Anti-Influenza A Potential of Tagetes erecta Linn. Extract Based on Bioinformatics Analysis and In Vitro Assays
Abstract
:1. Introduction
2. Results
2.1. In Silico Findings
2.1.1. Active Compounds and Target Prediction
2.1.2. Influenza Target Prediction
2.1.3. Construction of the Protein–Protein Interaction (PPI) Network of Potential Targets
2.1.4. GEO Analysis
2.1.5. KEGG Pathway and GO Analysis
2.1.6. Molecular Docking of Active Compounds with Hub Target Genes
2.2. In Vitro Findings
2.2.1. Cytotoxicity and Antiviral Activity of TE Extract
2.2.2. Time-of-Addition Assay
2.2.3. Plaque Reduction Assay
3. Discussion
4. Materials and Methods
4.1. In Silico Analyses
4.1.1. Identification of Potential Active Compounds in TE Extract
4.1.2. Potential Targets of TE Extract and Influenza Virus
4.1.3. Network Construction and Pathway Analysis
4.1.4. Gene Difference and Gene Enrichment Analyses
4.1.5. Molecular Docking Analysis
4.2. In Vitro Experiment
4.2.1. Plant Material and Extraction
4.2.2. Cells and Viral Infection
4.2.3. Cytotoxicity and Antiviral Assay
4.2.4. Time-of-Addition Assay
4.2.5. Plaque Reduction Assay
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Webster, R.G.; Govorkova, E.A. Continuing challenges in influenza. Ann. N. Y. Acad. Sci. 2014, 1323, 115–139. [Google Scholar] [CrossRef] [PubMed]
- Krammer, F.; Smith, G.J.; Fouchier, R.A.; Peiris, M.; Kedzierska, K.; Doherty, P.C.; Palese, P.; Shaw, M.L.; Treanor, J.; Webster, R.G.; et al. Influenza. Nat. Rev. Dis. Primers 2018, 4, 3. [Google Scholar] [CrossRef] [PubMed]
- Gubareva, L.V. Molecular mechanisms of influenza virus resistance to neuraminidase inhibitors. Virus Res. 2004, 103, 199–203. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Tan, N.; Gwee, K.A.; Tack, J.; Zhang, M.; Li, Y.; Chen, M.; Xiao, Y. Herbal medicine in the treatment of functional gastrointestinal disorders: A systematic review with meta-analysis. J. Gastroenterol. Hepatol. 2020, 35, 544–556. [Google Scholar] [CrossRef] [PubMed]
- Casas, A.I.; Hassan, A.A.; Larsen, S.J.; Gomez-Rangel, V.; Elbatreek, M.; Kleikers, P.W.; Guney, E.; Egea, J.; López, M.G.; Baumbach, J.; et al. From single drug targets to synergistic network pharmacology in ischemic stroke. Proc. Natl. Acad. Sci. USA 2019, 116, 7129–7136. [Google Scholar] [CrossRef]
- Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690. [Google Scholar] [CrossRef]
- Burlec, A.F.; Pecio, Ł.; Kozachok, S.; Mircea, C.; Corciovă, A.; Vereștiuc, L.; Cioancă, O.; Oleszek, W.; Hăncianu, M. Phytochemical Profile, Antioxidant Activity, and Cytotoxicity Assessment of Tagetes erecta L. Flowers. Molecules 2021, 26, 1201. [Google Scholar] [CrossRef] [PubMed]
- Zanovello, M.; Mariano, L.N.; Cechinel-Zanchett, C.C.; Boeing, T.; Tazinaffo, G.C.; da Silva, L.M.; Silva, D.B.; Junior, A.G.; de Souza, P. Tagetes erecta L. flowers, a medicinal plant traditionally used to promote diuresis, induced diuretic and natriuretic effects in normotensive and hypertensive rats. J. Ethnopharmacol. 2021, 279, 114393. [Google Scholar] [CrossRef]
- Meurer, M.; de Oliveira, B.M.; Cury, B.J.; Jerônimo, D.T.; Venzon, L.; França, T.C.; Mariott, M.; Silva-Nunes, R.; Santos, A.C.; Roman-Junior, W.A.; et al. Extract of Tagetes erecta L., a medicinal plant rich in lutein, promotes gastric healing and reduces ulcer recurrence in rodents. J. Ethnopharmacol. 2022, 293, 115258. [Google Scholar] [CrossRef]
- Bernstein, P.S.; Li, B.; Vachali, P.P.; Gorusupudi, A.; Shyam, R.; Henriksen, B.S.; Nolan, J.M. Lutein, zeaxanthin, and meso-zeaxanthin: The basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Prog. Retin. Eye Res. 2016, 50, 34–66. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Choi, H.; Kim, S.; Kang, L.W.; Kim, Y.B. Elucidating the Effects of Curcumin against Influenza Using In Silico and In Vitro Approaches. Pharmaceuticals 2021, 14, 880. [Google Scholar] [CrossRef] [PubMed]
- Javanian, M.; Barary, M.; Ghebrehewet, S.; Koppolu, V.; Vasigala, V.; Ebrahimpour, S. A brief review of influenza virus infection. J. Med. Virol. 2021, 93, 4638–4646. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Okahara, F.; Osaki NShimotoyodome, A. Increased GIP signaling induces adipose inflammation via a HIF-1α-dependent pathway and impairs insulin sensitivity in mice. Am. J. Physiol. Endocrinol. Metab. 2015, 308, 23. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zhu, Z.; Zhang, W.; Meng, X.; Zhu, Y.; Han, P.; Zhou, X.; Hu, Y.; Wang, R. Nuclear translocation of HIF-1α induced by influenza A (H1N1) infection is critical to the production of proinflammatory cytokines. Emerg. Microbes Infect. 2017, 6, 21. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Jung, H.; Shin, I.K.; Choi, B.R.; Kim, D.H. Induction of interleukin-1 beta (IL-1β) is a critical component of lung inflammation during influenza A (H1N1) virus infection. J. Med. Virol. 2015, 87, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Chiaretti, A.; Pulitanò, S.; Barone, G.; Ferrara, P.; Romano, V.; Capozzi, D.; Riccardi, R. IL-1 beta and IL-6 upregulation in children with H1N1 influenza virus infection. Mediat. Inflamm. 2013, 2013, 495848. [Google Scholar] [CrossRef] [PubMed]
- Denney, L.; Branchett, W.; Gregory, L.G.; Oliver, R.A.; Lloyd, C.M. Epithelial-derived TGF-β1 acts as a pro-viral factor in the lung during influenza A infection. Mucosal Immunol. 2018, 11, 523–535. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Correll, K.; Zemans, R.L.; Leslie, C.C.; Murphy, R.C.; Mason, R.J. Influenza induces IL-8 and GM-CSF secretion by human alveolar epithelial cells through HGF/c-Met and TGF-α/EGFR signalinag. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015, 308, 10. [Google Scholar] [CrossRef]
- Davey, R.T., Jr.; Lynfield, R.; Dwyer, D.E.; Losso, M.H.; Cozzi-Lepri, A.; Wentworth, D.; Lane, H.C.; Dewar, R.; Rupert, A.; Metcalf, J.A.; et al. The association between serum biomarkers and disease outcome in influenza A(H1N1)pdm09 virus infection: Results of two international observational cohort studies. PLoS ONE 2013, 8, e57121. [Google Scholar] [CrossRef]
- Betakova, T.; Kostrabova, A.; Lachova, V.; Turianova, L. Cytokines Induced During Influenza Virus Infection. Curr. Pharm. Des. 2017, 23, 2616–2622. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.; Wong, C.K.; Chan, P.K.; Chan, M.C.; Wong, R.Y.; Lun, S.W.; Ngai, K.L.; Lui, G.C.; Wong, B.C.; Lee, S.K.; et al. Cytokine response patterns in severe pandemic 2009 H1N1 and seasonal influenza among hospitalized adults. PLoS ONE 2011, 6, e26050. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Chen, F.; Liu, T.; Liu, S.; Yang, J. The role of oxidative stress in influenza virus infection. Microbes Infect. 2017, 19, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Uchide, N.; Toyoda, H. Antioxidant therapy as a potential approach to severe influenza-associated complications. Molecules 2011, 16, 2032–2052. [Google Scholar] [CrossRef]
- Johra, F.T.; Bepari, A.K.; Bristy, A.T.; Reza, H.M. A Mechanistic Review of β-Carotene, Lutein, and Zeaxanthin in Eye Health and Disease. Antioxidants 2020, 9, 1046. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Hu, H.; Park, S.K. Serum antioxidant status and mortality from influenza and pneumonia in US adults. Public. Health Nutr. 2022, 25, 3466–3475. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.R.; Sardi, J.D.C.O.; Freires, I.A.; Silva AC, B.; Rosalen, P.L. In silico approaches for screening molecular targets in Candida albicans: A proteomic insight into drug discovery and development. Eur. J. Pharmacol. 2019, 842, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.K.; Christopher, A.F.; Gupta, V.; Bansal, P. Emerging role of bioinformatics tools and software in evolution of clinical research. Perspect. Clin. Res. 2016, 7, 115–122. [Google Scholar] [PubMed]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023, 51, D587–D592. [Google Scholar] [CrossRef]
- Hikmawanti, N.P.; Fatmawati, S.; Asri, A.W. The Effect of Ethanol Concentrations as The Extraction Solvent on Antioxidant Activity of Katuk (Sauropus androgynus (L.) Merr.) Leaves Extracts. IOP Sci. 2020, 755, 012060. [Google Scholar] [CrossRef]
Compound | Classification | MW | OB | DL |
---|---|---|---|---|
Alpha-carotene | Carotenoid | 536.96 | 34.51 | 0.58 |
Beta-carotene | Carotenoid | 536.96 | 37.18 | 0.58 |
Beta-sitosterol | Phytosterol | 414.79 | 36.91 | 0.75 |
Campesterol | Phytosterol | 400.76 | 37.58 | 0.71 |
Lutein | Carotenoid | 568.96 | 22.59 | 0.55 |
Stigmasterol | Phytosterol | 412.77 | 43.83 | 0.76 |
Target | Description | Degree |
---|---|---|
IL-6 | Interleukin-6 | 11 |
HIF1A | Hypoxia-inducible factor 1 subunit alpha | 10 |
IL-1β | Interleukin-1 beta | 10 |
CXCL8 | Interleukin-8 | 9 |
RELA | RELA proto-oncogene, NF-κB subunit | 9 |
HMOX1 | Heme oxygenase 1 | 8 |
TGFB1 | Transforming growth factor beta 1 | 8 |
APP | Amyloid beta precursor protein | 7 |
BAX | Apoptosis regulator BAX | 6 |
CTGF | Cellular communication network factor 2 | 6 |
TNFRSF10B | Tumor necrosis factor receptor superfamily member 10B | 6 |
ATM | ATM serine/threonine kinase | 5 |
CAPN2 | Calpain 2 | 2 |
BAG3 | BAG cochaperone 3 | 1 |
Compound | Binding Affinity (kcal/mol) | ||
---|---|---|---|
IL-6 | TGFB1 | CXCL8 | |
Lutein | –8.6 | –7.3 | –7.3 |
Beta-carotene | –8.2 | –7.6 | –7.6 |
CC50 (µg/mL) | IC50 (µg/mL) | SI |
---|---|---|
>2000 | 76 ± 18 | >30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Nowakowska, A.; Kim, J.; Kim, Y.B. Anti-Influenza A Potential of Tagetes erecta Linn. Extract Based on Bioinformatics Analysis and In Vitro Assays. Int. J. Mol. Sci. 2024, 25, 7065. https://doi.org/10.3390/ijms25137065
Kim M, Nowakowska A, Kim J, Kim YB. Anti-Influenza A Potential of Tagetes erecta Linn. Extract Based on Bioinformatics Analysis and In Vitro Assays. International Journal of Molecular Sciences. 2024; 25(13):7065. https://doi.org/10.3390/ijms25137065
Chicago/Turabian StyleKim, Minjee, Aleksandra Nowakowska, Jaebum Kim, and Young Bong Kim. 2024. "Anti-Influenza A Potential of Tagetes erecta Linn. Extract Based on Bioinformatics Analysis and In Vitro Assays" International Journal of Molecular Sciences 25, no. 13: 7065. https://doi.org/10.3390/ijms25137065
APA StyleKim, M., Nowakowska, A., Kim, J., & Kim, Y. B. (2024). Anti-Influenza A Potential of Tagetes erecta Linn. Extract Based on Bioinformatics Analysis and In Vitro Assays. International Journal of Molecular Sciences, 25(13), 7065. https://doi.org/10.3390/ijms25137065