elmore, S. Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huang, Y.; Zheng, L.; Wu, H.; Zou, B.; Xu, Y. Exploring Natural Products as Radioprotective Agents for Cancer Therapy: Mechanisms, Challenges, and Opportunities. Cancers 2023, 15, 3585. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, Y.; Zhou, C.; Mei, W.; Zeng, C. PI3K/Akt/mTOR Pathway and Its Role in Cancer Therapeutics: Are We Making Headway? Front. Oncol. 2022, 12, 819128. [Google Scholar] [CrossRef]
- Williams, A.B.; Schumacher, B. P53 in the DNA-Damage-Repair Process. Cold Spring Harb. Perspect. Med. 2016, 6, a026070. [Google Scholar] [CrossRef]
- Morita, A.; Takahashi, I.; Sasatani, M.; Aoki, S.; Wang, B.; Ariyasu, S.; Tanaka, K.; Yamaguchi, T.; Sawa, A.; Nishi, Y.; et al. A Chemical Modulator of P53 Transactivation That Acts as a Radioprotective Agonist. Mol. Cancer Ther. 2017, 17, 432–442. [Google Scholar] [CrossRef]
- Begum, N.; Prasad, N.R. Apigenin, a Dietary Antioxidant, Modulates Gamma Radiation-Induced Oxidative Damages in Human Peripheral Blood Lymphocytes. Biomed. Prev. Nutr. 2012, 2, 16–24. [Google Scholar] [CrossRef]
- Qian, S.; Wei, Z.; Yang, W.; Huang, J.; Yang, Y.; Wang, J. The Role of BCL-2 Family Proteins in Regulating Apoptosis and Cancer Therapy. Front. Oncol. 2022, 12, 985363. [Google Scholar] [CrossRef]
- Tlili, H.; Macovei, A.; Buonocore, D.; Lanzafame, M.; Najjaa, H.; Lombardi, A.; Pagano, A.; Dossena, M.; Verri, M.; Arfa, A.B.; et al. The Polyphenol/Saponin-Rich Rhus Tripartita Extract Has an Apoptotic Effect on THP-1 Cells through the PI3K/AKT/mTOR Signaling Pathway. BMC Complement. Med. Ther. 2021, 21, 153. [Google Scholar] [CrossRef]
- Barker, H.E.; Paget, J.T.E.; Khan, A.A.; Harrington, K.J. The Tumour Microenvironment after Radiotherapy: Mechanisms of Resistance and Recurrence. Nat. Rev. Cancer 2015, 15, 409–425. [Google Scholar] [CrossRef]
- Arulselvan, P.; Fard, M.T.; Tan, W.S.; Gothai, S.; Fakurazi, S.; Norhaizan, M.E.; Kumar, S.S. Role of Antioxidants and Natural Products in Inflammation. Oxid. Med. Cell Longev. 2016, 2016, 5276130. [Google Scholar] [CrossRef]
- Jeong, H.; Bok, S.; Hong, B.-J.; Choi, H.-S.; Ahn, G.-O. Radiation-Induced Immune Responses: Mechanisms and Therapeutic Perspectives. Blood Res. 2016, 51, 157–163. [Google Scholar] [CrossRef]
- Gans, I.; El Abiad, J.M.; James, A.W.; Levin, A.S.; Morris, C.D. Administration of TGF-ß Inhibitor Mitigates Radiation-Induced Fibrosis in a Mouse Model. Clin. Orthop. Relat. Res. 2021, 479, 468–474. [Google Scholar] [CrossRef]
- Baselet, B.; Sonveaux, P.; Baatout, S.; Aerts, A. Pathological Effects of Ionizing Radiation: Endothelial Activation and Dysfunction. Cell Mol. Life Sci. 2018, 76, 699–728. [Google Scholar] [CrossRef]
- Jit, B.P.; Pradhan, B.; Dash, R.; Bhuyan, P.P.; Behera, C.; Behera, R.K.; Sharma, A.; Alcaraz, M.; Jena, M. Phytochemicals: Potential Therapeutic Modulators of Radiation Induced Signaling Pathways. Antioxidants 2021, 11, 49. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, K.; Wang, J.; Zheng, Z.; Luo, Y.; Zhou, W.; Zhuo, Z.; Liang, J.; Sha, W.; Chen, H. Protective Effects of Crocetin against Radiation-Induced Injury in Intestinal Epithelial Cells. Biomed. Res. Int. 2020, 2020, 2906053. [Google Scholar] [CrossRef]
- Gramatyka, M. The Radioprotective Activity of Resveratrol—Metabolomic Point of View. Metabolites 2022, 12, 478. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Bahreyni Toossi, M.T.; Vaziri-Nezamdoost, F.; Khademi, S.; Darroudi, M.; Azimian, H. Comparison of Radioprotective Effects of Colloidal Synthesis of Selenium Nanoparticles in Aqueous Rosemary Extract and Rosemary in Chinese Hamster Ovary (CHO) Cells. J. Nanostructures 2022, 12, 711–717. [Google Scholar] [CrossRef]
- Al Fares, E.; Sanikidze, T.; Kalmakhelidze, S.; Topuria, D.; Mansi, L.; Kitson, S.; Molazadeh, M. The Alleviating Effect of Herniarin Against Ionizing Radiation-Induced Genotoxicity and Cytotoxicity in Human Peripheral Blood Lymphocytes. Curr. Radiopharm. 2022, 15, 141–147. [Google Scholar] [CrossRef]
- Kim, H.M.; Kim, S.H.; Kang, B.S. Radioprotective Effects of Delphinidin on Normal Human Lung Cells against Proton Beam Exposure. Nutr. Res. Pr. 2018, 12, 41–46. [Google Scholar] [CrossRef]
- Chumsuwan, N.; Khongkow, P.; Kaewsuwan, S.; Kanokwiroon, K. Interruptin C, a Radioprotective Agent, Derived from Cyclosorus terminans Protect Normal Breast MCF-10A and Human Keratinocyte HaCaT Cells against Radiation-Induced Damage. Molecules 2022, 27, 3298. [Google Scholar] [CrossRef]
- Staneva, D.; Dimitrova, N.; Popov, B.; Alexandrova, A.; Georgieva, M.; Miloshev, G. Haberlea rhodopensis Extract Tunes the Cellular Response to Stress by Modulating DNA Damage, Redox Components, and Gene Expression. Int. J. Mol. Sci. 2023, 24, 15964. [Google Scholar] [CrossRef]
- Zhang, Q.-W.; Lin, L.-G.; Ye, W.-C. Techniques for Extraction and Isolation of Natural Products: A Comprehensive Review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef]
- Du, Y.; Jia, C.; Liu, Y.; Li, Y.; Wang, J.; Sun, K. Isorhamnetin Enhances the Radiosensitivity of A549 Cells Through Interleukin-13 and the NF-κB Signaling Pathway. Front. Pharmacol. 2021, 11, 610772. [Google Scholar] [CrossRef]
- Abolhassani, Y.; Mirzaei, S.; Nejabat, M.; Talebian, S.; Gholamhosseinian, H.; Iranshahi, M.; Rassouli, F.B.; Jamialahmadi, K. 7-Geranyloxcycoumarin Enhances Radio Sensitivity in Human Prostate Cancer Cells. Mol. Biol. Rep. 2023, 50, 5709–5717. [Google Scholar] [CrossRef]
- Al Bitar, S.; Ballout, F.; Monzer, A.; Kanso, M.; Saheb, N.; Mukherji, D.; Faraj, W.; Tawil, A.; Doughan, S.; Hussein, M.; et al. Thymoquinone Radiosensitizes Human Colorectal Cancer Cells in 2D and 3D Culture Models. Cancers 2022, 14, 1363. [Google Scholar] [CrossRef]
- Mahdizade Valojerdi, F.; Goliaei, B.; Rezakhani, N.; Nikoofar, A.; Keshmiri Neghab, H.; Soheilifar, M.H.; Bigdeli, B. In vitro radiosensitization of T47D and MDA-MB-231 breast cancer cells with the neoflavonoid dalbergin. Middle East J. Cancer 2023, 14, 205–218. [Google Scholar]
- Hassan, A.A.; Abdel-Rafei, M.K.; Sherif, N.H.; Askar, M.A.; Thabet, N.M. Antitumor and Radiosensitizing Effects of Anagallis Arvensis Hydromethanolic Extract on Breast Cancer Cells through Upregulating FOXO3, Let-7, and Mir-421 Expression. Pharmacol. Res.-Mod. Chin. Med. 2022, 5, 100179. [Google Scholar] [CrossRef]
- Elbakry, M.M.M.; ElBakary, N.M.; Hagag, S.A.; Hemida, E.H.A. Pomegranate Peel Extract Sensitizes Hepatocellular Carcinoma Cells to Ionizing Radiation, Induces Apoptosis and Inhibits MAPK, JAK/STAT3, β-Catenin/NOTCH, and SOCS3 Signaling. Integr. Cancer Ther. 2023, 22, 15347354221151021. [Google Scholar] [CrossRef]
- Jing, Z.; Li, M.; Wang, H.; Yang, Z.; Zhou, S.; Ma, J.; Meng, E.; Zhang, H.; Liang, W.; Hu, W.; et al. Gallic Acid-Gold Nanoparticles Enhance Radiation-Induced Cell Death of Human Glioma U251 Cells. IUBMB Life 2021, 73, 398–407. [Google Scholar] [CrossRef]
- Pacifico, S.; Bláha, P.; Faramarzi, S.; Fede, F.; Michaličková, K.; Piccolella, S.; Ricciardi, V.; Manti, L. Differential Radiomodulating Action of Olea europaea L. Cv. Caiazzana Leaf Extract on Human Normal and Cancer Cells: A Joint Chemical and Radiobiological Approach. Antioxidants 2022, 11, 1603. [Google Scholar] [CrossRef]
- Yang, E.S.; Choi, M.J.; Kim, J.H.; Choi, K.S.; Kwon, T.K. Combination of Withaferin A and X-Ray Irradiation Enhances Apoptosis in U937 Cells. Toxicol. In Vitro 2011, 25, 1803–1810. [Google Scholar] [CrossRef]
- Assayed, M.E. Radioprotective Effects of Black Seed (Nigella Sativa) Oil against Hemopoietic Damage and Immunosuppression in Gamma-Irradiated Rats. Immunopharmacol. Immunotoxicol. 2010, 32, 284–296. [Google Scholar] [CrossRef]
- Devi, P.U.; Bisht, K.S.; Vinitha, M. A Comparative Study of Radioprotection by Ocimum Flavonoids and Synthetic Aminothiol Protectors in the Mouse. Br. J. Radiol. 1998, 71, 782–784. [Google Scholar] [CrossRef]
- Tripathi, Y.B.; Singh, A.V. Role of Rubia cordifolia Linn. in Radiation Protection. Indian. J. Exp. Biol. 2007, 45, 620–625. [Google Scholar] [PubMed]
- Bradley, E.W.; Zook, B.C.; Casarett, G.W.; Deye, J.A.; Adoff, L.M.; Rogers, C.C. Neoplasia in Fast Neutron-Irradiated Beagles. J. Natl. Cancer Inst. 1981, 67, 729–738. [Google Scholar] [PubMed]
- Zook, B.C.; Bradley, E.W.; Casarett, G.W.; Rogers, C.C. Pathologic Changes in the Hearts of Beagles Irradiated with Fractionated Fast Neutrons or Photons. Radiat. Res. 1981, 88, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Giese, A.P.J.; Guarnaschelli, J.G.; Ward, J.A.; Choo, D.I.; Riazuddin, S.; Ahmed, Z.M. Radioprotective Effect of Aminothiol PrC-210 on Irradiated Inner Ear of Guinea Pig. PLoS ONE 2015, 10, e0143606. [Google Scholar] [CrossRef] [PubMed]
- Mujica-Mota, M.A.; Salehi, P.; Devic, S.; Daniel, S.J. Safety and Otoprotection of Metformin in Radiation-Induced Sensorineural Hearing Loss in the Guinea Pig. Otolaryngol. Head. Neck Surg. 2014, 150, 859–865. [Google Scholar] [CrossRef] [PubMed]
- Lotz, S.; Caselitz, J.; Tschakert, H.; Rehpenning, W.; Seifert, G. Radioprotection of Minipig Salivary Glands by Orciprenaline-Carbachol. An Ultrastructural and Semiquantitative Light Microscopic Study. Virchows Arch. A Pathol. Anat. Histopathol. 1990, 417, 119–128. [Google Scholar] [CrossRef]
- Tanchev, S.; Georgieva, S.; Gencheva, D.; Sotirov, L.; Koynarski, T.; Petrov, V. Life Duration of Inbred and Outbreed Rabbits, Irradiated with Gamma Rays. Bulg. J. Agric. Sci. 2015, 21, 404–408. [Google Scholar]
- Enginar, H.; Avcı, G.; Eryavuz, A.; Kaya, E.; Kucukkurt, I.; Fidan, A.F. Effect of Yucca Schidigera Extract on Lipid Pe Roxidation and Antioxidant Activity in Rabbits Ex Posed to γ-Radiation. Rev. De. Med. Vet. 2006, 157, 415. [Google Scholar]
- Georgieva, S.; Popov, B.; Bonev, G. Radioprotective Effect of Haberlea rhodopensis (Friv.) Leaf Extract on Gamma-Radiation-Induced DNA Damage, Lipid Peroxidation and Antioxidant Levels in Rabbit Blood. Indian. J. Exp. Biol. 2013, 51, 29–36. [Google Scholar]
- Penchev, G.; Georgieva, S.; Popov, B. Protection against Radiation-Induced Testicular Injury in Rabbits by Haberlea rhodopensis (a Balkan Ressurection Plant) Extract. Bulg. J. Vet. Med. 2018, 21, 313–321. [Google Scholar] [CrossRef]
- Vasin, M.V.; Semenov, L.F.; Suvorov, N.N.; Antipov, V.V.; Ushakov, I.B.; Ilyin, L.A.; Lapin, B.A. Protective Effect and the Therapeutic Index of Indralin in Juvenile Rhesus Monkeys. J. Radiat. Res. 2014, 55, 1048–1055. [Google Scholar] [CrossRef]
- Jagetia, G.C.; Venkatesh, P.; Baliga, M.S. Evaluation of the Radioprotective Effect of Bael Leaf (Aegle marmelos) Extract in Mice. Int. J. Radiat. Biol. 2004, 80, 281–290. [Google Scholar] [CrossRef]
- Jagetia, G.C.; Shirwaikar, A.; Rao, S.K.; Bhilegaonkar, P.M. Evaluation of the Radioprotective Effect of Ageratum conyzoides Linn. Extract in Mice Exposed to Different Doses of Gamma Radiation. J. Pharm. Pharmacol. 2003, 55, 1151–1158. [Google Scholar] [CrossRef]
- Khattab, H.A.H.; Abdallah, I.Z.A.; Yousef, F.M.; Huwait, E.A. Efficiency of borage seeds oil against gamma irradiation-induced hepatotoxicity in male rats: Possible antioxidant activity. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 169–179. [Google Scholar] [CrossRef]
- Tiku, A.B.; Abraham, S.K.; Kale, R.K. Eugenol as an in Vivo Radioprotective Agent. J. Radiat. Res. 2004, 45, 435–440. [Google Scholar] [CrossRef]
- Landauer, M.R.; Srinivasan, V.; Seed, T.M. Genistein Treatment Protects Mice from Ionizing Radiation Injury. J. Appl. Toxicol. 2003, 23, 379–385. [Google Scholar] [CrossRef]
- Zhou, Y.; Mi, M.-T. Genistein Stimulates Hematopoiesis and Increases Survival in Irradiated Mice. J. Radiat. Res. 2005, 46, 425–433. [Google Scholar] [CrossRef]
- Gandhi, N.M.; Maurya, D.K.; Salvi, V.; Kapoor, S.; Mukherjee, T.; Nair, C.K.K. Radioprotection of DNA by Glycyrrhizic Acid through Scavenging Free Radicals. J. Radiat. Res. 2004, 45, 461–468. [Google Scholar] [CrossRef]
- Goel, H.C.; Prasad, J.; Singh, S.; Sagar, R.K.; Kumar, I.P.; Sinha, A.K. Radioprotection by a Herbal Preparation of Hippophae rhamnoides, RH-3, against Whole Body Lethal Irradiation in Mice. Phytomedicine 2002, 9, 15–25. [Google Scholar] [CrossRef]
- Abraham, S.K.; Sarma, L.; Kesavan, P.C. Protective Effects of Chlorogenic Acid, Curcumin and Beta-Carotene against Gamma-Radiation-Induced in Vivo Chromosomal Damage. Mutat. Res. 1993, 303, 109–112. [Google Scholar] [CrossRef]
- Pote, M.S.; Gandhi, N.M.; Mishra, K.P. Antiatherogenic and Radioprotective Role of Folic Acid in Whole Body Gamma-Irradiated Mice. Mol. Cell Biochem. 2006, 292, 19–25. [Google Scholar] [CrossRef]
- Shimoi, K.; Masuda, S.; Shen, B.; Furugori, M.; Kinae, N. Radioprotective Effects of Antioxidative Plant Flavonoids in Mice. Mutat. Res. 1996, 350, 153–161. [Google Scholar] [CrossRef]
- Cividalli, A.; Adami, M.; De Tomasi, F.; Palmisano, L.; Pardini, M.C.; Spanò, M.; Mauro, F. Orgotein as a Radioprotector in Normal Tissues. Experiments on Mouse Skin and a Murine Adenocarcinoma. Acta Radiol. Oncol. 1985, 24, 273–277. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, S.R.; Kim, J.C.; Kang, C.M.; Lee, Y.S.; Jo, S.K.; Kim, T.H.; Jang, J.S.; Nah, S.Y.; Kim, S.H. In Vivo Radioprotective Effect of Panax Ginseng C.A. Meyer and Identification of Active Ginsenosides. Phytother. Res. 2006, 20, 392–395. [Google Scholar] [CrossRef]
- Kumar, M.; Sharma, M.K.; Saxena, P.S.; Kumar, A. Radioprotective Effect of Panax Ginseng on the Phosphatases and Lipid Peroxidation Level in Testes of Swiss Albino Mice. Biol. Pharm. Bull. 2003, 26, 308–312. [Google Scholar] [CrossRef]
- Koohian, F.; Shanei, A.; Shahbazi-Gahrouei, D.; Hejazi, S.H.; Moradi, M.-T. The Radioprotective Effect of Resveratrol Against Genotoxicity Induced by γ-Irradiation in Mice Blood Lymphocytes. Dose Response 2017, 15, 1559325817705699. [Google Scholar] [CrossRef]
- Zhang, H.; Zhai, Z.; Wang, Y.; Zhang, J.; Wu, H.; Wang, Y.; Li, C.; Li, D.; Lu, L.; Wang, X.; et al. Resveratrol Ameliorates Ionizing Irradiation-Induced Long-Term Hematopoietic Stem Cell Injury in Mice. Free Radic. Biol. Med. 2013, 54, 40–50. [Google Scholar] [CrossRef]
- Patil, S.L.; Somashekarappa, H.; Rajashekhar, K. Radiomodulatory Role of Rutin and Quercetin in Swiss Albino Mice Exposed to the Whole Body Gamma Radiation. Indian. J. Nucl. Med. 2012, 27, 237–242. [Google Scholar] [CrossRef]
- Hirsch, E.; Vass, P.; Démuth, B.; Petho, Z.; Bitay, E.; Andersen, S.K.; Vigh, T.; Verreck, G.; Molnar, K.; Nagy, Z.; et al. Electrospinning Scale-Up and Formulation Development of PVA Nanofibers Aiming Oral Delivery of Biopharmaceuticals. Express Polym. Lett. 2019, 13, 590–603. [Google Scholar] [CrossRef]
- Leite, C.B.S.; Coelho, J.M.; Muehlmann, L.A.; Azevedo, R.B. Skin Delivery of Glucosamine and Chondroitin Sulphates—A Perspective on the Conservative Treatment for Osteoarthritis of the Knee. J. Biosci. Med. 2017, 5, 11–20. [Google Scholar] [CrossRef]
- Moghaddam, S.S.; Momeni, M.; Atabaki, S.M.; Shabestari, T.M.; Boustanshenas, M.; Afshar, M.; Roham, M. Topical Treatment of Second-Degree Burn Wounds With Lactobacillus Plantarum Supernatant: Phase I Trial. Iran. J. Pathol. 2022, 17, 460. [Google Scholar] [CrossRef]
- Moroz, E.; Matoori, S.; Leroux, J. Oral Delivery of Macromolecular Drugs: Where We Are After Almost 100 Years of Attempts. Adv. Drug Deliv. Rev. 2016, 101, 108–121. [Google Scholar] [CrossRef]
- Mayandi, V.; Chua, A.W.C.; Dhand, C.; Lim, F.P.; Aung, T.T.; Harini, S.; Dwivedi, N.; Periayah, M.H.; Sridhar, S.; Fazil, M.H.; et al. Multifunctional Antimicrobial Nanofiber Dressings Containing Ε-Polylysine for the Eradication of Bacterial Bioburden and Promotion of Wound Healing in Critically Colonized Wounds. Acs Appl. Mater. Interfaces 2020, 12, 15989–16005. [Google Scholar] [CrossRef]
- Yildiz, S.C.; Demir, C.; Cengiz, M.; Ayhanci, A. Protective Properties of Kefir on Burn Wounds of Mice That Were Infected with S. aureus, P. auroginasa and E. coli. Cell. Mol. Biol. 2019, 65, 60–65. [Google Scholar] [CrossRef]
- Chalwade, C.; Sawant, A.; Katyal, I. Study to Determine the Effect of Diaper-Based Wound Care Method in Reducing Wound Contamination Period in Patients Suffering From Perianal Burn Wound. Indian. J. Plast. Surg. 2023, 56, 378–381. [Google Scholar] [CrossRef]
- Sahu, R.K.; Midya, M. “Hand Inside Glove”: Useful Method of Burn Dressing in Children. J. Fam. Med. Prim. Care 2019, 8, 1483–1485. [Google Scholar] [CrossRef]
- Molkentine, J.M.; Fujimoto, T.N.; Horvath, T.D.; Grossberg, A.J.; Garcia, C.J.G.; Deorukhkar, A.; de la Cruz Bonilla, M.; Lin, D.; Samuel, E.L.G.; Chan, W.K.; et al. Enteral Activation of WR-2721 Mediates Radioprotection and Improved Survival From Lethal Fractionated Radiation. Sci. Rep. 2019, 9, 1949. [Google Scholar] [CrossRef]
- Rathbone, M.J.; Pather, I.; Şenel, S. Overview of Oral Mucosal Delivery. In Oral Mucosal Drug Delivery and Therapy. Advances in Delivery Science and Technology; Springer: Boston, MA, USA, 2015. [Google Scholar] [CrossRef]
- Ledet, G.; Biswas, S.K.; Kumar, V.P.; Graves, R.A.; Mitchner, D.M.; Parker, T.M.; Bostanian, L.A.; Ghosh, S.; Mandal, T.K. Development of Orally Administered Γ-Tocotrienol (GT3) Nanoemulsion for Radioprotection. Int. J. Mol. Sci. 2016, 18, 28. [Google Scholar] [CrossRef]
- Zgair, A.; Dawood, Y.; Ibrahem, S.M.; Back, H.; Kagan, L.; Gershkovich, P.; Lee, J.B. Predicting Intestinal and Hepatic First-Pass Metabolism of Orally Administered Testosterone Undecanoate. Appl. Sci. 2020, 10, 7283. [Google Scholar] [CrossRef]
- Mahran, Y.F.; Al-Kharashi, L.A.; Atawia, R.T.; Alanazi, R.T.; Dhahi, A.M.B.; Alsubaie, R.; Badr, A.M. Radioprotective Effects of Carvacrol and/or Thymol against Gamma Irradiation-Induced Acute Nephropathy: In Silico and In Vivo Evidence of the Involvement of Insulin-like Growth Factor-1 (IGF-1) and Calcitonin Gene-Related Peptide. Biomedicines 2023, 11, 2521. [Google Scholar] [CrossRef]
- Abedi, S.M.; Yarmand, F.; Motallebnejad, M.; Seyedmajidi, M.; Moslemi, D.; Bijani, A.; Hosseinimehr, S.J. Radioprotective Effect of Thymol Against Salivary Glands Dysfunction Induced by Ionizing Radiation in Rats. Iran. J. Pharm. Res. 2016, 15, 861–866. [Google Scholar]
- Sueishi, Y.; Nii, R. Monoterpene’s Multiple Free Radical Scavenging Capacity as Compared with the Radioprotective Agent Cysteamine and Amifostine. Bioorganic Med. Chem. Lett. 2018, 28, 3031–3033. [Google Scholar] [CrossRef]
- Mahran, Y.F.; Badr, A.M.; Aldosari, A.; Bin-Zaid, R.; Alotaibi, H.N. Carvacrol and Thymol Modulate the Cross-Talk between TNF-α and IGF-1 Signaling in Radiotherapy-Induced Ovarian Failure. Oxidative Med. Cell. Longev. 2019, 2019, e3173745. [Google Scholar] [CrossRef]
- Vasudeva, V.; Tenkanidiyoor, Y.S.; Peter, A.J.; Shetty, J.; Lakshman, S.P.; Fernandes, R.; Patali, K.A. Radioprotective Efficacy of Lutein in Ameliorating Electron Beam Radiation-Induced Oxidative Injury in Swiss Albino Mice. Iran. J. Med. Sci. 2018, 43, 41–51. [Google Scholar]
- Meydan, D.; Gursel, B.; Bilgici, B.; Can, B.; Ozbek, N. Protective Effect of Lycopene against Radiation-Induced Hepatic Toxicity in Rats. J. Int. Med. Res. 2011, 39, 1239–1252. [Google Scholar] [CrossRef]
- Srinivasan, M.; Devipriya, N.; Kalpana, K.B.; Menon, V.P. Lycopene: An Antioxidant and Radioprotector against Gamma-Radiation-Induced Cellular Damages in Cultured Human Lymphocytes. Toxicology 2009, 262, 43–49. [Google Scholar] [CrossRef]
- Vazifedan, V.; Mousavi, S.H.; Sargolzaei, J.; Soleymanifard, S.; Fani Pakdel, A. Study of Crocin & Radiotherapy-Induced Cytotoxicity and Apoptosis in the Head and Neck Cancer (HN-5) Cell Line. Iran. J. Pharm. Res. 2017, 16, 230–237. [Google Scholar]
- Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef]
- Rybak, M.; Wojdyło, A. Inhibition of α-Amylase, α-Glucosidase, Pancreatic Lipase, 15-Lipooxygenase and Acetylcholinesterase Modulated by Polyphenolic Compounds, Organic Acids, and Carbohydrates of Prunus Domestica Fruit. Antioxidants 2023, 12, 1380. [Google Scholar] [CrossRef]
- Li, M.; Qian, M.; Jiang, Q.; Tan, B.; Yin, Y.; Han, X. Evidence of Flavonoids on Disease Prevention. Antioxidants 2023, 12, 527. [Google Scholar] [CrossRef]
- Ysrafil, Y.; Sapiun, Z.; Slamet, N.S.; Mohamad, F.; Hartati, H.; Damiti, S.A.; Alexandra, F.D.; Rahman, S.; Masyeni, S.; Harapan, H.; et al. Anti-Inflammatory Activities of Flavonoid Derivates. ADMET DMPK 2023, 11, 331–359. [Google Scholar] [CrossRef]
- Haddadi, G.H.; Rezaeyan, A.; Mosleh-Shirazi, M.A.; Hosseinzadeh, M.; Fardid, R.; Najafi, M.; Salajegheh, A. Hesperidin as Radioprotector against Radiation-Induced Lung Damage in Rat: A Histopathological Study. J. Med. Phys. 2017, 42, 25–32. [Google Scholar] [CrossRef]
- Musa, A.E.; Omyan, G.; Esmaely, F.; Shabeeb, D. Radioprotective effect of hesperidin: A systematic review. Medicina 2019, 55, 370. [Google Scholar] [CrossRef]
- Kalpana, K.B.; Devipriya, N.; Srinivasan, M.; Vishwanathan, P.; Thayalan, K.; Menon, V.P. Evaluating the Radioprotective Effect of Hesperidin in the Liver of Swiss Albino Mice. Eur. J. Pharmacol. 2011, 658, 206–212. [Google Scholar] [CrossRef]
- Jagetia, G.; Rao, K. Hesperidin Treatment Abates Radiation-Induced Delay In Healing of Deep Cutaneous Excision Wound of Mice Hemi-Body Exposed to Different Doses of γ-Radiation. Clin. Dermatol. Dermatitis 2018, 1, 104. [Google Scholar]
- Hosseinimehr, S.J.; Mahmoudzadeh, A.; Ahmadi, A.; Mohamadifar, S.; Akhlaghpoor, S. Radioprotective Effects of Hesperidin against Genotoxicity Induced by Gamma-Irradiation in Human Lymphocytes. Mutagenesis 2009, 24, 233–235. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Peng, R.; Chen, Z.; Yu, H.; Wang, S.; Dong, S.; Li, W.; Shao, W.; Dai, J.; Li, F.; et al. The Protective Effects of Apigenin Against Radiation-Induced Intestinal Injury. Dose Response 2022, 20, 15593258221113791. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zheng, L.; Sun, Y.; Wang, T.; Wang, B. Tangeretin Enhances Radiosensitivity and Inhibits the Radiation-Induced Epithelial-Mesenchymal Transition of Gastric Cancer Cells. Oncol. Rep. 2015, 34, 302–310. [Google Scholar] [CrossRef]
- Kang, K.A.; Piao, M.J.; Ryu, Y.S.; Hyun, Y.J.; Park, J.E.; Shilnikova, K.; Zhen, A.X.; Kang, H.K.; Koh, Y.S.; Jeong, Y.J.; et al. Luteolin Induces Apoptotic Cell Death via Antioxidant Activity in Human Colon Cancer Cells. Int. J. Oncol. 2017, 51, 1169–1178. [Google Scholar] [CrossRef]
- Shimoi, K.; Masuda, S.; Furugori, M.; Esaki, S.; Kinae, N. Radioprotective Effect of Antioxidative Flavonoids in Gamma-Ray Irradiated Mice. Carcinogenesis 1994, 15, 2669–2672. [Google Scholar] [CrossRef]
- Toyama, M.; Mori, T.; Takahashi, J.; Iwahashi, H. Luteolin as Reactive Oxygen Generator by X-Ray and UV Irradiation. Radiat. Phys. Chem. 2018, 146, 11–18. [Google Scholar] [CrossRef]
- Patil, S.L.; Mallaiah, S.H.; Patil, R.K. Antioxidative and Radioprotective Potential of Rutin and Quercetin in Swiss Albino Mice Exposed to Gamma Radiation. J. Med. Phys. 2013, 38, 87–92. [Google Scholar] [CrossRef]
- Benkovic, V.; Knezevic, A.H.; Dikic, D.; Lisicic, D.; Orsolic, N.; Basic, I.; Kosalec, I.; Kopjar, N. Radioprotective Effects of Propolis and Quercetin in Gamma-Irradiated Mice Evaluated by the Alkaline Comet Assay. Phytomedicine 2008, 15, 851–858. [Google Scholar] [CrossRef]
- Ping, X.; Junqing, J.; Junfeng, J.; Enjin, J. Radioprotective Effects of Troxerutin against Gamma Irradiation in Mice Liver. Int. J. Radiat. Biol. 2012, 88, 607–612. [Google Scholar] [CrossRef]
- Maurya, D.K.; Salvi, V.P.; Krishnan Nair, C.K. Radioprotection of Normal Tissues in Tumor-Bearing Mice by Troxerutin. J. Radiat. Res. 2004, 45, 221–228. [Google Scholar] [CrossRef]
- Ping, X.; Junqing, J.; Junfeng, J.; Enjin, J. Radioprotective Effects of Troxerutin against Gamma Irradiation in V79 Cells and Mice. Asian Pac. J. Cancer Prev. 2011, 12, 2593–2596. [Google Scholar] [PubMed]
- Song, L.; Ma, L.; Cong, F.; Shen, X.; Jing, P.; Ying, X.; Zhou, H.; Jiang, J.; Fu, Y.; Yan, H. Radioprotective Effects of Genistein on HL-7702 Cells via the Inhibition of Apoptosis and DNA Damage. Cancer Lett. 2015, 366, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Canyilmaz, E.; Uslu, G.H.; Bahat, Z.; Kandaz, M.; Mungan, S.; Haciislamoglu, E.; Mentese, A.; Yoney, A. Comparison of the Effects of Melatonin and Genistein on Radiation-Induced Nephrotoxicity: Results of an Experimental Study. Biomed. Rep. 2016, 4, 45–50. [Google Scholar] [CrossRef]
- Fan, Z.-L.; Wang, Z.-Y.; Zuo, L.-L.; Tian, S.-Q. Protective Effect of Anthocyanins from Lingonberry on Radiation-Induced Damages. Int. J. Environ. Res. Public Health 2012, 9, 4732–4743. [Google Scholar] [CrossRef]
- Shamilov, A.A.; Bubenchikova, V.N.; Chernikov, M.V.; Pozdnyakov, D.I.; Garsiya, E.R. Vaccinium vitis-Idaea L.: Chemical Contents, Pharmacological Activities. Pharm. Sci. 2020, 26, 344–362. [Google Scholar] [CrossRef]
- Abou-Zeid, S.M.; EL-bialy, B.E.; EL-borai, N.B.; AbuBakr, H.O.; Elhadary, A.M.A. Radioprotective Effect of Date Syrup on Radiation-Induced Damage in Rats. Sci. Rep. 2018, 8, 7423. [Google Scholar] [CrossRef] [PubMed]
- Batanony, M.E.; El-Feky, A.M. Manipulation of Different Phytochemical Classes Against Inflammation Induced by Radiations. Egypt. J. Chem. 2021, 65, 81–96. [Google Scholar] [CrossRef]
- Gheleshli, N.; Ghasemi, A.; Hosseinimehr, S.J. The Influence of Piperine on Radioprotective Effect of Curcumin in Irradiated Human Lymphocytes. Turk. J. Pharm. Sci. 2018, 16, 366. [Google Scholar] [CrossRef] [PubMed]
- Amin, F.; Shah, S.A.; Badshah, H.; Khan, M.; Kim, M.O. Anthocyanins Encapsulated by PLGA@PEG Nanoparticles Potentially Improved Its Free Radical Scavenging Capabilities via P38/JNK Pathway against Aβ1–42-Induced Oxidative Stress. J. Nanobiotechnol. 2017, 15. [Google Scholar] [CrossRef] [PubMed]
- de Melo, L.F.M.; Aquino-Martins, V.G. de Q.; Silva, A.P. da; Oliveira Rocha, H.A.; Scortecci, K.C. Biological and Pharmacological Aspects of Tannins and Potential Biotechnological Applications. Food Chem. 2023, 414, 135645. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, B. Tannic Acid with Antiviral and Antibacterial Activity as A Promising Component of Biomaterials—A Minireview. Materials 2020, 13, 3224. [Google Scholar] [CrossRef] [PubMed]
- Nair, G.G.; Nair, C.K.K. Radioprotective Effects of Gallic Acid in Mice. Biomed. Res. Int. 2013, 2013, 953079. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Huang, Y.; Liang, J.; Ou, M.; Chen, J.; Li, G. Extraction, Purification and Anti-Radiation Activity of Persimmon Tannin from Diospyros Kaki L.f. J. Env. Radioact. 2016, 162–163, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.A.; Lee, I.K.; Zhang, R.; Piao, M.J.; Kim, K.C.; Kim, S.Y.; Shin, T.; Kim, B.J.; Lee, N.H.; Hyun, J.W. Radioprotective Effect of Geraniin via the Inhibition of Apoptosis Triggered by γ-Radiation-Induced Oxidative Stress. Cell Biol. Toxicol. 2011, 27, 83–94. [Google Scholar] [CrossRef]
- Ahire, V.; Kumar, A.; Mishra, K.P.; Kulkarni, G. Ellagic Acid Enhances Apoptotic Sensitivity of Breast Cancer Cells to γ-Radiation. Nutr. Cancer 2017, 69, 904–910. [Google Scholar] [CrossRef]
- Dongmo Zeukang, R.; Kalinski, J.-C.; Tembeni, B.; Goosen, E.D.; Tembu, J.; Tabopda Kuiate, T.; Ngono Bikobo, D.S.; Tagatsing Fotsing, M.; Atchadé, A.D.T.; Siwe-Noundou, X. Quinones from Cordia Species from 1972 to 2023: Isolation, Structural Diversity and Pharmacological Activities. Nat. Prod. Bioprospect. 2023, 13, 52. [Google Scholar] [CrossRef]
- Chan-Zapata, I.; Borges-Argáez, R.; Ayora-Talavera, G. Quinones as Promising Compounds against Respiratory Viruses: A Review. Molecules 2023, 28, 1981. [Google Scholar] [CrossRef] [PubMed]
- Cores, Á.; Carmona-Zafra, N.; Clerigué, J.; Villacampa, M.; Menéndez, J.C. Quinones as Neuroprotective Agents. Antioxidants 2023, 12, 1464. [Google Scholar] [CrossRef]
- Saihara, K.; Kamikubo, R.; Ikemoto, K.; Uchida, K.; Akagawa, M. Pyrroloquinoline Quinone, a Redox-Active o-Quinone, Stimulates Mitochondrial Biogenesis by Activating the SIRT1/PGC-1α Signaling Pathway. Biochemistry 2017, 56, 6615–6625. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Chen, N.; Miao, D. Radioprotective Effects of Pyrroloquinoline Quinone on Parotid Glands in C57BL/6J Mice. Exp. Ther. Med. 2016, 12, 3685–3693. [Google Scholar] [CrossRef]
- Xiong, X.-H.; Zhao, Y.; Ge, X.; Yuan, S.-J.; Wang, J.-H.; Zhi, J.-J.; Yang, Y.-X.; Du, B.-H.; Guo, W.-J.; Wang, S.-S.; et al. Production and Radioprotective Effects of Pyrroloquinoline Quinone. Int. J. Mol. Sci. 2011, 12, 8913–8923. [Google Scholar] [CrossRef]
- Jamwal, V.; Mishra, S.; Singh, A.; Kumar, R. Free Radical Scavenging and Radioprotective Activities of Hydroquinone in Vitro. J. Radioprot. Res. 2014, 2, 37–45. [Google Scholar] [CrossRef]
- Dey, P.; Kundu, A.; Kumar, A.; Gupta, M.; Lee, B.M.; Bhakta, T.; Dash, S.; Kim, H.S. Analysis of Alkaloids (Indole Alkaloids, Isoquinoline Alkaloids, Tropane Alkaloids). Recent. Adv. Nat. Prod. Anal. 2020, 505–567. [Google Scholar] [CrossRef]
- Xu, J.-Y.; Zhao, L.; Chong, Y.; Jiao, Y.; Qin, L.-Q.; Fan, S.-J. Protection Effect of Sanguinarine on Whole-Body Exposure of X Radiation in BALB/c Mice. Braz. J. Pharm. Sci. 2014, 50, 101–106. [Google Scholar] [CrossRef]
- Pimentel, M.J.; Filho, M.M.V.B.; Araújo, M.; Gomes, D.Q.; DA Costa, L.J. Evaluation of Radioprotective Effect of Pilocarpine Ingestion on Salivary Glands. Anticancer. Res. 2014, 34, 1993–1999. [Google Scholar] [PubMed]
- Kanimozhi, G.; Prasad, N.R.; Ramachandran, S.; Pugalendi, K.V. Umbelliferone Modulates Gamma-Radiation Induced Reactive Oxygen Species Generation and Subsequent Oxidative Damage in Human Blood Lymphocytes. Eur. J. Pharmacol. 2011, 672, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhao, Q.-L.; ur Rehman, M.; Jawaid, P.; Cui, Z.-G.; Ahmed, K.; Kondo, T.; Saitoh, J.-I.; Noguchi, K. Isofraxidin Enhances Hyperthermia-induced Apoptosis via Redox Modification in Acute Monocytic Leukemia U937 Cells. Mol. Med. Rep. 2023, 27, 41. [Google Scholar] [CrossRef] [PubMed]
- Salloum, R.M.; Jaskowiak, N.T.; Mauceri, H.J.; Seetharam, S.; Beckett, M.A.; Koons, A.M.; Hari, D.M.; Gupta, V.K.; Reimer, C.; Kalluri, R.; et al. NM-3, an Isocoumarin, Increases the Antitumor Effects of Radiotherapy without Toxicity. Cancer Res. 2000, 60, 6958–6963. [Google Scholar] [PubMed]
- Antropova, I.G.; Revina, A.A.; Kurakina, E.; Magomedbekov, E.P. Radiation Chemical Investigation of Antioxidant Activity of Biologically Important Compounds From Plant Materials. Acs Omega 2020, 5, 5976–5983. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; He, X.; Ran, L.; Yang, F.; Ma, C.; Chen, H.; Xiang, D.; Shen, G.; Zhang, P.; He, L.; et al. The Mechanism of Coumarin Inhibits Germination of Ryegrass (Lolium perenne) and Its Application as Coumarin-Carbon Dots Nanocomposites. Pest. Manag. Sci. 2023, 79, 2182–2190. [Google Scholar] [CrossRef] [PubMed]
- Citarella, A.; Vittorio, S.; Dank, C.; Ielo, L. Syntheses, Reactivity, and Biological Applications of Coumarins. Front. Chem. 2024, 12, 1362992. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-R.; Zhu, N.; Hao, Y.-T.; Yu, X.-C.; Li, Z.; Mao, R.-X.; Liu, R.; Kang, J.-W.; Hu, J.-N.; Li, Y. Radioprotective Effect of Whey Hydrolysate Peptides against γ-Radiation-Induced Oxidative Stress in BALB/c Mice. Nutrients 2021, 13, 816. [Google Scholar] [CrossRef] [PubMed]
- Sharapov, M.G.; Novoselov, V.I.; Gudkov, S.V. Radioprotective Role of Peroxiredoxin 6. Antioxidants 2019, 8, 15. [Google Scholar] [CrossRef] [PubMed]
- Wahab, S.; Annadurai, S.; Abullais, S.S.; Das, G.; Ahmad, W.; Ahmad, M.F.; Kandasamy, G.; Vasudevan, R.; Ali, M.S.; Amir, M. Glycyrrhiza glabra (Licorice): A Comprehensive Review on Its Phytochemistry, Biological Activities, Clinical Evidence and Toxicology. Plants 2021, 10, 2751. [Google Scholar] [CrossRef]
- Das, D.; Agarwal, S.K.; Chandola, H.M. Protective Effect of Yashtimadhu (Glycyrrhiza glabra) against Side Effects of Radiation/Chemotherapy in Head and Neck Malignancies. Ayu 2011, 32, 196–199. [Google Scholar] [CrossRef]
- Mamgain, R.K.; Gupta, M.; Mamgain, P.; Verma, S.K.; Pruthi, D.S.; Kandwal, A.; Saini, S. The Efficacy of an Ayurvedic Preparation of Yashtimadhu (Glycyrrhiza glabra) on Radiation-Induced Mucositis in Head-and-Neck Cancer Patients: A Pilot Study. J. Cancer Res. Ther. 2020, 16, 458. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.-R.; Wang, X.-Y.; Sun, Y.-M.; Zhang, C.; Liu, K.J.; Zhang, F.-Y.; Xiang, B. Glycyrrhizin Protects Submandibular Gland Against Radiation Damage by Enhancing Antioxidant Defense and Preserving Mitochondrial Homeostasis. Antioxid. Redox Signal. 2023. [Google Scholar] [CrossRef] [PubMed]
- Shetty, T.K.; Satav, J.G.; Nair, C.K.K. Protection of DNA and Microsomal Membranes in Vitro by Glycyrrhiza glabra L. against Gamma Irradiation. Phytother. Res. 2002, 16, 576–578. [Google Scholar] [CrossRef]
- Darwish, M.M.; Hussien, E.M.; Haggag, A.M. Possible Role of Licorice Roots (Glycyrrhiza glabra) as a Natural Radioprotector against Oxidative Damage in Rats. Egypt. J. Radiat. Sci. Appl. 2007, 20, 95–108. [Google Scholar]
- Tan, Q.-Y.; Hu, Q.; Zhu, S.; Jia, L.; Xiao, J.; Su, H.; Huang, S.; Zhang, J.; Jin, J. Licorice Root Extract and Magnesium Isoglycyrrhizinate Protect against Triptolide-Induced Hepatotoxicity via up-Regulation of the Nrf2 Pathway. Drug Deliv. 2018, 25, 1213–1223. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekharan, D.K.; Khanna, P.K.; Nair, C.K.K. Cellular Radioprotecting Potential of Glyzyrrhizic Acid, Silver Nanoparticle and Their Complex. Mutat. Res. /Genet. Toxicol. Environ. Mutagen. 2011, 723, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, M.; González-Burgos, E.; Iglesias, I.; Gómez-Serranillos, M.P. Pharmacological Update Properties of Aloe Vera and Its Major Active Constituents. Molecules 2020, 25, 1324. [Google Scholar] [CrossRef] [PubMed]
- Dadupanthi, P. Radioprotection of aloe vera against biochemical alterations in swiss albino mice. Int. J. Curr. Pharm. Res. 2018, 10, 55–59. [Google Scholar] [CrossRef]
- Haddad, P.; Amouzgar–Hashemi, F.; Samsami, S.; Chinichian, S.; Oghabian, M.A. Aloe Vera for Prevention of Radiation-Induced Dermatitis: A Self-Controlled Clinical Trial. Curr. Oncol. 2013, 20, e345. [Google Scholar] [CrossRef]
- Dadupanthi, P. Radioprotective effects of aloe vera on hepatosomatic index of swiss albino mice. Int. J. Curr. Pharm. Res. 2019, 97–99. [Google Scholar] [CrossRef]
- Nejaim, Y.; Silva, A.I.; Vasconcelos, T.V.; Silva, E.J.; de Almeida, S.M. Evaluation of Radioprotective Effect of Aloe Vera and Zinc/Copper Compounds against Salivary Dysfunction in Irradiated Rats. J. Oral. Sci. 2014, 56, 191–194. [Google Scholar] [CrossRef]
- Liu, Z.-G.; Qian, X.; Wang, Z.-M.; Ning, J.-L.; Qin, C.-K.; Huang, Z.-M.; Li, Y.-M.; He, N.; Lin, D.-H.; Zhou, Z.-D.; et al. Effects of Persimmon Tannin-Aloe Vera Composite on Cytotoxic Activities, and Radioprotection Against X-Rays Irradiated in Human Hepatoma and Hepatic Cells. J. Biomed. Nanotechnol. 2021, 17, 2043–2052. [Google Scholar] [CrossRef]
- Hudz, N.; Kobylinska, L.; Pokajewicz, K.; Horčinová Sedláčková, V.; Fedin, R.; Voloshyn, M.; Myskiv, I.; Brindza, J.; Wieczorek, P.P.; Lipok, J. Mentha piperita: Essential Oil and Extracts, Their Biological Activities, and Perspectives on the Development of New Medicinal and Cosmetic Products. Molecules 2023, 28, 7444. [Google Scholar] [CrossRef]
- Hemeg, H.A.; Moussa, I.M.; Ibrahim, S.; Dawoud, T.M.; Alhaji, J.H.; Mubarak, A.S.; Kabli, S.A.; Alsubki, R.A.; Tawfik, A.M.; Marouf, S.A. Antimicrobial Effect of Different Herbal Plant Extracts against Different Microbial Population. Saudi J. Biol. Sci. 2020, 27, 3221–3227. [Google Scholar] [CrossRef]
- Jagetia, G.C.; Baliga, M.S. Influence of the Leaf Extract of Mentha arvensis Linn. (Mint) on the Survival of Mice Exposed to Different Doses of Gamma Radiation. Strahlenther. Onkol. 2002, 178, 91–98. [Google Scholar] [CrossRef]
- Samarth, R.M.; Kumar, A. Radioprotection of Swiss Albino Mice by Plant Extract Mentha piperita (Linn.). J. Radiat. Res. 2003, 44, 101–109. [Google Scholar] [CrossRef]
- Samarth, R.M.; Samarth, M. Protection against Radiation-Induced Testicular Damage in Swiss Albino Mice by Mentha piperita (Linn.). Basic. Clin. Pharmacol. Toxicol. 2009, 104, 329–334. [Google Scholar] [CrossRef]
- Samarth, R.M.; Kumar, A. Mentha piperita (Linn.) Leaf Extract Provides Protection against Radiation Induced Chromosomal Damage in Bone Marrow of Mice. Indian. J. Exp. Biol. 2003, 41, 229–237. [Google Scholar]
- Baliga, M.S.; Rao, S. Radioprotective Potential of Mint: A Brief Review. J. Cancer Res. Ther. 2010, 6, 255–262. [Google Scholar] [CrossRef]
- Sancheti, G.; Goyal, P.K. Prevention of Radiation Induced Hematological Alterations by Medicinal Plant Rosmarinus Officinalis, in Mice. Afr. J. Tradit. Complement. Altern. Med. 2006, 4, 165–172. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, R.A. Updated Review on Indian Ficus Species. Arab. J. Chem. 2023, 16, 104976. [Google Scholar] [CrossRef]
- Vinutha, K.; Vidya, S.M.; Suchetha, N.K.; Sanjeev, G.; Nagendra, H.G.; Pradeepa, V.C. Radioprotective Activity of Ficus Racemosa Ethanol Extract against Electron Beam Induced DNA Damage in Vitro, in VIVO and in Silico. Int. J. Pharm. Pharm. Sci. 2015, 7, 110–119. [Google Scholar]
- Veerapur, V.; Prabhakar, K.; Parihar, V.; Kandadi, M.; SB, R.; Mishra, B.; Rao, S.; Srinivasan, K.K.; Priyadarsini, I.; Unnikrishnan, M.K. Ficus racemosa Stem Bark Extract: A Potent Antioxidant and a Probable Natural Radioprotector. Evid. Based Complement. Altern. Med. 2007, 6, 317–324. [Google Scholar] [CrossRef]
- Okumus, S.; Taysi, S.; Orkmez, M.; Saricicek, E.; Demir, E.; Adli, M.; Al, B. The Effects of Oral Ginkgo Biloba Supplementation on Radiation-Induced Oxidative Injury in the Lens of Rat. Pharmacogn. Mag. 2011, 7, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Sener, G.; Kabasakal, L.; Atasoy, B.M.; Erzik, C.; Velioğlu-Oğünç, A.; Cetinel, S.; Gedik, N.; Yeğen, B.C. Ginkgo Biloba Extract Protects against Ionizing Radiation-Induced Oxidative Organ Damage in Rats. Pharmacol. Res. 2006, 53, 241–252. [Google Scholar] [CrossRef]
- Ismail, A.F.M.; El-Sonbaty, S.M. Fermentation Enhances Ginkgo Biloba Protective Role on Gamma-Irradiation Induced Neuroinflammatory Gene Expression and Stress Hormones in Rat Brain. J. Photochem. Photobiol. B Biol. 2016, 158, 154–163. [Google Scholar] [CrossRef]
- He, N.; Wang, Q.; Huang, H.; Chen, J.; Wu, G.; Zhu, M.; Shao, F.; Yan, Z.; Sang, Z.; Cao, L.; et al. A Comprehensive Review on Extraction, Structure, Detection, Bioactivity, and Metabolism of Flavonoids from Sea Buckthorn (Hippophae rhamnoides L.). J. Food Biochem. 2023, 2023, e4839124. [Google Scholar] [CrossRef]
- Dubey, R.K.; Shukla, S.; Shukla, V.; Singh, S. Sea Buckthorn: A Potential Dietary Supplement with Multifaceted Therapeutic Activities. Intell. Pharm. 2023. [Google Scholar] [CrossRef]
- Gupta, V.; Bala, M.; Prasad, J.; Singh, S.; Gupta, M. Leaves of Hippophae rhamnoides Prevent Taste Aversion in Gamma-Irradiated Rats. J. Diet. Suppl. 2011, 8, 355–368. [Google Scholar] [CrossRef] [PubMed]
- Sureshbabu, A.V.S.; Barik, T.K.; Namita, I.; Prem Kumar, I. Radioprotective Properties of Hippophae rhamnoides (Sea Buckthorn) Extract in Vitro. Int. J. Health Sci. (Qassim) 2008, 2, 45–62. [Google Scholar]
- Chawla, R.; Arora, R.; Singh, S.; Sagar, R.K.; Sharma, R.K.; Kumar, R.; Sharma, A.; Gupta, M.L.; Singh, S.; Prasad, J.; et al. Radioprotective and Antioxidant Activity of Fractionated Extracts of Berries of Hippophae rhamnoides. J. Med. Food 2007, 10, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Pooja; Kumar, A. A Systemic Review of Tulsi (Ocimum tenuiflorum or Ocimum sanctum): Phytoconstituents, Ethnobotanical and Pharmacological Profile. Res. J. Pharmacogn. Phytochem. 2023, 15, 179–188. [Google Scholar] [CrossRef]
- Hasan, M.R.; Alotaibi, B.S.; Althafar, Z.M.; Mujamammi, A.H.; Jameela, J. An Update on the Therapeutic Anticancer Potential of Ocimum sanctum L.: “Elixir of Life”. Molecules 2023, 28, 1193. [Google Scholar] [CrossRef]
- Devi, P.U.; Ganasoundari, A. Radioprotective Effect of Leaf Extract of Indian Medicinal Plant Ocimum sanctum. Indian J. Exp. Biol. 1995, 33, 205–208. [Google Scholar] [PubMed]
- Ganasoundari, A.; Zare, S.M.; Devi, P.U. Modification of Bone Marrow Radiosensensitivity by Medicinal Plant Extracts. Br. J. Radiol. 1997, 70, 599–602. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, M.; Chintalwar, G.J.; Chattopadhyay, S. Antioxidant and Radioprotective Properties of an Ocimum sanctum Polysaccharide. Redox Rep. 2005, 10, 257–264. [Google Scholar] [CrossRef]
- Bhat, S.; Farooq, A.; Iqbal, A. A Comprehensive Review of Emblica Officinalis (Āmla): Its Medicinal Properties and Therapeutic Uses. Int. J. Unani Integr. Med. 2023, 7, 01–03. [Google Scholar] [CrossRef]
- Gandhi, Y.; Grewal, J.; Jain, V.; Rawat, H.; Mishra, S.K.; Kumar, V.; Kumar, R.; Shakya, S.K.; Sharma, P.; Dhanjal, D.S.; et al. Emblica Officinalis: A Promising Herb Confining Versatile Applications. S. Afr. J. Bot. 2023, 159, 519–531. [Google Scholar] [CrossRef]
- Singh, I.; Sharma, A.; Jindal, A.; Soyal, D.; Goyal, P.K. Protective effect of emblica officinalis fruit extract against gamma irradiation in mice. Pharmacologyonline 2006, 2, 128–150. [Google Scholar]
- Singh, I.; Sharma, A.; Jindal, A.; Soyal, D.; Goyal, P. Fruit Extract of Emblica Officinalis (Amla) Protects Radiation Induced Biochemical Lesions In The Brain of Swiss Albino Mice. Ann. Neurosci. 2006, 13, 65–71. [Google Scholar] [CrossRef]
- Singh, I.; Sharma, A.; Nunia, V.; Goyal, P.K. Radioprotection of Swiss Albino Mice by Emblica Officinalis. Phytother. Res. 2005, 19, 444–446. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Liang, W.; Wan, J.; Wang, M. Spinach (Spinacia oleracea) Microgreen Prevents the Formation of Advanced Glycation End Products in Model Systems and Breads. Curr. Res. Food Sci. 2023, 6, 100490. [Google Scholar] [CrossRef] [PubMed]
- Naseem, A.; Akhtar, S.; Ismail, T.; Qamar, M.; Sattar, D.; Saeed, W.; Esatbeyoglu, T.; Bartkiene, E.; Rocha, J.M. Effect of Growth Stages and Lactic Acid Fermentation on Anti-Nutrients and Nutritional Attributes of Spinach (Spinacia oleracea). Microorganisms 2023, 11, 2343. [Google Scholar] [CrossRef]
- Bhatia, A.L.; Jain, M. Spinacia oleracea L. Protects against Gamma Radiations: A Study on Glutathione and Lipid Peroxidation in Mouse Liver. Phytomedicine 2004, 11, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Sisodia, R.; Yadav, R.K.; Sharma, K.V.; Bhatia, A.L. Spinacia oleracea Modulates Radiation-Induced Biochemical Changes in Mice Testis. Indian. J. Pharm. Sci. 2008, 70, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Niu, H.; Li, Q.; Jiao, L.; Li, H.; Wu, W. Active Compounds of Panax Ginseng in the Improvement of Alzheimer’s Disease and Application of Spatial Metabolomics. Pharmaceuticals 2023, 17, 38. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, Y.; Xu, Q.; Ma, J.; Li, X.; Tian, Y.; Wen, Y.; Chen, T. Ginseng and Health Outcomes: An Umbrella Review. Front. Pharmacol. 2023, 14, 1069268. [Google Scholar] [CrossRef] [PubMed]
- Pande, S.; Kumar, M.; Kumar, A. Evaluation of Radiomodifying Effects of Root Extract of Panax Ginseng. Phytother. Res. 1998, 12, 13–17. [Google Scholar] [CrossRef]
- Kim, S.H.; Son, C.H.; Nah, S.Y.; Jo, S.K.; Jang, J.S.; Shin, D.H. Modification of Radiation Response in Mice by Panax Ginseng and Diethyldithiocarbamate. In Vivo 2001, 15, 407–411. [Google Scholar]
- Verma, P.; Jahan, S.; Kim, T.H.; Goyal, P.K. Management of Radiation Injuries by Panax Ginseng Extract. J. Ginseng Res. 2011, 35, 261–271. [Google Scholar] [CrossRef]
- Verma, P.; Sharma, P.; Parmar, J.; Sharma, P.; Agrawal, A.; Goyal, P.K. Amelioration of Radiation-Induced Hematological and Biochemical Alterations in Swiss Albino Mice by Panax Ginseng Extract. Integr. Cancer Ther. 2011, 10, 77–84. [Google Scholar] [CrossRef]
- Su, X.; Lu, G.; Ye, L.; Shi, R.; Zhu, M.; Yu, X.; Li, Z.; Jia, X.; Feng, L. Moringa Oleifera Lam.: A Comprehensive Review on Active Components, Health Benefits and Application. RSC Adv. 2023, 13, 24353–24384. [Google Scholar] [CrossRef] [PubMed]
- Jikah, A.N.; Edo, G.I. Moringa Oleifera: A Valuable Insight into Recent Advances in Medicinal Uses and Pharmacological Activities. J. Sci. Food Agric. 2023, 103, 7343–7361. [Google Scholar] [CrossRef]
- Sinha, M.; Das, D.K.; Datta, S.; Ghosh, S.; Dey, S. Amelioration of Ionizing Radiation Induced Lipid Peroxidation in Mouse Liver by Moringa Oleifera Lam. Leaf Extract. Indian J. Exp. Biol. 2012, 50, 209–215. [Google Scholar] [PubMed]
- Sinha, M.; Das, D.K.; Bhattacharjee, S.; Majumdar, S.; Dey, S. Leaf Extract of Moringa Oleifera Prevents Ionizing Radiation-Induced Oxidative Stress in Mice. J. Med. Food 2011, 14, 1167–1172. [Google Scholar] [CrossRef]
- Pradana, D.L.C.; Rahmi, E.P.; Muti, A.F. The Lethality Dose and Antioxidant Activity of Moringa Oleifera Leaves Extract. IOP Conf. Ser. Earth Environ. Sci. 2022, 1104, 012017. [Google Scholar] [CrossRef]
- Wang, L.; Chen, X.; Wu, A.-M. Mini Review on Antimicrobial Activity and Bioactive Compounds of Moringa Oleifera. Med. Chem. 2016, 6. [Google Scholar] [CrossRef]
- Pahurkar, S.V.; Surana, A.R.; Pawar, P.R. A Review of Ethnopharmacological Uses, Phytochemistry and Pharmacological Attributes of Mesua ferrea Linn. Curr. Tradit. Med. 2023, 10, 1–13. [Google Scholar] [CrossRef]
- Krishnaswamy, M.; Murthuza, S.; Ramachandrappa, D. Antioxidant and Anti-Inflammatory Potency of Mesua ferrea Linn. Indian J. Appl. Res. 2013, 3, 55–59. [Google Scholar]
- Murthuza, S.; Manjunatha, B.K. Radioprotective and Immunomodulatory Effects of Mesua ferrea (Linn.) from Western Ghats of India., in Irradiated Swiss Albino Mice and Splenic Lymphocytes. J. Radiat. Res. Appl. Sci. 2018, 11, 66–74. [Google Scholar] [CrossRef]
- Huang, X.; Fei, Q.; Yu, S.; Liu, S.; Zhang, L.; Chen, X.; Cao, L.; Wang, Z.; Shan, M. A Comprehensive Review: Botany, Phytochemistry, Traditional Uses, Pharmacology, and Toxicology of Spatholobus suberectus Vine Stems. J. Ethnopharmacol. 2023, 312, 116500. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Ganesan, K.; Liu, Q.; Chen, J. A Review of the Pharmacological Potential of Spatholobus Suberectus Dunn on Cancer. Cells 2022, 11, 2885. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.-Z.; Wang, Y.-N.; Tan, X.; Liu, P.; Guo, D.-H.; Yan, C. Protective Effect of JXT Ethanol Extract on Radiation-Induced Hematopoietic Alteration and Oxidative Stress in the Liver. Oxid. Med. Cell Longev. 2018, 2018, 9017835. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Saha, C.; Dey, S.K. Studies on Black Tea (Camellia sinensis) Extract as a Potential Antioxidant and a Probable Radioprotector. Radiat. Environ. Biophys. 2013, 52, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.; Dey, S.K.; Saha, C. Antagonistic Effects of Black Tea against Gamma Radiation-Induced Oxidative Damage to Normal Lymphocytes in Comparison with Cancerous K562 Cells. Radiat. Environ. Biophys. 2014, 53, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Mondal, T.; Pal, S.; Dey, S.K. Fermented Black Tea Ameliorates Gamma Radiationinducedcellular and DNA Damage in Human Blood Lymphocytes. Int. J. Biotechnol. Res. 2015, 3, 55–64. [Google Scholar]
- Pajonk, F.; Riedisser, A.; Henke, M.; McBride, W.H.; Fiebich, B. The Effects of Tea Extracts on Proinflammatory Signaling. BMC Med. 2006, 4, 28. [Google Scholar] [CrossRef] [PubMed]
- Velho-Pereira, R.; Kumar, A.; Pandey, B.N.; Mishra, K.P.; Jagtap, A.G. Radioprotection by Macerated Extract of Nigella Sativa in Normal Tissues of Fibrosarcoma Bearing Mice. Indian J. Pharm. Sci. 2012, 74, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Kanter, M.; Uzal, C.; Erboga, M.; Takir, M.; Kostek, O. Protective Effects of Nigella Sativa on Gamma Radiation-Induced Jejunal Mucosal Damage in Rats. Pathol.-Res. Pract. 2016, 212, 437–443. [Google Scholar] [CrossRef]
- Çanakci, H.; Yılmaz, A.A.Ş.; Canpolat, M.S.; Şeneldir, H.; Kır, G.; Eris, A.H.; Mayadağlı, A.; Oysu, Ç. Evaluation of the Effect of Topical Application of Nigella Sativa on Acute Radiation-Induced Nasal Mucositis. J. Craniofacial Surg. 2018, 29, e279–e282. [Google Scholar] [CrossRef]
- Doğru, S.; Taysi, S.; Yücel, A. Effects of Thymoquinone in the Lungs of Rats against Radiation-Induced Oxidative Stress. Eur. Rev. Med. Pharmacol. Sci. 2024, 28, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Hejazi, J.; Rastmanesh, R.; Taleban, F.-A.; Molana, S.-H.; Hejazi, E.; Ehtejab, G.; Hara, N. Effect of Curcumin Supplementation During Radiotherapy on Oxidative Status of Patients with Prostate Cancer: A Double Blinded, Randomized, Placebo-Controlled Study. Nutr. Cancer 2016, 68, 77–85. [Google Scholar] [CrossRef]
- Van Hien, T.; Huong, N.B.; Hung, P.M.; Duc, N.B. Radioprotective effect of vitexin in breast cancer patients undergoing cobalt-60 radiotherapy. Integr. Cancer Ther. 2002, 1, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.-K.; O’Brien, K.F.; Wang, W.; Johnke, R.M.; Sheng, C.; Benhabib, S.M.; Wang, T.; Allison, R.R. Radioprotective Effect of American Ginseng on Human Lymphocytes at 90 Minutes Postirradiation: A Study of 40 Cases. J. Altern. Complement. Med. 2010, 16, 561–567. [Google Scholar] [CrossRef]
- Hosseinimehr, S.J.; Mahmoudzadeh, A.; Azadbakht, M.; Akhlaghpoor, S. Radioprotective Effects of Hawthorn against Genotoxicity Induced by Gamma Irradiation in Human Blood Lymphocytes. Radiat. Environ. Biophys. 2009, 48, 95–98. [Google Scholar] [CrossRef]
- Kaczorová, D.; Karalija, E.; Dahija, S.; Bešta-Gajević, R.; Parić, A.; Ćavar Zeljković, S. Influence of Extraction Solvent on the Phenolic Profile and Bioactivity of Two Achillea Species. Molecules 2021, 26, 1601. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound Assisted Extraction (UAE) of Bioactive Compounds from Fruit and Vegetable Processing by-Products: A Review. Ultrason. Sonochem 2020, 70, 105325. [Google Scholar] [CrossRef]
- Kaufmann, B.; Christen, P. Recent Extraction Techniques for Natural Products: Microwave-Assisted Extraction and Pressurised Solvent Extraction. Phytochem. Anal. 2002, 13, 105–113. [Google Scholar] [CrossRef]
- Shen, L.; Pang, S.; Zhong, M.; Sun, Y.; Qayum, A.; Liu, Y.; Rashid, A.; Xu, B.; Liang, Q.; Ma, H.; et al. A Comprehensive Review of Ultrasonic Assisted Extraction (UAE) for Bioactive Components: Principles, Advantages, Equipment, and Combined Technologies. Ultrason. Sonochemistry 2023, 101, 106646. [Google Scholar] [CrossRef]
- Jibhkate, Y.; Awachat, A.; Lohiya, R.; Umekar, M.; Hemke, A.; Gupta, K. Extraction: An Important Tool in the Pharmaceutical Field. Int. J. Sci. Res. Arch. 2023, 10, 555–568. [Google Scholar] [CrossRef]
- Gościniak, A.; Bazan-Woźniak, A.; Pietrzak, R.; Cielecka-Piontek, J. Pomegranate Flower Extract—The Health-Promoting Properties Optimized by Application of the Box–Behnken Design. Molecules 2022, 27, 6616. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, J.; Yu, X.; Shu, Y.; Zhang, S.; Zhang, Y. Extraction Optimization by Using Response Surface Methodology and Purification of Yellow Pigment from Gardenia jasminoides Var. radicans Makikno. Food Sci. Nutr. 2021, 9, 822–832. [Google Scholar] [CrossRef]
- Beckman, E.J. Supercritical and Near-Critical CO2 in Green Chemical Synthesis and Processing. J. Supercrit. Fluids 2004, 28, 121–191. [Google Scholar] [CrossRef]
- Tankiewicz, M.; Namieśnik, J.; Sawicki, W. Analytical Procedures for Quality Control of Pharmaceuticals in Terms of Residual Solvents Content: Challenges and Recent Developments. TrAC Trends Anal. Chem. 2016, 80, 328–344. [Google Scholar] [CrossRef]
- Hosseinimehr, S.J. Trends in the Development of Radioprotective Agents. Drug Discov. Today 2007, 12, 794–805. [Google Scholar] [CrossRef]
- Paik, D.J.; Lee, C.H. Review of Cases of Patient Risk Associated with Ginseng Abuse and Misuse. J. Ginseng Res. 2015, 39, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Kim, M.-K.; Lee, M.; Kwon, B.-S.; Suh, D.H.; Song, Y.S. Effect of Red Ginseng on Genotoxicity and Health-Related Quality of Life after Adjuvant Chemotherapy in Patients with Epithelial Ovarian Cancer: A Randomized, Double Blind, Placebo-Controlled Trial. Nutrients 2017, 9, 772. [Google Scholar] [CrossRef]
- Elmore, A.R. Cosmetic Ingredient Review Expert Panel Final Report on the Safety Assessment of AloeAndongensis Extract, Aloe Andongensis Leaf Juice, Aloe Arborescens Leaf Extract, Aloe Arborescens Leaf Juice, Aloe Arborescens Leaf Protoplasts, Aloe Barbadensis Flower Extract, Aloe Barbadensis Leaf, Aloe Barbadensis Leaf Extract, Aloe Barbadensis Leaf Juice, Aloe Barbadensis Leaf Polysaccharides, Aloe Barbadensis Leaf Water, Aloe Ferox Leaf Extract, Aloe Ferox Leaf Juice, and Aloe Ferox Leaf Juice Extract. Int. J. Toxicol. 2007, 26 (Suppl 2), 1–50. [Google Scholar] [CrossRef]
- Boudreau, M.D.; Beland, F.A. An Evaluation of the Biological and Toxicological Properties of Aloe Barbadensis (Miller), Aloe Vera. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2006, 24, 103–154. [Google Scholar] [CrossRef]
- Sohal, A.; Alhankawi, D.; Sandhu, S.; Chintanaboina, J. Turmeric-Induced Hepatotoxicity: Report of 2 Cases. Int. Med. Case Rep. J. 2021, 14, 849–852. [Google Scholar] [CrossRef] [PubMed]
- Luber, R.P.; Rentsch, C.; Lontos, S.; Pope, J.D.; Aung, A.K.; Schneider, H.G.; Kemp, W.; Roberts, S.K.; Majeed, A. Turmeric Induced Liver Injury: A Report of Two Cases. Case Rep. Hepatol. 2019, 2019, 6741213. [Google Scholar] [CrossRef] [PubMed]
- Pitaro, M.; Croce, N.; Gallo, V.; Arienzo, A.; Salvatore, G.; Antonini, G. Coumarin-Induced Hepatotoxicity: A Narrative Review. Molecules 2022, 27, 9063. [Google Scholar] [CrossRef] [PubMed]
- Crook, A.; De Lima Leite, A.; Payne, T.; Bhinderwala, F.; Woods, J.; Singh, V.K.; Powers, R. Radiation Exposure Induces Cross-Species Temporal Metabolic Changes That Are Mitigated in Mice by Amifostine. Sci. Rep. 2021, 11, 14004. [Google Scholar] [CrossRef] [PubMed]
- Amifostine—NCI. Available online: https://www.cancer.gov/about-cancer/treatment/drugs/amifostine (accessed on 15 June 2024).
- Wang, L.; Cao, Y.; Zhang, X.; Liu, C.; Yin, J.; Kuang, L.; He, W.; Hua, D. Reactive Oxygen Species-Responsive Nanodrug of Natural Crocin-i with Prolonged Circulation for Effective Radioprotection. Colloids Surf. B Biointerfaces 2022, 213, 112441. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, H.; Karakoc, Y.; Tumkaya, L.; Mercantepe, T.; Sevinc, H.; Yilmaz, A.; Yılmaz Rakıcı, S. The Protective Effects of Red Ginseng and Amifostine against Renal Damage Caused by Ionizing Radiation. Hum. Exp. Toxicol. 2022, 41, 9603271221143029. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.G.; Freeman, A.R.; Roos, D.E.; Milner, A.D.; Borg, M.F. Randomized Double-Blind Trial of Amifostine versus Placebo for Radiation-Induced Xerostomia in Patients with Head and Neck Cancer. J. Med. Imaging Radiat. Oncol. 2019, 63, 142–150. [Google Scholar] [CrossRef]
- Ameri, A.; Heydarirad, G.; Rezaeizadeh, H.; Choopani, R.; Ghobadi, A.; Gachkar, L. Evaluation of Efficacy of an Herbal Compound on Dry Mouth in Patients With Head and Neck Cancers: A Randomized Clinical Trial. J. Evid. Based Complement. Altern. Med. 2016, 21, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Motahari, P.; Pakdel, F.; Hashemzadeh, N.; Heydari, F.; Eghdam Zamiri, R.; Katebi, K. The Effect of 1% Pilocarpine Mouthwash on Salivary Flow Rate in Patients with Radiation-Induced Xerostomia: A Double-Blind Randomized Clinical Trial. Middle East. J. Cancer 2024, 15, 108–116. [Google Scholar] [CrossRef]
- Tourabi, M.; Metouekel, A.; Ghouizi, A.E.; Jeddi, M.; Nouioura, G.; Laaroussi, H.; Hosen, M.E.; Benbrahim, K.F.; Bourhia, M.; Salamatullah, A.M.; et al. Efficacy of Various Extracting Solvents on Phytochemical Composition, and Biological Properties of Mentha longifolia L. Leaf Extracts. Sci. Rep. 2023, 13, 18028. [Google Scholar] [CrossRef]
- Vanhaelen, M.; Lejoly, J.; Hanocq, M.; Molle, L. Climatic and Geographical Aspects of Medicinal Plant Constituents. In The Medicinal Plant Industry; Routledge: New York, NY, USA, 2017; pp. 59–76. ISBN 978-0-203-73639-5. [Google Scholar]
- Heinrich, M.; Jalil, B.; Abdel-Tawab, M.; Echeverria, J.; Kulić, Ž.; McGaw, L.J.; Pezzuto, J.M.; Potterat, O.; Wang, J.-B. Best Practice in the Chemical Characterisation of Extracts Used in Pharmacological and Toxicological Research—The ConPhyMP—Guidelines 1 2. Front. Pharmacol. 2022, 13, 953205. [Google Scholar] [CrossRef] [PubMed]
- Soares, L.A.L.S.; Ferreira, M.R.A. Standardization and quality control of herbal medicines. In Recent Developments in Phytomedicine Technology; New Developments in Medical Research; de Freitas, L.A.P., Teixeira, C.C.C., Zamarioli, C.M., Eds.; Nova Science Publisher: Hauppauge, NY, USA, 2017. [Google Scholar]
- Wang, H.; Chen, Y.; Wang, L.; Liu, Q.; Yang, S.; Wang, C. Advancing Herbal Medicine: Enhancing Product Quality and Safety through Robust Quality Control Practices. Front. Pharmacol. 2023, 14, 1265178. [Google Scholar] [CrossRef] [PubMed]
- Garg, V.; Dhar, V.; Sharma, A.; Dutt, R. Facts about Standardization of Herbal Medicine: A Review. Zhong Xi Yi Jie He Xue Bao = J. Chin. Integr. Med. 2012, 10, 1077–1083. [Google Scholar] [CrossRef] [PubMed]
- Touchette, D.R.; Stevenson, J.G.; Jensen, G. Cost-Effectiveness Analysis of Amifostine (Ethyol©) in Patients with Non-Small Cell Lung Cancer. J. Aging Pharmacother. 2006, 13, 109–126. [Google Scholar] [CrossRef]
- Amifostine Prices, Coupons, Copay & Patient Assistance. Available online: https://www.drugs.com/price-guide/amifostine (accessed on 15 June 2024).
Cell Line | Radioprotective Agents Studied | Methods/Assays Used | Type of Radiation | Results | Authors |
---|---|---|---|---|---|
Chinese hamster ovary (CHO) cells | Selenium Nanoparticles in Aqueous Rosemary Extract, Rosemary extract | MTT assay | X-ray | Similar radiation protection effects were observed for nanoparticles and rosemary. | Hasanzadeh et al., 2022 [67] |
Human peripheral blood lymphocytes | Herniarin | Micronucleus assay, Flow cytometry, ROS level analysis | X-ray | Herniarin reduced radiation-induced cytotoxicity and genotoxicity. | Al Fares et al., 2022 [68] |
Normal human lung cells (HEL 299 Cells) | Delphinidin | MTT assay, 2′-7′-dicholordihydrofluorescein diacetate assay, SOD activity assay, CAT activity assay, Western blot assay (DNA damage-induced cellular apoptosis) | Proton Beam | Delphinidin showed radioprotective effects, including restoration of antioxidant enzyme activities, increased pro-survival protein levels, and decreased pro-apoptosis protein levels. | Kim et al., 2018 [69] |
Human keratinocyte (HaCaT) | Interruptin C from Cyclosorus terminans | SOD activity assay, Clonogenic cell survival, Micronuclei formation assays (DNA damage and cell cycle progression), γH2AX assay (DNA repair after irradiation), Western blotting (the levels of the proteins related to the radioprotective responses) | X-ray | Interruptin C increased antioxidant activity, decreased DNA damage, decreased apoptotic protein levels, increased antiapoptotic protein levels, and increased cell survival following irradiation. | Chumsuwan et al., 2022 [70] |
Human cervical cancer cells (HeLa) | Haberlea rhodopensis Extract | Redox components assessment (lipid peroxidation test, total GSH levels, CAT enzyme activity, SOD enzyme assay, glutathione peroxidase (GSHpx) activity), Comet assay, Flow cytometry (cell cycle), Gene transcription assessment using RT-qPCR | γ-rays | Haberlea rhodopensis extract reduced the severity of genotoxic and oxidative stress in HeLa cells. | Staneva et al., 2023 [71] |
Sinomenine hydrochloride from Sinomenium acutum | MTT assay, Colony forming assay, Apoptosis and cell cycle assay, DNA repair capacity (Immunofluorescence), Comet assay | X-ray | SH enhanced HeLa cell sensitivity to IR by increasing DNA double-strand breaks and disrupting DNA damage checkpoint activation. | Zhang et al., 2018 [72] | |
Normal breast cells (MCF-10A) | Interruptin C from Cyclosorus terminans | SOD activity assay, Clonogenic cell survival, Micronuclei formation assays (DNA damage and cell cycle progression), γH2AX assay (DNA repair after irradiation), Western blotting (the levels of the proteins related to the radioprotective responses) | X-ray | Interruptin C increased antioxidant activity, decreased DNA damage, decreased apoptotic protein levels, increased antiapoptotic protein levels, and increased cell survival following irradiation. | Chumsuwan et al., 2022 [70] |
Human breast cancer cell lines (MDA-MB-231 and Hs578T) | Interruptin C from Cyclosorus terminans | SOD activity assay, Clonogenic cell survival, Micronuclei formation assays (DNA damage and cell cycle progression), γH2AX assay (DNA repair after irradiation), Western blotting (the levels of the proteins related to the radioprotective responses) | X-ray | Interruptin C did not promote cell survival. | Chumsuwan et al., 2022 [70] |
Adenocarcinomic human alveolar basal epithelial cells (A549) | Isorhamnetin | MTT assay, Colony formation assay, Micronucleus assay, Immunostaining, Apoptosis assays, Level of cytokines measurement via meso scale discovery assay, Mitochondrial membrane potential measurement, RNA interference, Cell growth curve | X-ray | Isorhamnetin caused radio sensitization, decreased colony formation, increased DNA damage, enhanced apoptosis, suppressed NF-κB signaling, and upregulated IL-13. | Du et al., 2021 [73] |
Human prostate cancer cell line (PC-3) | Auraptene | Cell viability assay, Apoptosis detection (flow cytometry), Gene expression evaluation | X-ray | Auraptene as a radiosensitizer decreased cell viability and increased apoptosis, reduced survival fraction, induced P53 and BAX expression, and downregulated expression of BCL2, GATA6, and CCND1. | Abolhassani et al., 2023 [74] |
Human colorectal adenocarcinoma (HT-29) | Thymoquinone | MTT cell proliferation assay, Clonogenic survival assay, Cell cycle analysis, Sphere formation assay | X-ray | Thymoquinone as a radiosensitizer reduced cell viability and clonogenic survival, and inhibited sphere formation. | Al Bitar et al., 2022 [75] |
Human breast cancer (MDA-MB-231) | Dalbergin | MTT assay, Clonogenic survival assay, The gene expression level | X-ray | Dalbergin acted as a radiosensitizer; it inhibited cell proliferation and showed apoptotic effects, probably through the STAT/p53 signaling pathway. | Valojerdi et al., 2023 [76] |
Anagallis arvensis extract | Cell cycle arrest, Apoptosis assay, Gene expression | γ-rays | The extract acted as a radiosensitizer; it reduced cell cycle progression and cell growth via induced apoptosis. | Hassan et al., 2022 [77] | |
Human breast cancer (T47D) | Dalbergin | MTT assay, Clonogenic survival assay, The gene expression level | X-ray | Dalbergin acted as a radiosensitizer; it suppressed cell proliferation and induced apoptosis, likely mediated by the STAT/p53 signaling pathway. | Valojerdi et al., 2023 [76] |
Hepatocellular carcinoma cell line (HepG2) | Pomegranate peel extract | MTT assay, Proliferation and apoptotic parameters, Apoptosis assay, Defensive effects against oxidative and antioxidant status | γ-rays | The extract acted as a radiosensitizer, slowed the proliferation of cancer cells, enhanced apoptosis (induction of tumor PPAR-γ and caspase-3), increased Nrf-2, SOD, and CAT activities, and decreased MDA concentration. | Elbakry et al., 2023 [78] |
Human breast cancer cells (MCF-7) | Anagallis arvensis extract | Cell cycle arrest, Apoptosis assay, The gene expression | γ-rays | The extract acted as a radiosensitizer; it reduced cell cycle progression and cell growth via induced apoptosis. | Hassan et al., 2022 [77] |
Human glioblastoma (U251) | Gallic acid gold nanoparticles | MTT assay, Cell cycle and cell death analysis, Western blotting | X-ray | Nanoparticles inhibited cell survival, increased radiation-induced cell death, and arrested the cell cycle. | Jing et al., 2021 [79] |
Human umbilical vein endothelial cells | Olea europaea L. cv. Caiazzana Leaf extract | β-Galactosidase assay, Radiation-induced DNA damage assay | X-ray | Reduction in the frequency of radiation-induced micronucleus formation and the onset of premature senescence was delayed. | Pacifico et al., 2022 [80] |
Primary prostate adenocarcinoma (DU145) | Olea europaea L. cv. Caiazzana Leaf extract | β-Galactosidase assay, Radiation-induced DNA damage assay | X-ray | The extract acted as a radiosensitizer; genotoxicity was increased. | Pacifico et al., 2022 [80] |
Non-transformed human mammary epithelial (MCF-10A) cells | Olea europaea L. cv. Caiazzana Leaf extract | β-Galactosidase assay, Radiation-induced DNA damage assay | X-ray | Reduction in the frequency of radiation-induced micronucleus formation. | Pacifico et al., 2022 [80] |
Human pancreatic epithelioid carcinoma (PANC-1) cells | Olea europaea L. cv. Caiazzana Leaf extract | β-Galactosidase assay, Radiation-induced DNA damage assay | X-ray | The extract acted as a radiosensitizer; genotoxicity was increased. | Pacifico et al., 2022 [80] |
Human lymphoma (U937) cells | Withaferin A | Cellular viability assay, Analysis of mitochondrial transmembrane potential, Measurement of ROS | X-ray | Withaferin A increased apoptosis as a radiosensitizer. | Yang et al., 2011 [81] |
Type of Study | Model | Dosage Method Used | Applied Radiation | Results | Authors |
---|---|---|---|---|---|
Clinical studies | |||||
Randomized, placebo-controlled comparative clinical trial | 72 participants |
| Radiation therapy; total dose of radiation (Cobalt-60) was 5000 rad | Improvement in the overall health of breast cancer patients undergoing treatment, with restoration of peripheral blood cells, as well as lymphocyte function. | Van Hien et al. [257] |
Randomized double-blinded placebo-controlled clinical trial | 45 participants |
| Radiation therapy; total dose of 74 Gy | Curcumin may increase total antioxidant capacity (TAC) while decreasing the activity of antioxidant enzymes such as superoxide dismutase (SOD) in patients with prostate cancer undergoing radiation therapy. In these patients, curcumin improves the antioxidant status without affecting the therapeutic efficacy of radiotherapy. | Hejezi et al. [256] |
Preclinical studies | |||||
Preclinical | Human lymphocytes obtained from healthy individuals |
| Ex vivo irradiation 1 and 2 Gy (0.6 Gy/min) (Gamma Cell 40, Radiation Machinery, Ontario, Canada) | A NAGE concentration of 750 μg/mL reduced the incidence of micronucleation by 50.7% after exposure to a dose of 1 Gy and by 35.9% after exposure to a dose of 2 Gy (comparable to those obtained with WR-1065); NAGE was found to reduce the incidence of micronucleation and the level of reactive oxygen species (ROS), while increasing the total antioxidant capacity (TAC) in lymphocytes. | Lee et al. [258] |
Preclinical | Peripheral blood samples after a single oral ingestion of 500 mg hawthorn powder extract |
| 150 cGy cobalt-60 gamma irradiation | The maximum decrease in the frequency of cells containing micronuclei was observed 1 h after ingestion of hawthorn extract (an average decrease of 44%). | Hosseinimehr et al. [259] |
Title of Patent | Application Date | Subject of the Patent | Country | Number |
---|---|---|---|---|
Methods of using beta glucan as a radioprotective agent | 2008-07-08 | The invention involves using β(1,3; 1,6) glucan to treat and prevent radiation or chemotherapy-related injuries. | United States | US8563531B2 |
Anti-inflammatory quinic acid derivatives for radioprotection/radiomitigation | 2010-05-11 | Methods using analogs of quinic or shikimic acids protect from ionizing radiation effects, pre or post exposure, useful in treating humans and animals at risk for radiation sickness/death. | United States | WO2010132504A1 |
Antiradiation black tea composition and preparation method thereof | 2015-11-16 | The invention introduces a radioprotective milk vinegar–green tea beverage with cattle milk, green tea, and Chinese herbs. | China | CN105770514A |
Skin radiation-preventing composition | 2011-11-14 | Skin radiation-preventing composition with vitamins, herbs, and natural extracts enhances skin’s resistance to ionizing radiation effectively. | China | CN102362846A |
Radioprotection agent | 2006-03-21 | Mixture of ecdysteroids from crown saw-wort acts as radioprotective agent, reducing genotoxic effects of gamma radiation. | Russia | RU2326672C2 |
Composition comprising Polyopes lancifolia (harvey) kawaguchi et wang extract for protecting against radiation | 2011-01-03 | Composition with Polyopes lancifolia extract protects cells or tissues against gamma radiation damage, enhancing organismal resistance. | South Korea | KR20120078863A |
Composition for immune boosting having radioprotective effect comprising fucoidane from Ecklonia cava extracts | 2011-07-25 | The composition, containing Ecklonia cava-derived fucoidan, enhances immunity and provides protection against ionizing radiation, thereby supporting overall health. The fucoidan is extracted using saccharolytic enzymes and proteases. | South Korea | KR20130012417A |
Traditional Chinese medicine composition cooperatively used in radiotherapy | 2013-11-03 | The invention is a traditional Chinese medicine composition containing various herbs for cooperative use in radiotherapy to reduce side effects and enhance cancer cell sensitivity. | China | CN103550506A |
Antiradiation injury medicine | 2005-12-15 | The invention is a medicament made from tricholoma matsutake polysaccharide and ginseng, preventing and treating radiation-induced injuries, such as free radical damage, immune system impairment, hematopoietic damage, and tumor cell growth. | China | CN100360137C |
Oil palm phenolics composition for the protection of humans, organs, cells, and tissues against the injurious effects of exposure to ionizing radiation | 2016-12-30 | The invention is a composition comprising oil palm phenolics or vegetation liquor extract obtained from the aqueous stream of palm oil milling effluent, designed to mitigate the effects of ionizing radiation. | Malaysia | WO2017116225A1 |
Compound for preventing and treating radiation damage and the preparing method | 2007-04-29 | The invention is a method using curcuma longa and cape jasmine to prevent ionizing radiation damage. | China | CN101041070A |
Nursing medicine for skin injury after radiotherapy | 2014-04-10 | The nursing medicine for skin injury after radiotherapy is prepared from the following herbs in percentage by weight: auriculate swallowwort root, bulbophyllum herb, ivy glorybind herb root, herba siegesbeckiae, etc. | China | CN103877387A |
Compound Chinese medicine preparation for assisting tumor radiotherapy and its preparation method | 2007-02-01 | The compound Chinese medicine preparation for assisting tumor radiotherapy includes rehmannia root, astragalus root, angelica, figwort, ophiopogon root, etc. | China | CN101020002B |
Plant pulp in preparation of medicines and health foods for treating injury of ovary caused by radiotherapy and chemotherapy | 2020-06-10 | The invention focuses on utilizing sea buckthorn pulp in the preparation of medicines and health foods specifically aimed at treating ovary injury caused by radiotherapy and chemotherapy. | China | CN111643532A |
Snake medicine oil for radiotherapy protection and preparation method thereof | 2022-12-06 | The invention introduces snake medicine oil for protecting against radiotherapy and provides its preparation method. The method involves weighing and mixing specific medicinal materials including paeonia ostii, borneol, mint, frankincense, houttuynia cordata, angelica sinensis, honeysuckle, gardenia, astragalus membranaceus, etc. | China | CN115779021A |
Application of nano-selenium Cordyceps militaris aqueous extract for reduction in radiotherapy injury and protective agent thereof | 2021-11-13 | The invention pertains to an extract of nano-selenium cordyceps militaris used for reducing radiotherapy injury, particularly mitigating damage to organs or muscles and decreasing ROS elevation caused by radiotherapy. | China | CN113908180A |
Medical ray protection spray containing plant exosome | 2020-09-29 | The invention is a medical ray protection spray containing plant exosomes, superoxide dismutase, rose exosome freeze-dried powder, and purified water, designed to protect against medical radiation. | China | CN112220914A |
Medical ray protection spray and use method thereof | 2022-04-20 | The invention discloses a medical ray protection spray and its use method in the field of medicine. The spray includes superoxide dismutase, vitamin B12, potassium sorbate, radix Angelicae pubescentis, sorbitol, aloe, chamomile, and purified water | China | CN114832097A |
Medical ray protective agent and preparation method thereof | 2020-10-26 | The invention is a medical ray protective agent containing perilla anthocyanin extract, honeysuckle stem extract, plant essential oil, and curcumin. These plants scavenge free radicals, prevent radioactive skin injury, and reduce radiodermatitis occurrence. | China | CN112206316A |
Composition for regeneration and protection of the skin | 2016-09-29 | The composition for skin regeneration and protection includes rosehip oil, snail slime, Aloe vera gel, Onopordum acanthium extract, and rockrose essential oil. It is used to prevent or treat skin damage from radiotherapy, surgery, burns, wounds, and for cosmetic treatment of epidermal damage. | Spain | ES2661576A1 |
Medical antiradiation nursing gel and preparation method thereof | 2021-07-15 | The invention concerns a medical antiradiation nursing gel and its preparation method. The gel comprises aloe gel, ginkgo biloba extract, allantoin, glycyrrhetinic acid, vitamin E dry powder, hyaluronic acid, saffron crocus extract, grape seed extract, and Arabic gum. | China | CN113425798A |
Application of baicalein to preparation of medicines for treating and preventing ionizing radiation injury | 2019-09-24 | The invention applies baicalein and its pharmaceutically usable salts to the preparation of medicines for treating or preventing ionizing radiation injury. | China | CN110448550A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stasiłowicz-Krzemień, A.; Gościniak, A.; Formanowicz, D.; Cielecka-Piontek, J. Natural Guardians: Natural Compounds as Radioprotectors in Cancer Therapy. Int. J. Mol. Sci. 2024, 25, 6937. https://doi.org/10.3390/ijms25136937
Stasiłowicz-Krzemień A, Gościniak A, Formanowicz D, Cielecka-Piontek J. Natural Guardians: Natural Compounds as Radioprotectors in Cancer Therapy. International Journal of Molecular Sciences. 2024; 25(13):6937. https://doi.org/10.3390/ijms25136937
Chicago/Turabian StyleStasiłowicz-Krzemień, Anna, Anna Gościniak, Dorota Formanowicz, and Judyta Cielecka-Piontek. 2024. "Natural Guardians: Natural Compounds as Radioprotectors in Cancer Therapy" International Journal of Molecular Sciences 25, no. 13: 6937. https://doi.org/10.3390/ijms25136937
APA StyleStasiłowicz-Krzemień, A., Gościniak, A., Formanowicz, D., & Cielecka-Piontek, J. (2024). Natural Guardians: Natural Compounds as Radioprotectors in Cancer Therapy. International Journal of Molecular Sciences, 25(13), 6937. https://doi.org/10.3390/ijms25136937