Synthesis and Characterization of a Sustained Nitric Oxide-Releasing Orthodontic Elastomeric Chain for Antimicrobial Action
Abstract
:1. Introduction
1.1. Oral Hygiene Barrier and Cariogenic Plaque
1.2. White Spot Lesions
1.3. Biological Implications of Nitric Oxide
1.4. Previous Findings and Addition of Polymer
2. Results
2.1. SNAP Impregnation
2.2. Polymer Electrospinning
2.3. Nitric Oxide Release Testing
2.4. Bacterial Testing
2.4.1. Planktonic Growth in Surrounding Solution
2.4.2. Biofilm Formation on Surrounding Surfaces
3. Discussion
4. Materials and Methods
4.1. SNAP Impregnation
4.2. Polymer Electrospinning
4.3. Nitric Oxide Release Testing
4.4. Bacterial Testing
4.5. Planktonic Growth in Surrounding Solution
4.6. Biofilm Formation on Surrounding Surfaces
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Palomares, N.B.; Celeste, R.K.; Oliveira, B.H.; Miguel, J.A. How does orthodontic treatment affect young adults’ oral health-related quality of life? Am. J. Orthod. Dentofac. Orthop. 2012, 141, 751–758. [Google Scholar] [CrossRef]
- Zachrisson, S.; Zachrisson, B.U. Gingival condition associated with orthodontic treatment. Angle Orthod. 1972, 42, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Gwinnett, A.J.; Ceen, R.F. Plaque distribution on bonded brackets: A scanning microscope study. Am. J. Orthod. 1979, 75, 667–677. [Google Scholar] [CrossRef]
- Balenseifen, J.W.; Madonia, J.V. Study of dental plaque in orthodontic patients. J. Dent. Res. 1970, 49, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Forsberg, C.M.; Brattström, V.; Malmberg, E.; Nord, C.E. Ligature wires and elastomeric rings: Two methods of ligation, and their association with microbial colonization of Streptococcus mutans and lactobacilli. Eur. J. Orthod. 1991, 13, 416–420. [Google Scholar] [CrossRef] [PubMed]
- Lundström, F.; Krasse, B. Streptococcus mutans and lactobacilli frequency in orthodontic patients; the effect of chlorhexidine treatments. Eur. J. Orthod. 1987, 9, 109–116. [Google Scholar] [CrossRef]
- Lucchese, A.; Bondemark, L.; Marcolina, M.; Manuelli, M. Changes in oral microbiota due to orthodontic appliances: A systematic review. J. Oral Microbiol. 2018, 10, 1476645. [Google Scholar] [CrossRef]
- Struzycka, I. The oral microbiome in dental caries. Pol. J. Microbiol. 2014, 63, 127–135. [Google Scholar] [CrossRef]
- García-Godoy, F.; Hicks, M.J. Maintaining the integrity of the enamel surface: The role of dental biofilm, saliva and preventive agents in enamel demineralization and remineralization. J. Am. Dent. Assoc. 2008, 139, 25S–34S. [Google Scholar] [CrossRef]
- Skidmore, K.J.; Brook, K.J.; Thomson, W.M.; Harding, W.J. Factors influencing treatment time in orthodontic patients. Am. J. Orthod. Dentofac. Orthop. 2006, 129, 230–238. [Google Scholar] [CrossRef]
- Hadler-Olsen, S.; Sandvik, K.; El-Agroudi, M.A.; Øgaard, B. The incidence of caries and white spot lesionsp in orthodontically treated adolescents with a comprehensive caries prophylactic regimen—A prospective study. Eur. J. Orthod. 2012, 34, 633–639. [Google Scholar] [CrossRef]
- Boke, F.; Gazioglu, C.; Akkaya, S.; Akkaya, M. Relationship between orthodontic treatment and gingival health: A retrospective study. Eur. J. Dent. 2014, 8, 373–380. [Google Scholar] [CrossRef]
- Beckwith, F.R.; Ackerman, R.J.; Cobb, C.M., Jr.; Tira, D.E. An evaluation of factors affecting duration of orthodontic treatment. Am. J. Orthod. Dentofac. Orthop. 1999, 115, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Chapman, J.A.; Roberts, W.E.; Eckert, G.J.; Kula, K.S.; González-Cabezas, C. Risk factors for incidence and severity of white spot lesions during treatment with fixed orthodontic appliances. Am. J. Orthod. Dentofac. Orthop. 2010, 138, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Kleter, G.A. Discoloration of dental carious lesions (a review). Arch. Oral Biol. 1998, 43, 629–632. [Google Scholar] [CrossRef]
- Sundararaj, D.; Venkatachalapathy, S.; Tandon, A.; Pereira, A. Critical evaluation of incidence and prevalence of white spot lesions during fixed orthodontic appliance treatment: A meta-analysis. J. Int. Soc. Prev. Community Dent. 2015, 5, 433–439. [Google Scholar] [CrossRef]
- Zabokova-Bilbilova, E.; Popovska, L.; Kapusevska, B.; Stefanovska, E. White spot lesions: Prevention and management during the orthodontic treatment. Prilozi 2014, 35, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Morrier, J.J. Leucomes et traitement orthodontique. Prévention, traitement [White spot lesions and orthodontic treatment. Prevention and treatment]. L’Orthod. Fr. 2014, 85, 235–244. [Google Scholar] [CrossRef]
- Khoroushi, M.; Kachuie, M. Prevention and Treatment of White Spot Lesions in Orthodontic Patients. Contemp. Clin. Dent. 2017, 8, 11–19. [Google Scholar] [CrossRef]
- Kirschneck, C.; Christl, J.J.; Reicheneder, C.; Proff, P. Efficacy of fluoride varnish for preventing white spot lesions and gingivitis during orthodontic treatment with fixed appliances-a prospective randomized controlled trial. Clin. Oral Investig. 2016, 20, 2371–2378. [Google Scholar] [CrossRef]
- Brêtas, S.M.; Macari, S.; Elias, A.M.; Ito, I.Y.; Matsumoto, M.A. Effect of 0.4% stannous fluoride gel on Streptococci mutans in relation to elastomeric rings and steel ligatures in orthodontic patients. Am. J. Orthod. Dentofac. Orthop. 2005, 127, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Benson, P.E.; Parkin, N.; Dyer, F.; Millett, D.T.; Furness, S.; Germain, P. Fluorides for the prevention of early tooth decay (demineralised white lesions) during fixed brace treatment. Cochrane Database Syst. Rev. 2013, 12, CD003809. [Google Scholar] [CrossRef] [PubMed]
- Menon, S.; Sreedharan, S.; Suma, S.; Balakrishnan, P.; Kumar, M. The effect of a fluoride-releasing orthodontic bonding agent on caries incidence: A randomized clinical trial. Am. J. Orthod. Dentofac. Orthop. 2021, 160, 417–425. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, Y.; Cha, J.Y.; Hwang, C.J. Fluoride-releasing orthodontic adhesives: A systematic review and meta-analysis. J. Dent. Res. 2020, 99, 1109–1117. [Google Scholar]
- Benson, P.E.; Douglas, C.W.; Martin, M.V. Fluoridated elastomers: Effect on the microbiology of plaque. Am. J. Orthod. Dentofac. Orthop. 2004, 126, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Miura, K.K.; Ito, I.Y.; Enoki, C.; Elias, A.M.; Matsumoto, M.A. Anticariogenic effect of fluoride-releasing elastomers in orthodontic patients. Braz. Oral Res. 2007, 21, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Banks, P.A.; Chadwick, S.M.; Asher-McDade, C.; Wright, J.L. Fluoride-releasing elastomerics—A prospective controlled clinical trial. Eur. J. Orthod. 2000, 22, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Mattick, C.R.; Mitchell, L.; Chadwick, S.M.; Wright, J. Fluoride-releasing elastomeric modules reduce decalcification: A randomized controlled trial. J. Orthod. 2001, 28, 217–219. [Google Scholar] [CrossRef] [PubMed]
- Miethke, R.R. Comment on determination of fluoride from ligature ties. Am. J. Orthod. Dentofac. Orthop. 1997, 111, 33A. [Google Scholar] [CrossRef]
- Marquis, R.E. Antimicrobial actions of fluoride for oral bacteria. Can. J. Microbiol. 1995, 41, 955–964. [Google Scholar] [CrossRef]
- Bowden, G.H. Effects of fluoride on the microbial ecology of dental plaque. J. Dent. Res. 1990, 69, 653–683. [Google Scholar] [CrossRef] [PubMed]
- Furchgott, R.F. Endothelium-Derived Relaxing Factor: Discovery, Early Studies, and Identifcation as Nitric Oxide (Nobel Lecture). Angew. Chem. Int. Ed. 1999, 38, 1870–1880. [Google Scholar] [CrossRef]
- Carpenter, A.W.; Schoenfisch, M.H. Nitric oxide release: Part II. Therapeutic applications. Chem. Soc. Rev. 2012, 41, 3742–3752. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.V.S. Environmental Pollution: Health and Toxicology; Alpha Science Int’l Ltd.: Oxford, UK, 2006; p. 14. [Google Scholar]
- Alloway, B.; Ayres, D.C. Chemical Principles of Environmental Pollution; CRC Press: Boca Raton, FL, USA, 1997; p. 7. [Google Scholar]
- Ignarro, L.J.; Buga, G.M.; Wood, K.S.; Byrns, R.E.; Chaudhuri, G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. USA 1987, 84, 9265–9269. [Google Scholar] [CrossRef] [PubMed]
- Hetrick, E.M.; Schoenfisch, M.H. Analytical chemistry of nitric oxide. Annu. Rev. Anal. Chem. 2009, 2, 409–433. [Google Scholar] [CrossRef] [PubMed]
- Palmer, R.M.; Ashton, D.S.; Moncada, S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988, 333, 664–666. [Google Scholar] [CrossRef] [PubMed]
- Rizk, M.; Witte, M.B.; Barbul, A. Nitric oxide and wound healing. World J. Surg. 2004, 28, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Taite, L.J.; Yang, P.; Jun, H.W.; West, J.L. Nitric oxide-releasing polyurethane-PEG copolymer containing the YIGSR peptide promotes endothelialization with decreased platelet adhesion. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 84, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Bogdan, C. Nitric oxide and the immune response. Nat. Immunol. 2001, 2, 907–916. [Google Scholar] [CrossRef]
- Jones, M.L.; Ganopolsky, J.G.; Labbé, A.; Wahl, C.; Prakash, S. Antimicrobial properties of nitric oxide and its application in antimicrobial formulations and medical devices. Appl. Microbiol. Biotechnol. 2010, 88, 401–407. [Google Scholar] [CrossRef]
- Radi, R. Peroxynitrite, a stealthy biological oxidant. J. Biol. Chem. 2013, 288, 26464–26472. [Google Scholar] [CrossRef] [PubMed]
- Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 2007, 87, 315–424. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zweier, J.L. Measurement of nitric oxide and peroxynitrite generation in the postischemic heart. Evidence for peroxynitrite-mediated reperfusion injury. J. Biol. Chem. 1996, 271, 29223–29230. [Google Scholar] [CrossRef] [PubMed]
- Olufunmilayo, E.O.; Gerke-Duncan, M.B.; Holsinger, R.M.D. Oxidative Stress and Antioxidants in Neurodegenerative Disorders. Antioxidants 2023, 12, 517. [Google Scholar] [CrossRef] [PubMed]
- Szabó, C.; Ischiropoulos, H.; Radi, R. Peroxynitrite: Biochemistry, pathophysiology and development of therapeutics. Nature reviews. Drug Discov. 2007, 6, 662–680. [Google Scholar] [CrossRef] [PubMed]
- Vong, L.B.; Nagasaki, Y. Nitric Oxide Nano-Delivery Systems for Cancer Therapeutics: Advances and Challenges. Antioxidants 2020, 9, 791. [Google Scholar] [CrossRef]
- Poh, W.H.; Rice, S.A. Recent Developments in Nitric Oxide Donors and Delivery for Antimicrobial and Anti-Biofilm Applications. Molecules 2022, 27, 674. [Google Scholar] [CrossRef] [PubMed]
- Hanson, S.R.; Hutsell, T.C.; Keefer, L.K.; Mooradian, D.L.; Smith, D.J. Nitric oxide donors: A continuing opportunity in drug design. Adv. Pharmacol. 1995, 34, 383–398. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, J.O.; Gladwin, M.T.; Weitzberg, E. Strategies to increase nitric oxide signalling in cardiovascular disease. Nature reviews. Drug Discov. 2015, 14, 623–641. [Google Scholar] [CrossRef]
- Frost, M.C.; Reynolds, M.M.; Meyerhoff, M.E. Polymers incorporating nitric oxide releasing/generating substances for improved biocompatibility of blood-contacting medical devices. Biomaterials 2005, 26, 1685–1693. [Google Scholar] [CrossRef]
- Wo, Y.; Li, Z.; Brisbois, E.J.; Colletta, A.; Wu, J.; Major, T.C.; Xi, C.; Bartlett, R.H.; Matzger, A.J.; Meyerhoff, M.E. Origin of Long-Term Storage Stability and Nitric Oxide Release Behavior of CarboSil Polymer Doped with S-Nitroso-N-acetyl-D-penicillamine. ACS Appl. Mater. Interfaces 2015, 7, 22218–22227. [Google Scholar] [CrossRef] [PubMed]
- Stokes, G.S.; Potts, J.T.; Lotz, M.; Bartter, F.C. New Agent in the Treatment of Cystinuria: N-acetyl-D-penicillamine. Br. Med. J. 1968, 1, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Brisbois, E.J.; Davis, R.P.; Jones, A.M.; Major, T.C.; Bartlett, R.H.; Meyerhoff, M.E.; Handa, H. Reduction in Thrombosis and Bacterial Adhesion with 7 Day Implantation of S-Nitroso-N-acetylpenicillamine (SNAP)-Doped Elast-eon E2As Catheters in Sheep. J. Mater. Chem. B 2015, 3, 1639–1645. [Google Scholar] [CrossRef] [PubMed]
- Goudie, M.J.; Brisbois, E.J.; Pant, J.; Thompson, A.; Potkay, J.A.; Handa, H. Characterization of an S-nitroso-N-acetylpenicillamine-based nitric oxide releasing polymer from a translational perspective. Int. J. Polym. Mater. 2016, 65, 769–778. [Google Scholar] [CrossRef]
- Vogt, C.; Xing, Q.; He, W.; Li, B.; Frost, M.C.; Zhao, F. Fabrication and characterization of a nitric oxide-releasing nanofibrous gelatin matrix. Biomacromolecules 2013, 14, 2521–2530. [Google Scholar] [CrossRef] [PubMed]
- Colletta, A.; Wu, J.; Wo, Y.; Kappler, M.; Chen, H.; Xi, C.; Meyerhoff, M.E. S-Nitroso-N-acetylpenicillamine (SNAP) Impregnated Silicone Foley Catheters: A Potential Biomaterial/Device To Prevent Catheter-Associated Urinary Tract Infections. ACS Biomater. Sci. Eng. 2015, 1, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Warden, C.; Tan, J.; Piell, K.; Janakiraman, N.; Meyerhoff, M.; Steinbach-Rankins, J.; Cole, M.; Gudhimella, S. A novel, nitric oxide-releasing elastomeric chain for antimicrobial action: Proof of concept. Mater. Res. Express 2021, 8, 095309. [Google Scholar] [CrossRef]
- Andreasen, G.F.; Bishara, S. Comparison of alastik chains with elastics involved with intra-arch molar to molar forces. Angle Orthod. 1970, 40, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Elastollan® (TPU)—The Thermoplastic Polyurethane of BASF (n.d.). Available online: https://plastics-rubber.basf.com/global/en/performance_polymers/products/elastollan.html (accessed on 10 November 2022).
- Electrospinning. Nanoscience Instruments (21 September 2022). Available online: https://www.nanoscience.com/techniques/electrospin/ (accessed on 31 October 2022).
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef]
- Ong, E.; McCallum, H.; Griffin, M.P.; Ho, C. Efficiency of self-ligating vs conventionally ligated brackets during initial alignment. Am. J. Orthod. Dentofac. Orthop. 2010, 138, 138.e1–138.e7. [Google Scholar] [CrossRef]
- Choudhary, M.; MacDonald, L.; Meyerhoff, M.E. S-Nitroso-N-acetylpenicillamine (SNAP)-Based Antithrombotic and Antimicrobial Polymers for Biomedical Applications: Nitric Oxide (NO) to the Rescue. J. Med. Chem. 2020, 63, 10732–10751. [Google Scholar]
- Wo, Y.; Xu, L.C.; Li, Z.; Matzger, A.J.; Meyerhoff, M.E.; Siedlecki, C.A. Antimicrobial nitric oxide releasing surfaces based on S-nitroso-N-acetylpenicillamine impregnated polymers combined with submicron-textured surface topography. Biomater. Sci. 2017, 5, 1265–1278. [Google Scholar] [CrossRef] [PubMed]
Before (mg) | After (mg) | % Change | |
---|---|---|---|
Control (n = 6) | 22.65 (SD = 0.63) | 22.17 (SD = 0.55) | −2.12 |
50 mg/mL (n = 6) | 22.50 (SD = 0.71) | 24.94 (SD = 0.53) | +10.84 |
75 mg/mL (n = 6) | 22.72 (SD = 0.77) | 26.38 (SD = 0.77) | +16.11 |
100 mg/mL (n = 6) | 22.42 (SD = 0.75) | 27.06 (SD = 0.70) | +20.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McDonald, A.; Warden, C.; Tan, J.; Piell, K.M.; Steinbach-Rankins, J.M.; Janakiraman, N.; Scott, D.A.; Cole, M.P.; Gudhimella, S. Synthesis and Characterization of a Sustained Nitric Oxide-Releasing Orthodontic Elastomeric Chain for Antimicrobial Action. Int. J. Mol. Sci. 2024, 25, 6982. https://doi.org/10.3390/ijms25136982
McDonald A, Warden C, Tan J, Piell KM, Steinbach-Rankins JM, Janakiraman N, Scott DA, Cole MP, Gudhimella S. Synthesis and Characterization of a Sustained Nitric Oxide-Releasing Orthodontic Elastomeric Chain for Antimicrobial Action. International Journal of Molecular Sciences. 2024; 25(13):6982. https://doi.org/10.3390/ijms25136982
Chicago/Turabian StyleMcDonald, Alec, Carly Warden, Jinlian Tan, Kellianne M. Piell, Jill M. Steinbach-Rankins, Nandakumar Janakiraman, David A. Scott, Marsha P. Cole, and Sudha Gudhimella. 2024. "Synthesis and Characterization of a Sustained Nitric Oxide-Releasing Orthodontic Elastomeric Chain for Antimicrobial Action" International Journal of Molecular Sciences 25, no. 13: 6982. https://doi.org/10.3390/ijms25136982
APA StyleMcDonald, A., Warden, C., Tan, J., Piell, K. M., Steinbach-Rankins, J. M., Janakiraman, N., Scott, D. A., Cole, M. P., & Gudhimella, S. (2024). Synthesis and Characterization of a Sustained Nitric Oxide-Releasing Orthodontic Elastomeric Chain for Antimicrobial Action. International Journal of Molecular Sciences, 25(13), 6982. https://doi.org/10.3390/ijms25136982