Double-Edged Sword Effect of Diet and Nutrition on Carcinogenic Molecular Pathways in Breast Cancer
Abstract
:1. Introduction
2. The Good
3. The Bad
4. Outlook
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022, 66, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Bucher, M.L.; Anderson, F.L.; Lai, Y.; Dicent, J.; Miller, G.W.; Zota, A.R. Exposomics as a tool to investigate differences in health and disease by sex and gender. Exposome 2023, 3, osad003. [Google Scholar] [CrossRef] [PubMed]
- Sellami, M.; Bragazzi, N.L. Nutrigenomics and Breast Cancer: State-of-Art, Future Perspectives and Insights for Prevention. Nutrients 2020, 12, 512. [Google Scholar] [CrossRef] [PubMed]
- Kobets, T.; Smith, B.P.C.; Williams, G.M. Food-Borne Chemical Carcinogens and the Evidence for Human Cancer Risk. Foods 2022, 11, 2828. [Google Scholar] [CrossRef]
- Rather, I.A.; Koh, W.Y.; Paek, W.K.; Lim, J. The Sources of Chemical Contaminants in Food and Their Health Implications. Front. Pharmacol. 2017, 8, 830. [Google Scholar] [CrossRef]
- Sorrenti, V.; Burò, I.; Consoli, V.; Vanella, L. Recent Advances in Health Benefits of Bioactive Compounds from Food Wastes and By-Products: Biochemical Aspects. Int. J. Mol. Sci. 2023, 24, 2019. [Google Scholar] [CrossRef]
- Neagu, A.-N.; Jayaweera, T.; Corrice, L.; Johnson, K.; Darie, C.C. Breast Cancer Exposomics. Life 2024, 14, 402. [Google Scholar] [CrossRef]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
- Bhattacharya, T.; Dutta, S.; Akter, R.; Rahman, H.; Karthika, C.; Nagaswarupa, H.P.; Murthy, H.C.A.; Fratila, O.; Brata, R.; Bungau, S. Role of Phytonutrients in Nutrigenetics and Nutrigenomics Perspective in Curing Breast Cancer. Biomolecules 2021, 11, 1176. [Google Scholar] [CrossRef]
- Mecca, M.; Sichetti, M.; Giuseffi, M.; Giglio, E.; Sabato, C.; Sanseverino, F.; Marino, G. Synergic Role of Dietary Bioactive Compounds in Breast Cancer Chemoprevention and Combination Therapies. Nutrients 2024, 16, 1883. [Google Scholar] [CrossRef]
- Yuan, M.; Zhang, G.; Bai, W.; Han, X.; Li, C.; Bian, S. The Role of Bioactive Compounds in Natural Products Extracted from Plants in Cancer Treatment and Their Mechanisms Related to Anticancer Effects. Oxidative Med. Cell. Longev. 2022, 2022, 1429869. [Google Scholar] [CrossRef] [PubMed]
- Starek-Świechowicz, B.; Budziszewska, B.; Starek, A. Alcohol and breast cancer. Pharmacol. Rep. 2023, 75, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Epner, M.; Yang, P.; Wagner, R.W.; Cohen, L. Understanding the Link between Sugar and Cancer: An Examination of the Preclinical and Clinical Evidence. Cancers 2022, 14, 6042. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, A.; Cesário, V.; Coutinho, D.; Matias, I.; Domingues, G.; Pinheiro, C.; Serafim, T.; Dias, S. A high-cholesterol diet promotes the intravasation of breast tumor cells through an LDL–LDLR axis. Sci. Rep. 2024, 14, 9471. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Beltrán-Velasco, A.I.; Redondo-Flórez, L.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023, 15, 2749. [Google Scholar] [CrossRef]
- Malinowska, A.M.; Mlodzik-Czyzewska, M.A.; Chmurzynska, A. Dietary patterns associated with obesity and overweight: When should misreporters be included in analysis? Nutrition 2020, 70, 110605. [Google Scholar] [CrossRef]
- López-Taboada, I.; González-Pardo, H.; Conejo, N.M. Western Diet: Implications for Brain Function and Behavior. Front. Psychol. 2020, 11, 564413. [Google Scholar] [CrossRef]
- Heras, V.L.; Melgar, S.; MacSharry, J.; Gahan, C.G. The Influence of the Western Diet on Microbiota and Gastrointestinal Immunity. Annu. Rev. Food Sci. Technol. 2022, 13, 489–512. [Google Scholar] [CrossRef]
- Newsome, R.; Yang, Y.; Jobin, C. Western diet influences on microbiome and carcinogenesis. Semin. Immunol. 2023, 67, 101756. [Google Scholar] [CrossRef]
- Dehesh, T.; Fadaghi, S.; Seyedi, M.; Abolhadi, E.; Ilaghi, M.; Shams, P.; Ajam, F.; Mosleh-Shirazi, M.A.; Dehesh, P. The relation between obesity and breast cancer risk in women by considering menstruation status and geographical variations: A systematic review and meta-analysis. BMC Women’s Health 2023, 23, 392. [Google Scholar] [CrossRef]
- Ruo, S.W.; Alkayyali, T.; Win, M.; Tara, A.; Joseph, C.; Kannan, A.; Srivastava, K.; Ochuba, O.; Sandhu, J.K.; Went, T.R.; et al. Role of Gut Microbiota Dysbiosis in Breast Cancer and Novel Approaches in Prevention, Diagnosis, and Treatment. Cureus 2021, 13, e17472. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Leary, S.; Niu, J.; Perry, R.; Papadaki, A. The Role of the Mediterranean Diet in Breast Cancer Survivorship: A Systematic Review and Meta-Analysis of Observational Studies and Randomised Controlled Trials. Nutrients 2023, 15, 2099. [Google Scholar] [CrossRef] [PubMed]
- Kalam, F.; James, D.L.; Li, Y.R.; Coleman, M.F.; A Kiesel, V.; Feliciano, E.M.C.; Hursting, S.D.; Sears, D.D.; Kleckner, A.S. Intermittent fasting interventions to leverage metabolic and circadian mechanisms for cancer treatment and supportive care outcomes. JNCI Monogr. 2023, 2023, 84–103. [Google Scholar] [CrossRef] [PubMed]
- Hardt, L.; Mahamat-Saleh, Y.; Aune, D.; Schlesinger, S. Plant-Based Diets and Cancer Prognosis: A Review of Recent Research. Curr. Nutr. Rep. 2022, 11, 695–716. [Google Scholar] [CrossRef] [PubMed]
- Teodoro, A.J. Bioactive Compounds of Food: Their Role in the Prevention and Treatment of Diseases. Oxid. Med. Cell Longev. 2019, 2019, 3765986. [Google Scholar] [CrossRef]
- Palomar-Cros, A.; Harding, B.N.; Espinosa, A.; Papantoniou, K.; Pérez-Gómez, B.; Straif, K.; Ardanaz, E.; Villa, T.F.; Amiano, P.; Gómez-Acebo, I.; et al. Association of time of breakfast and nighttime fasting duration with breast cancer risk in the multicase-control study in Spain. Front. Nutr. 2022, 9, 941477. [Google Scholar] [CrossRef]
- D’cunha, K.; Park, Y.; Protani, M.M.; Reeves, M.M. Circadian rhythm disrupting behaviours and cancer outcomes in breast cancer survivors: A systematic review. Breast Cancer Res. Treat. 2022, 198, 413–421. [Google Scholar] [CrossRef]
- Marinac, C.R.; Sears, D.D.; Natarajan, L.; Gallo, L.C.; Breen, C.I.; Patterson, R.E. Frequency and circadian timing of eating may influence biomarkers of inflammation and insulin resistance associated with breast cancer risk. PLoS ONE 2015, 10, e0136240. [Google Scholar] [CrossRef]
- Spence, C. Breakfast: The most important meal of the day? Int. J. Gastron. Food Sci. 2017, 8, 1–6. [Google Scholar] [CrossRef]
- Gibney, M.J.; Barr, S.I.; Bellisle, F.; Drewnowski, A.; Fagt, S.; Livingstone, B.; Masset, G.; Moreiras, G.V.; Moreno, L.A.; Smith, J.; et al. Breakfast in Human Nutrition: The International Breakfast Research Initiative. Nutrients 2018, 10, 559. [Google Scholar] [CrossRef]
- Ferrer-Cascales, R.; Sánchez-SanSegundo, M.; Ruiz-Robledillo, N.; Albaladejo-Blázquez, N.; Laguna-Pérez, A.; Zaragoza-Martí, A. Eat or Skip Breakfast? The Important Role of Breakfast Quality for Health-Related Quality of Life, Stress and Depression in Spanish Adolescents. Int. J. Environ. Res. Public Health 2018, 15, 1781. [Google Scholar] [CrossRef] [PubMed]
- López-Gil, J.F.; Tully, M.A.; Cristi-Montero, C.; Brazo-Sayavera, J.; Gaya, A.R.; Calatayud, J.; López-Bueno, R.; Smith, L. Is the frequency of breakfast consumption associated with life satisfaction in children and adolescents? A cross-sectional study with 154,151 participants from 42 countries. Nutr. J. 2024, 23, 78. [Google Scholar] [CrossRef] [PubMed]
- A Betts, J.; Richardson, J.D.; A Chowdhury, E.; Holman, G.D.; Tsintzas, K.; Thompson, D. The causal role of breakfast in energy balance and health: A randomized controlled trial in lean adults. Am. J. Clin. Nutr. 2014, 100, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Adolphus, K.; Lawton, C.L.; Dye, L. The effects of breakfast on behavior and academic performance in children and adolescents. Front. Hum. Neurosci. 2013, 7, 425. [Google Scholar] [CrossRef] [PubMed]
- Tolfrey, K.; Zakrzewski, J.K. Breakfast, glycaemic index and health in young people. J. Sport Health Sci. 2012, 1, 149–159. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, N.; Liu, A.; Luan, D.; Zhao, Y.; Song, C.; Ma, G. The effects of breakfast on short-term cognitive function among Chinese white-collar workers: Protocol for a three-phase crossover study. BMC Public Health 2017, 17, 92. [Google Scholar] [CrossRef] [PubMed]
- Bellisle, F.; Hébel, P.; Salmon-Legagneur, A.; Vieux, F. Breakfast Consumption in French Children, Adolescents, and Adults: A Nationally Representative Cross-Sectional Survey Examined in the Context of the International Breakfast Research Initiative. Nutrients 2018, 10, 1056. [Google Scholar] [CrossRef]
- Elahy, V.; Thomson, C.; Neuhouser, M.L.; Jiang, L.; Lee, S.; Pan, K.; Vitolins, M.; Chlebowski, R.; Lane, D.; Odegaard, A.O. Frequency of Consuming Breakfast Meals and After-Dinner Snacks Is not Associated with Postmenopausal Breast Cancer Risk: Women’s Health Initiative Observational Study. J. Nutr. 2023, 153, 1089–1100. [Google Scholar] [CrossRef]
- Ligorio, F.; Fucà, G.; Vingiani, A.; Iannelli, F.; Lobefaro, R.; Ferraris, C.; Belfiore, A.; Scaperrotta, G.; Depretto, C.; Martinetti, A.; et al. 248P Targeting triple-negative breast cancer metabolism with neoadjuvant chemotherapy plus fasting-mimicking diet plus/minus metformin: The BREAKFAST trial. Ann. Oncol. 2023, 34, S282–S283. [Google Scholar] [CrossRef]
- Caffa, I.; Spagnolo, V.; Vernieri, C.; Valdemarin, F.; Becherini, P.; Wei, M.; Brandhorst, S.; Zucal, C.; Driehuis, E.; Ferrando, L.; et al. Fasting-mimicking diet and hormone therapy induce breast cancer regression. Nature 2020, 583, 620–624. [Google Scholar] [CrossRef]
- Anemoulis, M.; Vlastos, A.; Kachtsidis, V.; Karras, S.N. Intermittent Fasting in Breast Cancer: A Systematic Review and Critical Update of Available Studies. Nutrients 2023, 15, 532. [Google Scholar] [CrossRef] [PubMed]
- Son, D.-S.; Done, K.A.; Son, J.; Izban, M.G.; Virgous, C.; Lee, E.-S.; Adunyah, S.E. Intermittent Fasting Attenuates Obesity-Induced Triple-Negative Breast Cancer Progression by Disrupting Cell Cycle, Epithelial–Mesenchymal Transition, Immune Contexture, and Proinflammatory Signature. Nutrients 2024, 16, 2101. [Google Scholar] [CrossRef] [PubMed]
- Zamzam, S.; Said, S.; Yaghi, J.; Faisal, F.S.; Hassan, D.; Majeed, S.A.; Al Rajabi, A.; Tayyem, R. Dietary Patterns Associated with Breast Cancer in the Middle East: A Scoping Review. Nutrients 2024, 16, 579. [Google Scholar] [CrossRef] [PubMed]
- Soare, I.; Zugravu, C.L.; Zugravu, G.A. Research on Consumer Perception Regarding Traditional Food Products of Romania. Foods 2023, 12, 2723. [Google Scholar] [CrossRef]
- Lequeux-Dincă, A.-I.; Preda, M.; Vijulie, I. Authentic Romanian Gastronomy—A Landmark of Bucharest’s City Center. Tour. Hosp. 2024, 5, 251–275. [Google Scholar] [CrossRef]
- Costandache, M.; Nenciu, D.-S. The structure of Romanian’s food consumption and its implications on health condition and quality of life. Rev. Romana Stat. 2013, 12, 41–51. [Google Scholar]
- Antunes, I.C.; Bexiga, R.; Pinto, C.; Roseiro, L.C.; Quaresma, M.A.G. Cow’s Milk in Human Nutrition and the Emergence of Plant-Based Milk Alternatives. Foods 2022, 12, 99. [Google Scholar] [CrossRef]
- Vincent, D.; Ezernieks, V.; Elkins, A.; Nguyen, N.; Moate, P.J.; Cocks, B.G.; Rochfort, S. Milk Bottom-Up Proteomics: Method Optimization. Front. Genet. 2016, 6, 360. [Google Scholar] [CrossRef]
- Wajszczyk, B.; Charzewska, J.; Godlewski, D.; Zemła, B.; Nowakowska, E.; Kozaczka, M.; Chilimoniuk, M.; Pathak, D.R. Consumption of Dairy Products and the Risk of Developing Breast Cancer in Polish Women. Nutrients 2021, 13, 4420. [Google Scholar] [CrossRef]
- Arafat, H.M.; Omar, J.; Shafii, N.; Naser, I.A.; Al Laham, N.A.; Muhamad, R.; Al-Astani, T.A.D.; Shaqaliah, A.J.; Shamallakh, O.M.; Shamallakh, K.M.; et al. The association between breast cancer and consumption of dairy products: A systematic review. Ann. Med. 2023, 55, 2198256. [Google Scholar] [CrossRef]
- Riseberg, E.; Wu, Y.; Lam, W.C.; Eliassen, A.H.; Wang, M.; Zhang, X.; Willett, W.C.; A Smith-Warner, S. Lifetime dairy product consumption and breast cancer risk: A prospective cohort study by tumor subtypes. Am. J. Clin. Nutr. 2024, 119, 302–313. [Google Scholar] [CrossRef] [PubMed]
- Deschasaux-Tanguy, M.; Barrubés Piñol, L.; Sellem, L.; Debras, C.; Srour, B.; Chazelas, E.; Wendeu-Foyet, G.; Hercberg, S.; Galan, P.; Kesse-Guyot, E.; et al. Dairy product consumption and risk of cancer: A short report from the NutriNet-Santé prospective cohort study. Int. J. Cancer 2022, 150, 1978–1986. [Google Scholar] [CrossRef] [PubMed]
- Månsson, H.L. Fatty acids in bovine milk fat. Food Nutr. Res. 2008, 52, 1821. [Google Scholar] [CrossRef]
- Huang, W.; Guo, X.; Wang, C.; Alzhan, A.; Liu, Z.; Ma, X.; Shu, Q. α-Linolenic acid induces apoptosis, inhibits the invasion and metastasis, and arrests cell cycle in human breast cancer cells by inhibiting fatty acid synthase. J. Funct. Foods 2022, 92, 105041. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, S.; Yang, L.; Jiang, M.; Xin, Y.; Liao, X.; Li, Y.; Lu, J. The Antitumor Effects of α-Linolenic Acid. J. Pers. Med. 2024, 14, 260. [Google Scholar] [CrossRef]
- Balcazar, I.C.A.; Rivera, L.D.G.; Chavira, J.S.; Drouaillet, B.E.; Albarrán, M.R.; Martínez, Y.B. Relationship between the Composition of Lipids in Forages and the Concentration of Conjugated Linoleic Acid in Cow’s Milk: A Review. Animals 2022, 12, 1621. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Liu, P.; Yang, X.; Li, H.; Li, H.; Guo, Y.; Meng, X.; Liu, X. The dietary c9,t11-conjugated linoleic acid enriched from butter reduces breast cancer progression in vivo. J. Food Biochem. 2020, 44, e13163. [Google Scholar] [CrossRef]
- Nasrollahzadeh, A.; Tavani, S.M.; Arjeh, E.; Jafari, S.M. Production of conjugated linoleic acid by lactic acid bacteria; important factors and optimum conditions. Food Chem. X 2023, 20, 100942. [Google Scholar] [CrossRef]
- Shariatikia, M.; Behbahani, M.; Mohabatkar, H. Anticancer activity of cow, sheep, goat, mare, donkey and camel milks and their caseins and whey proteins and in silico comparison of the caseins. Mol. Biol. Res. Commun. 2017, 6, 57–64. [Google Scholar]
- Tan, Y.; Zhao, L.; Yang, Y.-G.; Liu, W. The Role of Osteopontin in Tumor Progression Through Tumor-Associated Macrophages. Front. Oncol. 2022, 12, 953283. [Google Scholar] [CrossRef]
- Superti, F. Lactoferrin from Bovine Milk: A Protective Companion for Life. Nutrients 2020, 12, 2562. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.S.; Guedes, J.P.; Gonçalves, M.; Loureiro, L.; Castro, L.; Gerós, H.; Rodrigues, L.R.; Côrte-Real, M. Lactoferrin selectively triggers apoptosis in highly metastatic breast cancer cells through inhibition of plasmalemmal V-H+-ATPase. Oncotarget 2016, 7, 62144–62158. [Google Scholar] [CrossRef]
- Sanwlani, R.; Kang, T.; Gummadi, S.; Nedeva, C.; Ang, C.; Mathivanan, S. Bovine milk-derived extracellular vesicles enhance doxorubicin sensitivity in triple negative breast cancer cells by targeting metabolism and STAT signalling. Proteomics 2023, 23, e2200482. [Google Scholar] [CrossRef]
- Samuel, M.; Fonseka, P.; Sanwlani, R.; Gangoda, L.; Chee, S.H.; Keerthikumar, S.; Spurling, A.; Chitti, S.V.; Zanker, D.; Ang, C.-S.; et al. Oral administration of bovine milk-derived extracellular vesicles induces senescence in the primary tumor but accelerates cancer metastasis. Nat. Commun. 2021, 12, 3950. [Google Scholar] [CrossRef] [PubMed]
- Ramezani, R.; Mohammadian, M.; Hosseini, E.S.; Zare, M. The effect of bovine milk lactoferrin-loaded exosomes (exoLF) on human MDA-MB-231 breast cancer cell line. BMC Complement. Med. Ther. 2023, 23, 228. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Je, Y. Dairy Consumption and Total Cancer and Cancer-Specific Mortality: A Meta-Analysis of Prospective Cohort Studies. Adv. Nutr. Int. Rev. J. 2021, 13, 1063–1082. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, M.; Li, H. Milk and yogurt intake and breast cancer risk: A meta-analysis. Medicine 2019, 98, e14900. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Huang, R.; Wang, M.; Bernstein, L.; Bethea, T.N.; Chen, C.; Chen, Y.; Eliassen, A.H.; Freedman, N.D.; Gaudet, M.M.; et al. Dairy foods, calcium, and risk of breast cancer overall and for subtypes defined by estrogen receptor status: A pooled analysis of 21 cohort studies. Am. J. Clin. Nutr. 2021, 114, 450–461. [Google Scholar] [CrossRef]
- Jia, Y.; Feng, C.; Sun, S.; Li, C.; Li, J.; Yao, P.; Wei, X.; Lv, W.; Wang, W.; Zhang, Y.; et al. Cheese intake, probiotics and breast cancer: A Mendelian randomization analysis. J. Funct. Foods 2024, 119, 106352. [Google Scholar] [CrossRef]
- Kamal, A.K.S.; Talib, W.H. Combination of ketogenic diet and probiotics inhibits breast cancer in mice by immune system modulation and reduction of Insulin growth factor-1. Pharmacia 2023, 70, 1411–1422. [Google Scholar] [CrossRef]
- Ryser, L.T.; Arias-Roth, E.; Berthoud, H.; Delbès-Paus, C.; Chassard, C.; Bruggmann, R.; Irmler, S. Cadaverine, putrescine, and histamine formation of Morganella morganii in raclette-type cheese. Int. Dairy J. 2022, 129, 105362. [Google Scholar] [CrossRef]
- Kovács, T.; Mikó, E.; Vida, A.; Sebő, É.; Toth, J.; Csonka, T.; Boratkó, A.; Ujlaki, G.; Lente, G.; Kovács, P.; et al. Cadaverine, a metabolite of the microbiome, reduces breast cancer aggressiveness through trace amino acid receptors. Sci. Rep. 2019, 9, 1300. [Google Scholar] [CrossRef] [PubMed]
- Ritota, M.; Comitato, R.; Manzi, P. Cow and Ewe Cheeses Made with Saffron: Characterization of Bioactive Compounds and Their Antiproliferative Effect in Cervical Adenocarcinoma (HeLa) and Breast Cancer (MDA-MB-231) Cells. Molecules 2022, 27, 1995. [Google Scholar] [CrossRef] [PubMed]
- Woodside, J.V.; Brennan, S.; Cantwell, M. Are Soy-Milk Products Viable Alternatives to Cow’s Milk. In Beverage Impacts on Health and Nutrition, 2nd ed.; Wilson, T., Temple, N.J., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 151–162. [Google Scholar]
- Storz, M.A.; Brommer, M.; Lombardo, M.; Rizzo, G. Soy Milk Consumption in the United States of America: An NHANES Data Report. Nutrients 2023, 15, 2532. [Google Scholar] [CrossRef] [PubMed]
- Freddo, N.; Nardi, J.; Bertol, C.D.; Dallegrave, E.; Leal, M.B.; Barreto, F.; Frizzo, I.B.; Rossato-Grando, L.G. Isoflavone Quantitation in Soymilk: Genistein Content and Its Biological Effect. CyTA-J. Food 2019, 17, 20–24. [Google Scholar] [CrossRef]
- Poschner, S.; Maier-Salamon, A.; Zehl, M.; Wackerlig, J.; Dobusch, D.; Pachmann, B.; Sterlini, K.L.; Jäger, W. The Impacts of Genistein and Daidzein on Estrogen Conjugations in Human Breast Cancer Cells: A Targeted Metabolomics Approach. Front. Pharmacol. 2017, 8, 699. [Google Scholar] [CrossRef]
- Bhat, S.S.; Prasad, S.K.; Shivamallu, C.; Prasad, K.S.; Syed, A.; Reddy, P.; Cull, C.A.; Amachawadi, R.G. Genistein: A Potent Anti-Breast Cancer Agent. Curr. Issues Mol. Biol. 2021, 43, 1502–1517. [Google Scholar] [CrossRef]
- Pawlicka, M.A.; Zmorzyński, S.; Popek-Marciniec, S.; Filip, A.A. The Effects of Genistein at Different Concentrations on MCF-7 Breast Cancer Cells and BJ Dermal Fibroblasts. Int. J. Mol. Sci. 2022, 23, 12360. [Google Scholar] [CrossRef]
- Sharma, M.; Arora, I.; Chen, M.; Wu, H.; Crowley, M.R.; Tollefsbol, T.O.; Li, Y. Therapeutic Effects of Dietary Soybean Genistein on Triple-Negative Breast Cancer via Regulation of Epigenetic Mechanisms. Nutrients 2021, 13, 3944. [Google Scholar] [CrossRef]
- Chen, J.; Duan, Y.; Zhang, X.; Ye, Y.; Ge, B.; Chen, J. Genistein induces apoptosis by the inactivation of the IGF-1R/p-Akt signaling pathway in MCF-7 human breast cancer cells. Food Funct. 2015, 6, 995–1000. [Google Scholar] [CrossRef]
- Choi, E.J.; Jung, J.Y.; Kim, G.-H. Genistein inhibits the proliferation and differentiation of MCF-7 and 3T3-L1 cells via the regulation of ERα expression and induction of apoptosis. Exp. Ther. Med. 2014, 8, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Varinska, L.; Gal, P.; Mojzisova, G.; Mirossay, L.; Mojzis, J. Soy and Breast Cancer: Focus on Angiogenesis. Int. J. Mol. Sci. 2015, 16, 11728–11749. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yang, S.; McKimmey, C.; Liu, B.; Edgerton, S.M.; Bales, W.; Archer, L.T.; Thor, A.D. Genistein induces enhanced growth promotion in ER-positive/erbB-2-overexpressing breast cancers by ER-erbB-2 cross talk and p27/kip1 downregulation. Carcinogenesis 2010, 31, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.J.; Kim, G.-H. Daidzein causes cell cycle arrest at the G1 and G2/M phases in human breast cancer MCF-7 and MDA-MB-453 cells. Phytomedicine 2008, 15, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Zhang, Q.Y.; Kang, X.M.; Wang, J.X.; Zhao, W.H. Daidzein induces MCF-7 breast cancer cell apoptosis via the mitochondrial pathway. Ann. Oncol. 2009, 21, 263–268. [Google Scholar] [CrossRef]
- Bao, C.; Namgung, H.; Lee, J.; Park, H.-C.; Ko, J.; Moon, H.; Ko, H.W.; Lee, H.J. Daidzein Suppresses Tumor Necrosis Factor-α Induced Migration and Invasion by Inhibiting Hedgehog/Gli1 Signaling in HumanBreast Cancer Cells. J. Agric. Food Chem. 2014, 62, 3759–3767. [Google Scholar] [CrossRef]
- Kumar, V.; Chauhan, S.S. Daidzein Induces Intrinsic Pathway of Apoptosis along with ER α/β Ratio Alteration and ROS Production. Asian Pac. J. Cancer Prev. 2021, 22, 603–610. [Google Scholar] [CrossRef]
- Furness, J.B.; Bravo, D.M. Humans as cucinivores: Comparisons with other species. J. Comp. Physiol. B 2015, 185, 825–834. [Google Scholar] [CrossRef]
- Lo, J.J.; Park, Y.-M.; Sinha, R.; Sandler, D.P. Association between meat consumption and risk of breast cancer: Findings from the Sister Study. Int. J. Cancer 2019, 146, 2156–2165. [Google Scholar] [CrossRef]
- Xiao, Y.; Ke, Y.; Wu, S.; Huang, S.; Li, S.; Lv, Z.; Yeoh, E.-K.; Lao, X.; Wong, S.; Kim, J.H.; et al. Association between whole grain intake and breast cancer risk: A systematic review and meta-analysis of observational studies. Nutr. J. 2018, 17, 87. [Google Scholar] [CrossRef]
- Pajari, A.M.; Freese, R.; Kariluoto, S.; Lampi, A.M.; Piironen, V. Bioactive compounds in whole grains and their implications for health. In Whole Grains and Health, 2nd ed.; Landberg, R., Scheers, N., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2021; pp. 301–336. [Google Scholar] [CrossRef]
- Augustin, L.S.A.; Malerba, S.; Lugo, A.; Franceschi, S.; Talamini, R.; Serraino, D.; Jenkins, D.J.A.; La Vecchia, C. Associations of bread and pasta with the risk of cancer of the breast and colorectum. Ann. Oncol. 2013, 24, 3094–3099. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Gupta, A.; Mahato, D.K.; Pandhi, S.; Pandey, A.K.; Kargwal, R.; Mishra, S.; Suhag, R.; Sharma, N.; Saurabh, V.; et al. Aflatoxins in Cereals and Cereal-Based Products: Occurrence, Toxicity, Impact on Human Health, and Their Detoxification and Management Strategies. Toxins 2022, 14, 687. [Google Scholar] [CrossRef] [PubMed]
- Aljazzar, A.; El-Ghareeb, W.R.; Darwish, W.S.; Abdel-Raheem, S.M.; Ibrahim, A.M.; Hegazy, E.E.; Mohamed, E.A. Effects of aflatoxin B1 on human breast cancer (MCF-7) cells: Cytotoxicity, oxidative damage, metabolic, and immune-modulatory transcriptomic changes. Environ. Sci. Pollut. Res. 2022, 30, 13132–13140. [Google Scholar] [CrossRef] [PubMed]
- Mercogliano, M.F.; Bruni, S.; Elizalde, P.V.; Schillaci, R. Tumor Necrosis Factor α Blockade: An Opportunity to Tackle Breast Cancer. Front. Oncol. 2020, 10, 584. [Google Scholar] [CrossRef] [PubMed]
- Cruceriu, D.; Baldasici, O.; Balacescu, O.; Berindan-Neagoe, I. The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: Molecular insights and therapeutic approaches. Cell. Oncol. 2020, 43, 1–18. [Google Scholar] [CrossRef]
- Liu, W.; Lu, X.; Shi, P.; Yang, G.; Zhou, Z.; Li, W.; Mao, X.; Jiang, D.; Chen, C. TNF-α increases breast cancer stem-like cells through up-regulating TAZ expression via the non-canonical NF-κB pathway. Sci. Rep. 2020, 10, 1804. [Google Scholar] [CrossRef]
- Badr El-Din, N.K.; Mahmoud, A.Z.; Hassan, T.A.; Ghoneum, M. Baker’s Yeast Sensitizes Metastatic Breast Cancer Cells to Paclitaxel In Vitro. Integr. Cancer Ther. 2018, 17, 542–550. [Google Scholar] [CrossRef]
- Grudzińska, M.; Galanty, A.; Paśko, P. Can edible sprouts be the element of effective chemopreventive strategy?—A systematic review of in vitro and in vivo study. Trends Food Sci. Technol. 2023, 139, 104130. [Google Scholar] [CrossRef]
- Cho, K.; Lee, C.W.; Ohm, J. In Vitro Study on Effect of Germinated Wheat on Human Breast Cancer Cells. Cereal Chem. 2016, 93, 647–649. [Google Scholar] [CrossRef]
- Keum, N.; Lee, D.H.; Marchand, N.; Oh, H.; Liu, H.; Aune, D.; Greenwood, D.C.; Giovannucci, E.L. Egg intake and cancers of the breast, ovary and prostate: A dose-response meta-analysis of prospective observational studies. Br. J. Nutr. 2015, 114, 1099–1107. [Google Scholar] [CrossRef]
- Mann, K. Chapter 16—Proteomics of Egg White. In Proteomics in Food Science; Colgrave, M.L., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 261–276. [Google Scholar]
- Rathnapala, E.C.N.; Ahn, D.U.; Abeyrathne, S. Functional properties of ovotransferrin from chicken egg white and its derived peptides: A review. Food Sci. Biotechnol. 2021, 30, 619–630. [Google Scholar] [CrossRef]
- Giansanti, F.; Leboffe, L.; Angelucci, F.; Antonini, G. The Nutraceutical Properties of Ovotransferrin and Its Potential Utilization as a Functional Food. Nutrients 2015, 7, 9105–9115. [Google Scholar] [CrossRef]
- Ibrahim, H.R.; Kiyono, T. Novel Anticancer Activity of the Autocleaved Ovotransferrin against Human Colon and Breast Cancer Cells. J. Agric. Food Chem. 2009, 57, 11383–11390. [Google Scholar] [CrossRef]
- Kostić, A.; Milinčić, D.D.; Barać, M.B.; Shariati, M.A.; Tešić, L.; Pešić, M.B. The Application of Pollen as a Functional Food and Feed Ingredient—The Present and Perspectives. Biomolecules 2020, 10, 84. [Google Scholar] [CrossRef]
- Li, J. Bee Pollen and Doxorubicin by Synergistic Effects Inhibit the Proliferation of Breast Tumors in 4T1 Tumor-bearing BALB/c Mice: A Biochemical, Immunohistochemical, and Molecular Approach. Pharmacogn. Mag. 2023, 20, 159–178. [Google Scholar] [CrossRef]
- El Ghouizi, A.; Bakour, M.; Laaroussi, H.; Ousaaid, D.; El Menyiy, N.; Hano, C.; Lyoussi, B. Bee Pollen as Functional Food: Insights into Its Composition and Therapeutic Properties. Antioxidants 2023, 12, 557. [Google Scholar] [CrossRef]
- Jurzak, M.; Ramos, P.; Pilawa, B.; Bednarek, I.A. Comparative EPR Studies on the Influence of Genistein on Free Radicals in Non-Irradiated and UV-Irradiated MCF7, T47D and MDA-MB-231 Breast Cancer Cells. Biomedicines 2024, 12, 518. [Google Scholar] [CrossRef]
- Caner, A.; Onal, M.G.; Silici, S. The effect of bee bread (Perga) with chemotherapy on MDA-MB-231 cells. Mol. Biol. Rep. 2021, 48, 2299–2306. [Google Scholar] [CrossRef]
- Nandini, D.; Rao, R.S.; Deepak, B.; Reddy, P.B. Sulforaphane in broccoli: The green chemoprevention!! Role in cancer prevention and therapy. J. Oral Maxillofac. Pathol. 2020, 24, 405. [Google Scholar] [CrossRef]
- Kaboli, P.J.; Khoshkbejari, M.A.; Mohammadi, M.; Abiri, A.; Mokhtarian, R.; Vazifemand, R.; Amanollahi, S.; Sani, S.Y.; Li, M.; Zhao, Y.; et al. Targets and mechanisms of sulforaphane derivatives obtained from cruciferous plants with special focus on breast cancer—Contradictory effects and future perspectives. Biomed. Pharmacother. 2019, 121, 109635. [Google Scholar] [CrossRef]
- Wu, S.; Lu, H.; Bai, Y. Nrf2 in cancers: A double-edged sword. Cancer Med. 2019, 8, 2252–2267. [Google Scholar] [CrossRef]
- Surh, Y.-J. Nrf2 paradox: Can cancer patients eat broccoli? Food Front. 2021, 2, 25–28. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, Q.; Li, N.; Xu, M.; Miyamoto, T.; Liu, J. Sulforaphane suppresses metastasis of triple-negative breast cancer cells by targeting the RAF/MEK/ERK pathway. npj Breast Cancer 2022, 8, 40. [Google Scholar] [CrossRef]
- Desai, G.; Schelske-Santos, M.; Nazario, C.M.; Rosario-Rosado, R.V.; Mansilla-Rivera, I.; Ramírez-Marrero, F.; Nie, J.; Myneni, A.A.; Zhang, Z.-F.; Freudenheim, J.L.; et al. Onion and Garlic Intake and Breast Cancer, a Case-Control Study in Puerto Rico. Nutr. Cancer 2019, 72, 791–800. [Google Scholar] [CrossRef]
- Shi, G.; Li, X.; Wang, W.; Hou, L.; Yin, L.; Wang, L. Allicin Overcomes Doxorubicin Resistance of Breast Cancer Cells by Targeting the Nrf2 Pathway. Cell Biochem. Biophys. 2024, 82, 659–667. [Google Scholar] [CrossRef]
- Talib, W.H.; Baban, M.M.; Azzam, A.O.; Issa, J.J.; Ali, A.Y.; AlSuwais, A.K.; Allala, S.; AL Kury, L.T. Allicin and Cancer Hallmarks. Molecules 2024, 29, 1320. [Google Scholar] [CrossRef]
- Maitisha, G.; Aimaiti, M.; An, Z.; Li, X. Allicin induces cell cycle arrest and apoptosis of breast cancer cells in vitro via modulating the p53 pathway. Mol. Biol. Rep. 2021, 48, 7261–7272. [Google Scholar] [CrossRef]
- Dorrigiv, M.; Zareiyan, A.; Hosseinzadeh, H. Onion (Allium cepa) and its Main Constituents as Antidotes or Protective Agents against Natural or Chemical Toxicities: A Comprehensive Review. Iran. J. Pharm. Res. IJPR 2021, 20, 3–26. [Google Scholar] [CrossRef]
- Nishimura, M.; Muro, T.; Kobori, M.; Nishihira, J. Effect of Daily Ingestion of Quercetin-Rich Onion Powder for 12 Weeks on Visceral Fat: A Randomised, Double-Blind, Placebo-Controlled, Parallel-Group Study. Nutrients 2019, 12, 91. [Google Scholar] [CrossRef]
- Savitha, S.; Bhatkar, N.; Chakraborty, S.; Thorat, B.N. Onion quercetin: As immune boosters, extraction, and effect of dehydration. Food Biosci. 2021, 44, 101457. [Google Scholar] [CrossRef]
- Dilek, B.; Meltem, Ö. Quercetin suppresses cell proliferation using the apoptosis pathways in MCF-7 and MDA-MB-231 human breast carcinoma cells in monolayer and spheroid model cultures. S. Afr. J. Bot. 2023, 162, 259–270. [Google Scholar] [CrossRef]
- Liao, Y.; Xie, X.; Zhang, C.; Zhong, H.; Shan, L.; Yu, P.; Xu, L. Quercetin exerts anti-tumor immune mechanism by regulating IL-6/JAK2/STAT3 signaling pathway to deplete Treg cells. Toxicon 2024, 243, 107747. [Google Scholar] [CrossRef]
- Sesso, H.D.; Buring, J.E.; Zhang, S.M.; Norkus, E.P.; Gaziano, J.M. Dietary and Plasma Lycopene and the Risk of Breast Cancer. Cancer Epidemiol. Biomark. Prev. 2005, 14, 1074–1081. [Google Scholar] [CrossRef]
- Kapała, A.; Szlendak, M.; Motacka, E. The Anti-Cancer Activity of Lycopene: A Systematic Review of Human and Animal Studies. Nutrients 2022, 14, 5152. [Google Scholar] [CrossRef]
- Ozkan, G.; Günal-Köroğlu, D.; Karadag, A.; Capanoglu, E.; Cardoso, S.M.; Al-Omari, B.; Calina, D.; Sharifi-Rad, J.; Cho, W.C. A mechanistic updated overview on lycopene as potential anticancer agent. Biomed. Pharmacother. 2023, 161, 114428. [Google Scholar] [CrossRef]
- Takeshima, M.; Ono, M.; Higuchi, T.; Chen, C.; Hara, T.; Nakano, S. Anti-proliferative and apoptosis-inducing activity of lycopene against three subtypes of human breast cancer cell lines. Cancer Sci. 2014, 105, 252–257. [Google Scholar] [CrossRef]
- Ma, P.; Wang, L.; Xu, L.; Li, J.; Zhang, X.; Chen, H. Rapid quantitative determination of chlorpyrifos pesticide residues in tomatoes by surface-enhanced Raman spectroscopy. Eur. Food Res. Technol. 2019, 246, 239–251. [Google Scholar] [CrossRef]
- Ventura, C.; Zappia, C.D.; Lasagna, M.; Pavicic, W.; Richard, S.; Bolzan, A.D.; Monczor, F.; Nunez, M.; Cocca, C. Effects of the pesticide chlorpyrifos on breast cancer disease. Implication of epigenetic mechanisms. J. Steroid Biochem. Mol. Biol. 2019, 186, 96–104. [Google Scholar] [CrossRef]
- Lasagna, M.; Ventura, C.; Hielpos, M.; Mardirosian, M.; Martín, G.; Miret, N.; Randi, A.; Núñez, M.; Cocca, C. Endocrine disruptor chlorpyrifos promotes migration, invasion, and stemness phenotype in 3D cultures of breast cancer cells and induces a wide range of pathways involved in cancer progression. Environ. Res. 2021, 204, 111989. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Bahroudi, Z.; Shoorei, H.; Hussen, B.M.; Talebi, S.F.; Baig, S.G.; Taheri, M.; Ayatollahi, S.A. Disease-associated regulation of gene expression by resveratrol: Special focus on the PI3K/AKT signaling pathway. Cancer Cell Int. 2022, 22, 298. [Google Scholar] [CrossRef]
- Jang, J.Y.; Im, E.; Kim, N.D. Mechanism of Resveratrol-Induced Programmed Cell Death and New Drug Discovery against Cancer: A Review. Int. J. Mol. Sci. 2022, 23, 13689. [Google Scholar] [CrossRef]
- Gogada, R.; Prabhu, V.; Amadori, M.; Scott, R.; Hashmi, S.; Chandra, D. Resveratrol induces p53-independent, X-linked inhibitor of apoptosis protein (XIAP)-mediated Bax protein oligomerization on mitochondria to initiate cytochrome c release and caspase activation. J. Biol. Chem. 2011, 286, 28749–28760. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, Q.-M.; Lu, Y.-Y.; Zhang, H.; Chen, Q.-L.; Zhao, M.; Su, S.-B. Resveratrol Inhibits the Migration and Metastasis of MDA-MB-231 Human Breast Cancer by Reversing TGF-β1-Induced Epithelial-Mesenchymal Transition. Molecules 2019, 24, 1131. [Google Scholar] [CrossRef]
- Liu, J.L.; Pan, Y.Y.; Chen, O.; Luan, Y.; Xue, X.; Zhao, J.J.; Liu, L.; Jia, H.Y. Curcumin inhibits MCF-7 cells by modulating the NF-κB signaling pathway. Oncol. Lett. 2017, 14, 5581–5584. [Google Scholar] [CrossRef]
- Fawzy, R.M.; Abdel-Aziz, A.A.; Bassiouny, K.; Fayed, A.M. Phytocompounds-based therapeutic approach: Investigating curcumin and green tea extracts on MCF-7 breast cancer cell line. J. Genet. Eng. Biotechnol. 2024, 22, 100339. [Google Scholar] [CrossRef]
- Liu, H.-T.; Ho, Y.-S. Anticancer effect of curcumin on breast cancer and stem cells. Food Sci. Hum. Wellness 2018, 7, 134–137. [Google Scholar] [CrossRef]
- Rinkenbaugh, A.L.; Baldwin, A.S. The NF-κB Pathway and Cancer Stem Cells. Cells 2016, 5, 16. [Google Scholar] [CrossRef]
- Vazquez-Santillan, K.; Melendez-Zajgla, J.; Jimenez-Hernandez, L.E.; Gaytan-Cervantes, J.; Muñoz-Galindo, L.; Piña-Sanchez, P.; Martinez-Ruiz, G.; Torres, J.; Garcia-Lopez, P.; Gonzalez-Torres, C.; et al. NF-kappaΒ-inducing kinase regulates stem cell phenotype in breast cancer. Sci. Rep. 2016, 6, 37340. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Xie, C.; Zhu, J.; Meng, Y.; Chen, Y.; Li, Y.; Jiang, Y.; Yang, X.; Wang, S.; et al. Sonic hedgehog and Wnt/β-catenin pathways mediate curcumin inhibition of breast cancer stem cells. Anti-Cancer Drugs 2018, 29, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; Kumar, R.M.; Bhattacharjee, D.; Somanna, P.; Jain, V. Role of Nrf2 Signaling Cascade in Breast Cancer: Strategies and Treatment. Front. Pharmacol. 2022, 13, 720076. [Google Scholar] [CrossRef] [PubMed]
- Ashrafizadeh, M. Curcumin Activates the Nrf2 Pathway and Induces Cellular Protection Against Oxidative Injury. Curr. Mol. Med. 2020, 20, 116–133. [Google Scholar] [PubMed]
- Shahcheraghi, S.H.; Salemi, F.; Peirovi, N.; Ayatollahi, J.; Alam, W.; Khan, H.; Saso, L. Nrf2 Regulation by Curcumin: Molecular Aspects for Therapeutic Prospects. Molecules 2021, 27, 167. [Google Scholar] [CrossRef] [PubMed]
- Sordillo, P.P.; Helson, L. Curcumin and cancer stem cells: Curcumin has asymmetrical effects on cancer and normal stem cells. Anticancer. Res. 2015, 35, 599–614. [Google Scholar]
- Chen, Z.M.; Lu, P.M.; Li, M.M.; Zhang, Q.M.; He, T.; Gan, L. Curcumin suppresses metastasis of triple-negative breast cancer cells by modulating EMT signaling pathways: An integrated study of bioinformatics analysis. Medicine 2024, 103, e37264. [Google Scholar] [CrossRef]
- Hu, C.; Li, M.; Guo, T.; Wang, S.; Huang, W.; Yang, K.; Liao, Z.; Wang, J.; Zhang, F.; Wang, H. Anti-metastasis activity of curcumin against breast cancer via the inhibition of stem cell-like properties and EMT. Phytomedicine 2018, 58, 152740. [Google Scholar] [CrossRef]
- Zhang, D.; Nichols, H.B.; Troester, M.; Cai, J.; Bensen, J.T.; Sandler, D.P. Tea consumption and breast cancer risk in a cohort of women with family history of breast cancer. Int. J. Cancer 2020, 147, 876–886. [Google Scholar] [CrossRef]
- Pérez-Durán, J.; Luna, A.; Portilla, A.; Martínez, P.; Ceballos, G.; Ortíz-Flores, M.Á.; Solis-Paredes, J.M.; Nájera, N. (-)-Epicatechin Inhibits Metastatic-Associated Proliferation, Migration, and Invasion of Murine Breast Cancer Cells In Vitro. Molecules 2023, 28, 298. [Google Scholar] [CrossRef]
- Al Mamun, A.; Sharker, B.; Bhuiyan, M.R.; Sadikuj Jaman, M. Anticancer activity and therapeutic uses of catechins on breast, prostate and lung cancer: Future perspective and clinical proofs. J. Clin. Case Rep. Med. Images Health Sci. 2023, 3, 2023. [Google Scholar] [CrossRef]
- O’neill, E.J.; Termini, D.; Albano, A.; Tsiani, E. Anti-Cancer Properties of Theaflavins. Molecules 2021, 26, 987. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.; Dong, J. (-)-Epicatechin acts as a potent agonist of the membrane androgen receptor, ZIP9 (SLC39A9), to promote apoptosis of breast and prostate cancer cells. J. Steroid Biochem. Mol. Biol. 2021, 211, 105906. [Google Scholar] [CrossRef]
- Sen, A.K.; Sen, D.B.; Zanwar, A.S.; Balaraman, R.; Shah, U.; Maheshwari, R.A. Catechins and Theaflavins: An Overview on Therapeutic Application. J. Nat. Remedies 2022, 22, 330–346. [Google Scholar] [CrossRef]
- Rosas-González, V.C.; Téllez-Bañuelos, M.C.; Hernández-Flores, G.; Bravo-Cuellar, A.; Aguilar-Lemarroy, A.; Jave-Suárez, L.F.; Haramati, J.; Solorzano-Ibarra, F.; Ortiz-Lazareno, P.C. Differential effects of alliin and allicin on apoptosis and senescence in luminal A and triple-negative breast cancer: Caspase, Δψm, and pro-apoptotic gene involvement. Fundam. Clin. Pharmacol. 2020, 34, 671–686. [Google Scholar] [CrossRef] [PubMed]
- Wach, A.; Pyrzyńska, K.; Biesaga, M. Quercetin content in some food and herbal samples. Food Chem. 2005, 100, 699–704. [Google Scholar] [CrossRef]
- Lin, D.; Kuang, G.; Wan, J.; Zhang, X.; Li, H.; Gong, X.; Li, H. Luteolin suppresses the metastasis of triple-negative breast cancer by reversing epithelial-to-mesenchymal transition via downregulation of β-catenin expression. Oncol. Rep. 2016, 37, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.-T.; Lin, J.; Liu, Y.-E.; Chen, H.-F.; Hsu, K.-W.; Lin, S.-H.; Peng, K.-Y.; Lin, K.-J.; Hsieh, C.-C.; Chen, D.-R. Luteolin suppresses androgen receptor-positive triple-negative breast cancer cell proliferation and metastasis by epigenetic regulation of MMP9 expression via the AKT/mTOR signaling pathway. Phytomedicine 2020, 81, 153437. [Google Scholar] [CrossRef]
- Ahmed, S.; Khan, H.; Fratantonio, D.; Hasan, M.M.; Sharifi, S.; Fathi, N.; Ullah, H.; Rastrelli, L. Apoptosis induced by luteolin in breast cancer: Mechanistic and therapeutic perspectives. Phytomedicine 2019, 59, 152883. [Google Scholar] [CrossRef]
- Gao, G.; Ge, R.; Li, Y.; Liu, S. Luteolin exhibits anti-breast cancer property through up-regulating miR-203. Artif. Cells Nanomed. Biotechnol. 2019, 47, 3265–3271. [Google Scholar] [CrossRef]
- Lu, Q.; Lai, Y.; Zhang, H.; Ren, K.; Liu, W.; An, Y.; Yao, J.; Fan, H. Hesperetin Inhibits TGF-β1-Induced Migration and Invasion of Triple Negative Breast Cancer MDA-MB-231 Cells via Suppressing Fyn/Paxillin/RhoA Pathway. Integr. Cancer Ther. 2022, 21, 15347354221086900. [Google Scholar] [CrossRef]
- Palit, S.; Kar, S.; Sharma, G.; Das, P.K. Hesperetin Induces Apoptosis in Breast Carcinoma by Triggering Accumulation of ROS and Activation of ASK1/JNK Pathway. J. Cell. Physiol. 2015, 230, 1729–1739. [Google Scholar] [CrossRef]
- Hermawan, A.; Ikawati, M.; Khumaira, A.; Putri, H.; Jenie, R.I.; Angraini, S.M.; Muflikhasari, H.A. Bioinformatics and In Vitro Studies Reveal the Importance of p53, PPARG and Notch Signaling Pathway in Inhibition of Breast Cancer Stem Cells by Hesperetin. Adv. Pharm. Bull. 2021, 11, 351–360. [Google Scholar] [CrossRef]
- Choi, E.J. Hesperetin Induced G1-Phase Cell Cycle Arrest in Human Breast Cancer MCF-7 Cells: Involvement of CDK4 and p21. Nutr. Cancer 2007, 59, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.J.; Wilson, L.; Jordan, M.A.; Nguyen, V.; Tang, J.; Smiyun, G. Hesperidin suppressed proliferations of both Human breast cancer and androgen-dependent prostate cancer cells. Phytotherapy Res. 2010, 24, S15–S19. [Google Scholar] [CrossRef]
- Kongtawelert, P.; Wudtiwai, B.; Shwe, T.H.; Pothacharoen, P.; Phitak, T. Inhibitory Effect of Hesperidin on the Expression of Programmed Death Ligand (PD-L1) in Breast Cancer. Molecules 2020, 25, 252. [Google Scholar] [CrossRef] [PubMed]
- Hermawan, A.; Khumaira, A.; Ikawati, M.; Putri, H.; Jenie, R.I.; Angraini, S.M.; Muflikhasari, H.A. Identification of key genes of hesperidin in inhibition of breast cancer stem cells by functional network analysis. Comput. Biol. Chem. 2020, 90, 107427. [Google Scholar] [CrossRef]
- Taghizadeh, M.S.; Niazi, A.; Moghadam, A.; Afsharifar, A. Experimental, molecular docking and molecular dynamic studies of natural products targeting overexpressed receptors in breast cancer. PLoS ONE 2022, 17, e0267961. [Google Scholar] [CrossRef]
- Patel, P.; Shah, J. Protective effects of hesperidin through attenuation of Ki67 expression against DMBA-induced breast cancer in female rats. Life Sci. 2021, 285, 119957. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Jin, G.; Ge, Y.; Guo, Z. Naringenin inhibits migration of breast cancer cells via inflammatory and apoptosis cell signaling pathways. Inflammopharmacology 2019, 27, 1021–1036. [Google Scholar] [CrossRef]
- Sharma, M.; Dwivedi, P.; Rawat, A.K.S.; Dwivedi, A.K. 3—Nutrition nutraceuticals: A proactive approach for healthcare. In Nutraceuticals; Grumezescu, A.M., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 79–116. [Google Scholar]
- Ke, J.-Y.; Banh, T.; Hsiao, Y.-H.; Cole, R.M.; Straka, S.R.; Yee, L.D.; Belury, M.A. Citrus flavonoid naringenin reduces mammary tumor cell viability, adipose mass, and adipose inflammation in obese ovariectomized mice. Mol. Nutr. Food Res. 2017, 61, 1600934. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Dong, W.; Zeng, W.; Zhang, L.; Zhang, C.; Qiu, Y.; Wang, L.; Yin, X.; Zhang, C.; Liang, W. Naringenin prevents TGF-β1 secretion from breast cancer and suppresses pulmonary metastasis by inhibiting PKC activation. Breast Cancer Res. 2016, 18, 38. [Google Scholar] [CrossRef]
- Harmon, A.W.; Patel, Y.M. Naringenin Inhibits Glucose Uptake in MCF-7 Breast Cancer Cells: A Mechanism for Impaired Cellular Proliferation. Breast Cancer Res. Treat. 2004, 85, 103–110. [Google Scholar] [CrossRef]
- Bharti, S.; Rani, N.; Krishnamurthy, B.; Arya, D.S. Preclinical Evidence for the Pharmacological Actions of Naringin: A Review. Planta Medica 2014, 80, 437–451. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yang, B.; Huang, J.; Xiang, T.; Yin, X.; Wan, J.; Luo, F.; Zhang, L.; Li, H.; Ren, G. Naringin inhibits growth potential of human triple-negative breast cancer cells by targeting β-catenin signaling pathway. Toxicol. Lett. 2013, 220, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Way, T.D.; Kao, M.C.; Lin, J.K. Apigenin induces apoptosis through proteasomal degradation of HER2/neu in HER2/neu-overexpressing breast cancer cells via the phosphatidylinositol 3-kinase/Akt-dependent pathway. J. Biol. Chem. 2004, 279, 4479–4489. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.J.; Kim, G.H. Apigenin causes G(2)/M arrest associated with the modulation of p21(Cip1) and Cdc2 and activates p53-dependent apoptosis pathway in human breast cancer SK-BR-3 cells. J. Nutr. Biochem. 2009, 20, 285–290. [Google Scholar] [CrossRef]
- Long, X.; Fan, M.; Bigsby, R.M.; Nephew, K.P. Apigenin inhibits antiestrogen-resistant breast cancer cell growth through estrogen receptor-α-dependent and estrogen receptor-α-independent mechanisms. Mol. Cancer Ther. 2008, 7, 2096–2108. [Google Scholar] [CrossRef]
- Pham, T.H.; Le Page, Y.; Percevault, F.; Ferrière, F.; Flouriot, G.; Pakdel, F. Apigenin, a Partial Antagonist of the Estrogen Receptor (ER), Inhibits ER-Positive Breast Cancer Cell Proliferation through Akt/FOXM1 Signaling. Int. J. Mol. Sci. 2021, 22, 470. [Google Scholar] [CrossRef]
- Lee, W.J.; Chen, W.K.; Wang, C.J.; Lin, W.L.; Tseng, T.H. Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and beta 4 integrin function in MDA-MB-231 breast cancer cells. Toxicol. Appl. Pharmacol. 2008, 226, 178–191. [Google Scholar] [CrossRef]
- Ko, Y.-C.; Choi, H.S.; Liu, R.; Kim, J.-H.; Kim, S.-L.; Yun, B.-S.; Lee, D.-S. Inhibitory Effects of Tangeretin, a Citrus Peel-Derived Flavonoid, on Breast Cancer Stem Cell Formation through Suppression of Stat3 Signaling. Molecules 2020, 25, 2599. [Google Scholar] [CrossRef]
- Arivazhagan, L.; Pillai, S.S. Tangeretin, a citrus pentamethoxyflavone, exerts cytostatic effect via p53/p21 up-regulation and suppresses metastasis in 7,12-dimethylbenz(alpha)anthracene-induced rat mammary carcinoma. J. Nutr. Biochem. 2014, 25, 1140–1153. [Google Scholar] [CrossRef]
- Surichan, S.; Arroo, R.R.; Tsatsakis, A.M.; Androutsopoulos, V.P. Tangeretin inhibits the proliferation of human breast cancer cells via CYP1A1/CYP1B1 enzyme induction and CYP1A1/CYP1B1-mediated metabolism to the product 4′ hydroxy tangeretin. Toxicol In Vitro 2018, 50, 274–284. [Google Scholar] [CrossRef]
- Periyasamy, K.; Baskaran, K.; Ilakkia, A.; Vanitha, K.; Selvaraj, S.; Sakthisekaran, D. Antitumor efficacy of tangeretin by targeting the oxidative stress mediated on 7,12-dimethylbenz(a) anthracene-induced proliferative breast cancer in Sprague-Dawley rats. Cancer Chemother. Pharmacol. 2015, 75, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Montalesi, E.; Cipolletti, M.; Cracco, P.; Fiocchetti, M.; Marino, M. Divergent Effects of Daidzein and Its Metabolites on Estrogen-Induced Survival of Breast Cancer Cells. Cancers 2020, 12, 167. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; Quispe, C.; Imran, M.; Rauf, A.; Nadeem, M.; Gondal, T.A.; Ahmad, B.; Atif, M.; Mubarak, M.S.; Sytar, O.; et al. Genistein: An Integrative Overview of Its Mode of Action, Pharmacological Properties, and Health Benefits. Oxidative Med. Cell. Longev. 2021, 2021, 3268136. [Google Scholar] [CrossRef]
- Hsieh, P.-L.; Liao, Y.-W.; Hsieh, C.-W.; Chen, P.-N.; Yu, C.-C. Soy Isoflavone Genistein Impedes Cancer Stemness and Mesenchymal Transition in Head and Neck Cancer through Activating miR-34a/RTCB Axis. Nutrients 2020, 12, 1924. [Google Scholar] [CrossRef]
- Hwang, S.T.; Yang, M.H.; Baek, S.H.; Um, J.Y.; Ahn, K.S. Genistin attenuates cellular growth and promotes apoptotic cell death breast cancer cells through modulation of ERalpha signaling pathway. Life Sci. 2020, 263, 118594. [Google Scholar] [CrossRef] [PubMed]
- Elkhalifa, A.E.O.; Al-Shammari, E.; Kuddus, M.; Adnan, M.; Sachidanandan, M.; Awadelkareem, A.M.; Qattan, M.Y.; Khan, M.I.; Abduljabbar, S.I.; Baig, M.S.; et al. Structure-Based Multi-Targeted Molecular Docking and Dynamic Simulation of Soybean-Derived Isoflavone Genistin as a Potential Breast Cancer Signaling Proteins Inhibitor. Life 2023, 13, 1739. [Google Scholar] [CrossRef] [PubMed]
- Hong, R.; Lim, S.C.; Lee, T.B.; Han, S.I. Anticancer Effect of Gallic Acid on Acidity-Induced Invasion of MCF7 Breast Cancer Cells. Nutrients 2023, 15, 3596. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, L.; Liao, P.; Xiao, Z.; Zhang, F.; Sindaye, D.; Xin, Z.; Tan, C.; Deng, J.; Yin, Y.; et al. Impact of Gallic Acid on Gut Health: Focus on the Gut Microbiome, Immune Response, and Mechanisms of Action. Front. Immunol. 2020, 11, 580208. [Google Scholar] [CrossRef]
- Xiang, Z.; Guan, H.; Zhao, X.; Xie, Q.; Xie, Z.; Cai, F.; Dang, R.; Li, M.; Wang, C. Dietary gallic acid as an antioxidant: A review of its food industry applications, health benefits, bioavailability, nano-delivery systems, and drug interactions. Food Res. Int. 2024, 180, 114068. [Google Scholar] [CrossRef]
- Cheung, Y.; Meenu, M.; Yu, X.; Xu, B. Phenolic acids and flavonoids profiles of commercial honey from different floral sources and geographic sources. Int. J. Food Prop. 2019, 22, 290–308. [Google Scholar] [CrossRef]
- Lin, S.; Qin, H.-Z.; Li, Z.-Y.; Zhu, H.; Long, L.; Xu, L.-B. Gallic acid suppresses the progression of triple-negative breast cancer HCC1806 cells via modulating PI3K/AKT/EGFR and MAPK signaling pathways. Front. Pharmacol. 2022, 13, 1049117. [Google Scholar] [CrossRef] [PubMed]
- Khorsandi, K.; Kianmehr, Z.; Hosseinmardi, Z.; Hosseinzadeh, R. Anti-cancer effect of gallic acid in presence of low level laser irradiation: ROS production and induction of apoptosis and ferroptosis. Cancer Cell Int. 2020, 20, 18. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Gulati, M.; Singh, S.K.; Kuppusamy, G.; Kapoor, B.; Mishra, V.; Gupta, S.; Arshad, M.F.; Porwal, O.; Jha, N.K.; et al. Discovering multifaceted role of vanillic acid beyond flavours: Nutraceutical and therapeutic potential. Trends Food Sci. Technol. 2022, 122, 187–200. [Google Scholar] [CrossRef]
- Shanmugam, M. Vanillic acid exhibits potent antiproliferative and free radical scavenging effects under in vitro conditions. Int. J. Nutr. Pharmacol. Neurol. Dis. 2023, 13, 188–198. [Google Scholar]
- Yin, M.-C.; Lin, C.-C.; Wu, H.-C.; Tsao, S.-M.; Hsu, C.-K. Apoptotic Effects of Protocatechuic Acid in Human Breast, Lung, Liver, Cervix, and Prostate Cancer Cells: Potential Mechanisms of Action. J. Agric. Food Chem. 2009, 57, 6468–6473. [Google Scholar] [CrossRef]
- Punvittayagul, C.; Luangsuphabool, T.; Wongpoomchai, R. Protocatechuic acid as a potent anticarcinogenic compound in purple rice bran against diethylnitrosamine-initiated rat hepatocarcinogenesis. Sci. Rep. 2022, 12, 10548. [Google Scholar] [CrossRef]
- Sułkowska-Ziaja, K.; Muszyńska, B.; Szewczyk, A. Antioxidant components of selected indigenous edible mushrooms of the obsolete order Aphyllophorales. Rev. Iberoam. De Micol. 2015, 32, 99–102. [Google Scholar] [CrossRef]
- Cadena-Iñiguez, J.; Santiago-Osorio, E.; Sánchez-Flores, N.; Salazar-Aguilar, S.; Soto-Hernández, R.M.; Riviello-Flores, M.d.l.L.; Macías-Zaragoza, V.M.; Aguiñiga-Sánchez, I. The Cancer-Protective Potential of Protocatechuic Acid: A Narrative Review. Molecules 2024, 29, 1439. [Google Scholar] [CrossRef]
- Jha, S.; Prabakaran, A.; Sahoo, R.K.; Batheja, S.; Gupta, U.; Alexander, A. Antiproliferative activity of syringic acid-loaded nanostructured lipid carriers against MCF-7 human breast carcinoma cells. J. Drug Deliv. Sci. Technol. 2024, 98, 105902. [Google Scholar] [CrossRef]
- Zhang, L.; La, X.; Tian, J.; Li, H.; Li, A.; Liu, Y.; Wu, C.; Li, Z. The phytochemical vitexin and syringic acid derived from foxtail fillet bran inhibit breast cancer cells proliferation via GRP78/SREBP-1/SCD1 signaling axis. J. Funct. Foods 2021, 85, 104620. [Google Scholar] [CrossRef]
- Golmohammadi, M.; Zamanian, M.Y.; Jalal, S.M.; Noraldeen, S.A.M.; Ramírez-Coronel, A.A.; Oudaha, K.H.; Obaid, R.F.; Almulla, A.F.; Bazmandegan, G.; Kamiab, Z. A comprehensive review on Ellagic acid in breast cancer treatment: From cellular effects to molecular mechanisms of action. Food Sci. Nutr. 2023, 11, 7458–7468. [Google Scholar] [CrossRef] [PubMed]
- Rezaei-Seresht, H.; Cheshomi, H.; Falanji, F.; Movahedi-Motlagh, F.; Hashemian, M.; Mireskandari, E. Cytotoxic activity of caffeic acid and gallic acid against MCF-7 human breast cancer cells: An in silico and in vitro study. Avicenna J. Phytomedicine 2019, 9, 574–586. [Google Scholar]
- Alam, M.; Ahmed, S.; Elasbali, A.M.; Adnan, M.; Alam, S.; Hassan, I.; Pasupuleti, V.R. Therapeutic Implications of Caffeic Acid in Cancer and Neurological Diseases. Front. Oncol. 2022, 12, 860508. [Google Scholar] [CrossRef] [PubMed]
- Assumpção, J.H.M.; Takeda, A.A.S.; Sforcin, J.M.; Rainho, C.A. Effects of Propolis and Phenolic Acids on Triple-Negative Breast Cancer Cell Lines: Potential Involvement of Epigenetic Mechanisms. Molecules 2020, 25, 1289. [Google Scholar] [CrossRef]
- Pal, A.; Tapadar, P.; Pal, R. Exploring the Molecular Mechanism of Cinnamic Acid-Mediated Cytotoxicity in Triple Negative MDA-MB-231 Breast Cancer Cells. Anti-Cancer Agents Med. Chem. 2021, 21, 1141–1150. [Google Scholar] [CrossRef]
- Rodrigues, D.M.; Portapilla, G.B.; de Sicco, G.S.; da Silva, I.F.R.; de Albuquerque, S.; Bastos, J.K.; Campo, V.L. Novel synthetic derivatives of cinnamic and p-coumaric acids with antiproliferative effect on breast MCF-7 tumor cells. Nat. Prod. Res. 2023, 37, 4210–4220. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, J. Anti-Inflammatory Effects of p-coumaric Acid in LPS-Stimulated RAW264.7 Cells: Involvement of NF-κB and MAPKs Pathways. Med. Chem. 2016, 6, 327–330. [Google Scholar] [CrossRef]
- Kaur, J.; Kaur, R. p-Coumaric Acid: A Naturally Occurring Chemical with Potential Therapeutic Applications. Curr. Org. Chem. 2022, 26, 1333–1349. [Google Scholar] [CrossRef]
- Bao, X.; Li, W.; Jia, R.; Meng, D.; Zhang, H.; Xia, L. Molecular mechanism of ferulic acid and its derivatives in tumor progression. Pharmacol. Rep. 2023, 75, 891–906. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, A.K.; Loka, M.; Pandey, A.K.; Bishayee, A. Chapter Eight—Ferulic acid-mediated modulation of apoptotic signaling pathways in cancer. In Advances in Protein Chemistry and Structural Biology; Donev, R., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 215–257. [Google Scholar]
- Zhang, X.; Lin, D.; Jiang, R.; Li, H.; Wan, J.; Li, H. Ferulic acid exerts antitumor activity and inhibits metastasis in breast cancer cells by regulating epithelial to mesenchymal transition. Oncol. Rep. 2016, 36, 271–278. [Google Scholar] [CrossRef]
- ElKhazendar, M.; Chalak, J.; El-Huneidi, W.; Vinod, A.; Abdel-Rahman, W.M.; Abu-Gharbieh, E. Antiproliferative and proapoptotic activities of ferulic acid in breast and liver cancer cell lines. Trop. J. Pharm. Res. 2019, 18, 2571–2576. [Google Scholar]
- Serafim, T.L.; Milhazes, N.; Borges, F.; Oliveira, P.J. Chapter 74—Caffeic and Ferulic Acid Derivatives: Use in Breast Cancer. In Coffee in Health and Disease Prevention; Preedy, V.R., Ed.; Academic Press: San Diego, CA, USA, 2015; pp. 663–671. [Google Scholar]
- Pandi, A.; Kalappan, V.M. Pharmacological and therapeutic applications of Sinapic acid—An updated review. Mol. Biol. Rep. 2021, 48, 3733–3745. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, P.S.R.; Shastry, C.S. The cytotoxic potential of sinapic acid on luminal A breast cancer; a computational and experimental pharmacology approach. J. Biomol. Struct. Dyn. 2023, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Konstantinou, E.K.; Panagiotopoulos, A.A.; Argyri, K.; Panoutsopoulos, G.I.; Dimitriou, M.; Gioxari, A. Molecular Pathways of Rosmarinic Acid Anticancer Activity in Triple-Negative Breast Cancer Cells: A Literature Review. Nutrients 2023, 16, 2. [Google Scholar] [CrossRef] [PubMed]
- Messeha, S.S.; Zarmouh, N.O.; Asiri, A.; Soliman, K.F. Rosmarinic acid-induced apoptosis and cell cycle arrest in triple-negative breast cancer cells. Eur. J. Pharmacol. 2020, 885, 173419. [Google Scholar] [CrossRef] [PubMed]
- Zeng, A.; Liang, X.; Zhu, S.; Liu, C.; Wang, S.; Zhang, Q.; Zhao, J.; Song, L. Chlorogenic acid induces apoptosis, inhibits metastasis and improves antitumor immunity in breast cancer via the NF-κB signaling pathway. Oncol. Rep. 2021, 45, 717–727. [Google Scholar] [CrossRef]
- Veljkovic, E.; Xia, W.; Phillips, B.; Wong, E.T.; Ho, J.; Oviedo, A. Chapter 10—Other Compounds From Tobacco With Potential Impact on Neurodegenerative Diseases. In Nicotine and Other Tobacco Compounds in Neurodegenerative and Psychiatric Diseases; Academic Press: Cambridge, MA, USA, 2018; pp. 83–97. [Google Scholar]
- Sakai, E.; Farhana, F.; Yamaguchi, Y.; Tsukuba, T. Chapter 1—Potentials of natural antioxidants from plants as antiosteoporotic agents. In Studies in Natural Products Chemistry; Attaur, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–28. [Google Scholar]
- Turrini, E.; Maffei, F.; Milelli, A.; Calcabrini, C.; Fimognari, C. Overview of the Anticancer Profile of Avenanthramides from Oat. Int. J. Mol. Sci. 2019, 20, 4536. [Google Scholar] [CrossRef]
- Hastings, J.; Kenealey, J. Avenanthramide-C reduces the viability of MDA-MB-231 breast cancer cells through an apoptotic mechanism. Cancer Cell Int. 2017, 17, 93. [Google Scholar] [CrossRef]
- Posadino, A.M.; Giordo, R.; Ramli, I.; Zayed, H.; Nasrallah, G.K.; Wehbe, Z.; Eid, A.H.; Gürer, E.S.; Kennedy, J.F.; Aldahish, A.A.; et al. An updated overview of cyanidins for chemoprevention and cancer therapy. Biomed. Pharmacother. 2023, 163, 114783. [Google Scholar] [CrossRef]
- Mirmalek, S.; Faraji, S.; Ranjbaran, S.; Aryan, H.; Arani, H.; Jangholi, E.; Marzouni, H.; Salimi-Tabatabaee, S. Cyanidin 3-glycoside induced apoptosis in MCF-7 breast cancer cell line. Arch. Med Sci. 2020, 16, 1092–1098. [Google Scholar] [CrossRef]
- Xu, M.; Bower, K.A.; Wang, S.; Frank, J.A.; Chen, G.; Ding, M.; Wang, S.; Shi, X.; Ke, Z.; Luo, J. Cyanidin-3-Glucoside inhibits ethanol-induced invasion of breast cancer cells overexpressing ErbB2. Mol. Cancer 2010, 9, 285. [Google Scholar] [CrossRef] [PubMed]
- Nafisah, W.; Nugraha, A.P.; Nugroho, A.; Sakinah, A.I.; Nusantara, D.S.; Philia, J.; Kurniawinata, M.I.; Aini, W.; Herlina, V.T. Benefit of Asian pigmented rice bioactive compound and its implication in breast cancer: A systematic review [version 1; peer review: 2 approved, 1 approved with reservations, 1 not approved]. F1000Research 2023, 12, 371. [Google Scholar] [CrossRef] [PubMed]
- Omenn, G.S. What accounts for the association of vegetables and fruits with lower incidence of cancers and coronary heart disease? Ann. Epidemiol. 1995, 5, 333–335. [Google Scholar] [CrossRef] [PubMed]
- Husain, A.; Chanana, H.; Alam Khan, S.; Dhanalekshmi, U.M.; Ali, M.; Alghamdi, A.A.; Ahmad, A. Chemistry and Pharmacological Actions of Delphinidin, a Dietary Purple Pigment in Anthocyanidin and Anthocyanin Forms. Front. Nutr. 2022, 9, 746881. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, Y.; Zhang, W.; Peng, X.; Zhou, J.; Li, F.; Han, B.; Liu, X.; Ou, Y.; Yu, X. Delphinidin induced protective autophagy via mTOR pathway suppression and AMPK pathway activation in HER-2 positive breast cancer cells. BMC Cancer 2018, 18, 342. [Google Scholar] [CrossRef]
- Sood, R.; Sanjay; Choi, H.-K.; Lee, H.-J. Potential anti-cancer properties of malvidin and its glycosides: Evidence from in vitro and in vivo studies. J. Funct. Foods 2024, 116, 106191. [Google Scholar] [CrossRef]
- Laksmiani, N.P.L.; I Widiastari, M.; Reynaldi, K.R. The inhibitory activity of peonidin purple sweet potato in human epidermal receptor-2 receptor (her-2) expression by in silico study. J. Physics. Conf. Ser. 2018, 1040, 012010. [Google Scholar] [CrossRef]
- Sinha, D.; Sarkar, N.; Biswas, J.; Bishayee, A. Resveratrol for breast cancer prevention and therapy: Preclinical evidence and molecular mechanisms. Semin. Cancer Biol. 2016, 40–41, 209–232. [Google Scholar] [CrossRef] [PubMed]
- Khezrian, A.; Shojaeian, A. Therapeutic Opportunities in Breast Cancer by Targeting Macrophage Migration Inhibitory Factor as a Pleiotropic Cytokine. Breast Cancer Basic Clin. Res. 2024, 18, 11782234241276310. [Google Scholar] [CrossRef]
- Almaguer, G.; Ortiz-Vilchis, P.; Cordero, P.; Martinez-Vega, R.; Perez-Durán, J.; Meaney, E.; Villarreal, F.; Ceballos, G.; Nájera, N. Anticancer potential of (−)-epicatechin in a triple-negative mammary gland model. J. Pharm. Pharmacol. 2021, 73, 1675–1682. [Google Scholar] [CrossRef]
- Kiran, S.; Patra, A.; Verma, P.; Purkait, S.; Chhabra, G.; Guttula, P.K.; Ghosh, A. Restoration of Altered Oncogenic and Tumor Suppressor microRNA Expression in Breast Cancer and Colorectal Cancer Cell using Epicatechin. Curr. Mol. Pharmacol. 2023, 16, 915–926. [Google Scholar] [CrossRef] [PubMed]
- Pereyra-Vergara, F.; Olivares-Corichi, I.M.; Perez-Ruiz, A.G.; Luna-Arias, J.P.; García-Sánchez, J.R. Apoptosis Induced by (−)-Epicatechin in Human Breast Cancer Cells is Mediated by Reactive Oxygen Species. Molecules 2020, 25, 1020. [Google Scholar] [CrossRef]
- Ndacyayisenga, J.; Tolo, F.M.; Wamunyokoli, F.; Maina, E.N. Effects of tea catechin extracts from BB35 and purple (TRFK 306) tea clones on the gene expression of Egfr, App, Bcl2, Dnmt, Casp3, Hif1a, Gadd45b and Psmb5 genes involved in triple negative breast cancer diseases: In silico and in vitro study. Inform. Med. Unlocked 2024, 46, 101469. [Google Scholar] [CrossRef]
- Delgado, L.; Fernandes, I.; González-Manzano, S.; de Freitas, V.; Mateus, N.; Santos-Buelga, C. Anti-proliferative effects of quercetin and catechin metabolites. Food Funct. 2014, 5, 797–803. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Meng, S.; Yan, B.; Chen, J.; Zhou, L.; Shan, L.; Wang, Y. Anti-Proliferative, Pro-Apoptotic, Anti-Migrative and Tumor-Inhibitory Effects and Pleiotropic Mechanism of Theaflavin on B16F10 Melanoma Cells. OncoTargets Ther. 2021, 14, 1291–1304. [Google Scholar] [CrossRef]
- Lahiry, L.; Saha, B.; Chakraborty, J.; Adhikary, A.; Mohanty, S.; Hossain, D.M.S.; Banerjee, S.; Das, K.; Sa, G.; Das, T. Theaflavins target Fas/caspase-8 and Akt/pBad pathways to induce apoptosis in p53-mutated human breast cancer cells. Carcinogenesis 2009, 31, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Adhikary, A.; Mohanty, S.; Lahiry, L.; Hossain, D.M.S.; Chakraborty, S.; Das, T. Theaflavins retard human breast cancer cell migration by inhibiting NF-kappaB via p53-ROS cross-talk. FEBS Lett. 2010, 584, 7–14. [Google Scholar] [CrossRef]
- Bhadresha, K.; Kumar, S.P.; Brahmbhatt, J.; Patel, C.; Pandya, P.; Jain, N.; Rawal, R. Theaflavin-3-gallate, a natural antagonist for Hsp90: In-silico and in-vitro approach. Chem. Interact. 2022, 353, 109774. [Google Scholar] [CrossRef]
- Nahar, L.; Al-Groshi, A.; Kumar, A.; Sarker, S.D. Arbutin: Occurrence in Plants, and Its Potential as an Anticancer Agent. Molecules 2022, 27, 8786. [Google Scholar] [CrossRef]
- Avelino-Flores, M.d.C.; Cruz-López, M.D.C.; Jimenez-Montejo, F.E.; Reyes-Leyva, J. Cytotoxic Activity of the Methanolic Extract of Turnera diffusa Willd on Breast Cancer Cells. J. Med. Food 2014, 18, 299–305. [Google Scholar] [CrossRef]
- Hazman, Ö.; Sarıova, A.; Bozkurt, M.F.; Ciğerci, İ.H. The anticarcinogen activity of β-arbutin on MCF-7 cells: Stimulation of apoptosis through estrogen receptor-α signal pathway, inflammation and genotoxicity. Mol. Cell. Biochem. 2021, 476, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Chen, S.; Li, Y.; Wu, X.; Song, Z. Arbutin improves gut development and serum lipids via Lactobacillus intestinalis. Front. Nutr. 2022, 9, 948573. [Google Scholar] [CrossRef] [PubMed]
- Chinnikrishnan, P.; Ibrahim, I.A.A.; Alzahrani, A.R.; Shahzad, N.; Sivaprakasam, P.; Pandurangan, A.K. The Role of Selective Flavonoids on Triple-Negative Breast Cancer: An Update. Separations 2023, 10, 207. [Google Scholar] [CrossRef]
- Ranganathan, S.; Halagowder, D.; Sivasithambaram, N.D. Quercetin Suppresses Twist to Induce Apoptosis in MCF-7 Breast Cancer Cells. PLoS ONE 2015, 10, e0141370. [Google Scholar] [CrossRef]
- Mawalizadeh, F.; Mohammadzadeh, G.; Khedri, A.; Rashidi, M. Quercetin potentiates the chemosensitivity of MCF-7 breast cancer cells to 5-fluorouracil. Mol. Biol. Rep. 2021, 48, 7733–7742. [Google Scholar] [CrossRef]
- Aljabr, B.A.; Zihlif, M.; Abu-Dahab, R.; Zalloum, H. Effect of quercetin on doxorubicin cytotoxicity in sensitive and resistant human MCF7 breast cancer cell lines. Biomed. Rep. 2024, 20, 58. [Google Scholar] [CrossRef]
- Chen, W.J.; Tsai, J.H.; Hsu, L.S.; Lin, C.L.; Hong, H.M.; Pan, M.H. Quercetin Blocks the Aggressive Phenotype of Triple Negative Breast Cancer by Inhibiting IGF1/IGF1R-Mediated EMT Program. J. Food Drug Anal. 2021, 29, 98–112. [Google Scholar] [CrossRef]
- Maugeri, A.; Calderaro, A.; Patanè, G.T.; Navarra, M.; Barreca, D.; Cirmi, S.; Felice, M.R. Targets Involved in the Anti-Cancer Activity of Quercetin in Breast, Colorectal and Liver Neoplasms. Int. J. Mol. Sci. 2023, 24, 2952. [Google Scholar] [CrossRef] [PubMed]
- Adams, C.; Conigrave, J.H.; Lewohl, J.; Haber, P.; Morley, K.C. Alcohol use disorder and circulating cytokines: A systematic review and meta-analysis. Brain, Behav. Immun. 2020, 89, 501–512. [Google Scholar] [CrossRef]
- Gholamalizadeh, M.; Afsharfar, M.; Fathi, S.; Tajadod, S.; Mohseni, G.K.; Shekari, S.; Vahid, F.; Doaei, S.; Kachaei, H.S.; Majidi, N.; et al. Relationship between breast cancer and dietary inflammatory index; a case–control study. Clin. Nutr. ESPEN 2022, 51, 353–358. [Google Scholar] [CrossRef]
- Wang, K.; Sun, J.-Z.; Wu, Q.-X.; Li, Z.-Y.; Li, D.-X.; Xiong, Y.-F.; Zhong, G.-C.; Shi, Y.; Li, Q.; Zheng, J.; et al. Long-term anti-inflammatory diet in relation to improved breast cancer prognosis: A prospective cohort study. npj Breast Cancer 2020, 6, 36. [Google Scholar] [CrossRef] [PubMed]
- Helo, D.; Appiah, L.; Bhende, K.M.; Byrd, T.L.; Appiah, D. The association of skipping breakfast with cancer-related and all-cause mortality in a national cohort of United States adults. Cancer Causes Control 2021, 32, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Fillon, M. Skipping breakfast is a bad idea for patients with cancer. CA Cancer J. Clin. 2021, 71, 363–365. [Google Scholar] [CrossRef]
- Tapan, T.K.; Iyigun, Z.E.; Ilgun, S.; Ozmen, V. Evaluation of the eating habits of breast cancer patients. Pak. J. Med. Sci. 2020, 36, 1562–1566. [Google Scholar] [CrossRef]
- Danforth, D.N. The Role of Chronic Inflammation in the Development of Breast Cancer. Cancers 2021, 13, 3918. [Google Scholar] [CrossRef]
- Wang, W.; Nag, S.A.; Zhang, R. Targeting the NFκB Signaling Pathways for Breast Cancer Prevention and Therapy. Curr. Med. Chem. 2014, 22, 264–289. [Google Scholar] [CrossRef] [PubMed]
- Kansestani, A.N.; Mansouri, K.; Hemmati, S.; Zare, M.E.; Moatafaei, A. High Glucose-reduced Apoptosis in Human Breast Cancer Cells Is Mediated by Activation of NF-κB. Iran. J. Allergy Asthma Immunol. 2019, 18, 153–162. [Google Scholar] [CrossRef]
- Ford, K.L.; Arends, J.; Atherton, P.J.; Engelen, M.P.; Gonçalves, T.J.; Laviano, A.; Lobo, D.N.; Phillips, S.M.; Ravasco, P.; Deutz, N.E.; et al. The importance of protein sources to support muscle anabolism in cancer: An expert group opinion. Clin. Nutr. 2021, 41, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat consumption, health, and the environment. Science 2018, 361, eaam5324. [Google Scholar] [CrossRef]
- Inoue-Choi, M.; Sinha, R.; Gierach, G.L.; Ward, M.H. Red and processed meat, nitrite, and heme iron intakes and postmenopausal breast cancer risk in the NIH-AARP Diet and Health Study. Int. J. Cancer 2016, 138, 1609–1618. [Google Scholar] [CrossRef]
- Kim, S.-A.; Shin, S. Red meat and processed meat consumption and the risk of dyslipidemia in Korean adults: A prospective cohort study based on the Health Examinees (HEXA) study. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1714–1727. [Google Scholar] [CrossRef] [PubMed]
- Nouri, M.; Mohsenpour, M.A.; Katsiki, N.; Ghobadi, S.; Jafari, A.; Faghih, S.; Banach, M.; Mazidi, M. Effect of Serum Lipid Profile on the Risk of Breast Cancer: Systematic Review and Meta-Analysis of 1,628,871 Women. J. Clin. Med. 2022, 11, 4503. [Google Scholar] [CrossRef] [PubMed]
- Brindisi, M.; Frattaruolo, L.; Fiorillo, M.; Dolce, V.; Sotgia, F.; Lisanti, M.P.; Cappello, A.R. New insights into cholesterol-mediated ERRα activation in breast cancer progression and pro-tumoral microenvironment orchestration. FEBS J. 2022, 290, 1481–1501. [Google Scholar] [CrossRef]
- Strizova, Z.; Benesova, I.; Bartolini, R.; Novysedlak, R.; Cecrdlova, E.; Foley, L.K.; Striz, I. M1/M2 macrophages and their overlaps—Myth or reality? Clin. Sci. 2023, 137, 1067–1093. [Google Scholar] [CrossRef]
- Yang, Y.; Xin, X.; Fu, X.; Xu, D. Expression pattern of human SERPINE2 in a variety of human tumors. Oncol. Lett. 2018, 15, 4523–4530. [Google Scholar] [CrossRef]
- Krawczynska, N.; Wang, Y.; Lim, K.; Das Gupta, A.; Lenczowski, A.; Abughazaleh, M.; Bendre, S.V.; Kockaya, L.I.; Schane, C.P.; Fei, Y.; et al. Neutrophils exposed to a cholesterol metabolite secrete extracellular vesicles that promote epithelial-mesenchymal transition and stemness in breast cancer cells. bioRxiv 2024, bioRxiv:2024.08.02.606061. [Google Scholar] [CrossRef]
- Narii, N.; Zha, L.; Komatsu, M.; Kitamura, T.; Sobue, T.; Ogawa, T. Cholesterol and breast cancer risk: A cohort study using health insurance claims and health checkup databases. Breast Cancer Res. Treat. 2023, 199, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Tjønneland, A.; Stripp, C.; Christensen, J.; Thomsen, B.L.; Olsen, A.; Overvad, K.; Møller, S. Fish Intake Is Positively Associated with Breast Cancer Incidence Rate. J. Nutr. 2003, 133, 3664–3669. [Google Scholar] [CrossRef]
- Wu, S.; Ma, X.; Zhang, X.; Shi, C.; Cao, M.; Yang, C.; Qi, Y.; Liu, Y. Relationship between oily fish intake and breast cancer based on estrogen receptor status: A Mendelian randomization study. Breast Cancer Res. Treat. 2023, 203, 145–152. [Google Scholar] [CrossRef]
- Nindrea, R.D.; Aryandono, T.; Lazuardi, L.; Dwiprahasto, I. Protective Effect of Omega-3 Fatty Acids in Fish Consumption Against Breast Cancer in Asian Patients: A Meta-Analysis. Asian Pac. J. Cancer Prev. 2019, 20, 327–332. [Google Scholar] [CrossRef]
- Abera, B.D.; Adimas, M.A. Health benefits and health risks of contaminated fish consumption: Current research outputs, research approaches, and perspectives. Heliyon 2024, 10, e33905. [Google Scholar] [CrossRef] [PubMed]
- Brodziak-Dopierała, B.; Fischer, A. Analysis of the Mercury Content in Fish for Human Consumption in Poland. Toxics 2023, 11, 717. [Google Scholar] [CrossRef] [PubMed]
- Skalny, A.V.; Aschner, M.; Sekacheva, M.I.; Santamaria, A.; Barbosa, F.; Ferrer, B.; Aaseth, J.; Paoliello, M.M.; Rocha, J.B.; Tinkov, A.A. Mercury and cancer: Where are we now after two decades of research? Food Chem. Toxicol. 2022, 164, 113001. [Google Scholar] [CrossRef] [PubMed]
- Yedier, S.; Yalçınkaya, S.K.; Bostancı, D. Exposure to polypropylene microplastics via diet and water induces oxidative stress in Cyprinus carpio. Aquat. Toxicol. 2023, 259, 106540. [Google Scholar] [CrossRef]
- Park, J.H.; Hong, S.; Kim, O.-H.; Kim, C.-H.; Kim, J.; Kim, J.-W.; Hong, S.; Lee, H.J. Polypropylene microplastics promote metastatic features in human breast cancer. Sci. Rep. 2023, 13, 6252. [Google Scholar] [CrossRef]
- Polak-Juszczak, L.; Waszak, I.; Szlinder-Richert, J.; Wójcik, I. Levels, time trends, and distribution of dioxins and polychlorinated biphenyls in fishes from the Baltic Sea. Chemosphere 2022, 306, 135614. [Google Scholar] [CrossRef]
- VoPham, T.; Bertrand, K.A.; Jones, R.R.; Deziel, N.C.; DuPré, N.C.; James, P.; Liu, Y.; Vieira, V.M.; Tamimi, R.M.; Hart, J.E.; et al. Dioxin exposure and breast cancer risk in a prospective cohort study. Environ. Res. 2020, 186, 109516. [Google Scholar] [CrossRef]
- Meurillon, M.; Engel, E. Potential chemical hazards linked to meat processing. In Encyclopedia of Meat Sciences; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Bulanda, S.; Janoszka, B. Consumption of Thermally Processed Meat Containing Carcinogenic Compounds (Polycyclic Aromatic Hydrocarbons and Heterocyclic Aromatic Amines) versus a Risk of Some Cancers in Humans and the Possibility of Reducing Their Formation by Natural Food Additives—A Literature Review. Int. J. Environ. Res. Public Health 2022, 19, 4781. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.K.; Jairath, G.; Mendiratta, S.K.; Kumar, D.; Bauer, F. Residues associated with meat production and processing. In Encyclopedia of Meat Sciences (Third Edition); Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar] [CrossRef]
- Muthukumar, M.; Banerjee, R.; Naveena, B.M. Potential chemical hazards associated with meat. In Encyclopedia of Meat Sciences, 3rd ed.; Dikeman, M., Ed.; Elsevier: Oxford, UK, 2024; pp. 582–590. [Google Scholar] [CrossRef]
- Reig, M.; Toldrá, F. Chapter 11—Residues of harmful chemicals and their detection techniques. In Meat Quality Analysis; Biswas, A.K., Mandal, P.K., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 173–183. [Google Scholar]
- Gearhart-Serna, L.M.; Davis, J.B.; Jolly, M.K.; Jayasundara, N.; Sauer, S.J.; Di Giulio, R.T.; Devi, G.R. A polycyclic aromatic hydrocarbon-enriched environmental chemical mixture enhances AhR, antiapoptotic signaling and a proliferative phenotype in breast cancer cells. Carcinog. 2020, 41, 1648–1659. [Google Scholar] [CrossRef]
- Kehm, R.D.; Walter, E.J.; Oskar, S.; White, M.L.; Tehranifar, P.; Herbstman, J.B.; Perera, F.; Lilge, L.; Miller, R.L.; Terry, M.B. Exposure to polycyclic aromatic hydrocarbons during pregnancy and breast tissue composition in adolescent daughters and their mothers: A prospective cohort study. Breast Cancer Res. 2022, 24, 47. [Google Scholar] [CrossRef]
- Sheikh, I.A.; Jiffri, E.H.; Kamal, M.A.; Ashraf, G.M.; Beg, M.A. Lactoperoxidase, an Antimicrobial Milk Protein, as a Potential Activator of Carcinogenic Heterocyclic Amines in Breast Cancer. Anticancer. Res. 2017, 37, 6415–6420. [Google Scholar] [CrossRef] [PubMed]
- Rahman, U.U.; Sahar, A.; Khan, M.I.; Nadeem, M. Production of heterocyclic aromatic amines in meat: Chemistry, health risks and inhibition. A review. LWT 2014, 59, 229–233. [Google Scholar] [CrossRef]
- Bellamri, M.; Walmsley, S.J.; Turesky, R.J. Metabolism and biomarkers of heterocyclic aromatic amines in humans. Genes Environ. 2021, 43, 29. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, I.A.; Beg, M.A.; Yasir, M. Molecular Interactions of Carcinogenic Aromatic Amines, 4-Aminobiphenyl and 4,4′-Diaminobiphenyl, with Lactoperoxidase—Insight to Breast Cancer. Anticancer. Res. 2017, 37, 6245–6249. [Google Scholar] [CrossRef] [PubMed]
- Deveci, G.; Tek, N.A. N-Nitrosamines: A potential hazard in processed meat products. J. Sci. Food Agric. 2024, 104, 2551–2560. [Google Scholar] [CrossRef]
- Nabizadeh, S.; Aeini, K.; Barzegar, F.; Arabameri, M.; Hosseini, H.; Kamankesh, M.; Mohammadi, A. Volatile N-nitrosamines in processed meat products: An approach for monitoring dietary exposure, assessing human risk, and evaluating variable correlations by principal component analysis and heat map. Food Chem. Toxicol. 2024, 188, 114649. [Google Scholar] [CrossRef]
- Diallo, A.; Deschasaux, M.; Latino-Martel, P.; Hercberg, S.; Galan, P.; Fassier, P.; Allès, B.; Guéraud, F.; Pierre, F.H.; Touvier, M. Red and processed meat intake and cancer risk: Results from the prospective NutriNet-Santé cohort study. Int. J. Cancer 2018, 142, 230–237. [Google Scholar] [CrossRef]
- Cauchi, J.P.; Camilleri, L.; Scerri, C. Environmental and lifestyle risk factors of breast cancer in Malta—A retrospective case-control study. EPMA J. 2016, 7, 20. [Google Scholar] [CrossRef]
- Zhu, P.; Zhang, Y.; Zou, S.; Yu, X.; Song, M.; Lin, M.; Yang, H. Consumption of processed meat and its interactions with alcohol drinking and polygentic risk scores on breast cancer risk: A cohort study in the UK biobank. medRxiv 2022, medRxiv:2022.08.30.22279400. [Google Scholar] [CrossRef]
- Farvid, M.S.; Sidahmed, E.; Spence, N.D.; Angua, K.M.; Rosner, B.A.; Barnett, J.B. Consumption of red meat and processed meat and cancer incidence: A systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 2021, 36, 937–951. [Google Scholar] [CrossRef]
- Farvid, M.S.; Stern, M.C.; Norat, T.; Sasazuki, S.; Vineis, P.; Weijenberg, M.P.; Wolk, A.; Wu, K.; Stewart, B.W.; Cho, E. Consumption of red and processed meat and breast cancer incidence: A systematic review and meta-analysis of prospective studies. Int. J. Cancer 2018, 143, 2787–2799. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, X.; Xu, Y.; Yang, J.; Du, L.; Li, K.; Zhou, Y. Milk consumption and multiple health outcomes: Umbrella review of systematic reviews and meta-analyses in humans. Nutr. Metab. 2021, 18, 7. [Google Scholar] [CrossRef] [PubMed]
- Ventura, E.R.; Konigorski, S.; Rohrmann, S.; Schneider, H.; Stalla, G.K.; Pischon, T.; Linseisen, J.; Nimptsch, K. Association of dietary intake of milk and dairy products with blood concentrations of insulin-like growth factor 1 (IGF-1) in Bavarian adults. Eur. J. Nutr. 2020, 59, 1413–1420. [Google Scholar] [CrossRef] [PubMed]
- Melnik, B.C.; John, S.M.; Carrera-Bastos, P.; Cordain, L.; Leitzmann, C.; Weiskirchen, R.; Schmitz, G. The Role of Cow’s Milk Consumption in Breast Cancer Initiation and Progression. Curr. Nutr. Rep. 2023, 12, 122–140. [Google Scholar] [CrossRef]
- Lee, J.-S.; Tocheny, C.E.; Shaw, L.M. The Insulin-like Growth Factor Signaling Pathway in Breast Cancer: An Elusive Therapeutic Target. Life 2022, 12, 1992. [Google Scholar] [CrossRef] [PubMed]
- Reis, L.G.; Silva, T.H.D. Effect of cow’s milk with different PUFA n-6: N-3 ratios on performance, serum lipid profile, and blood parameters of grower gilts. PLoS ONE 2022, 17, e0258629. [Google Scholar] [CrossRef]
- Mei, J.; Qian, M.; Hou, Y.; Liang, M.; Chen, Y.; Wang, C.; Zhang, J. Association of saturated fatty acids with cancer risk: A systematic review and meta-analysis. Lipids Health Dis. 2024, 23, 32. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, L.-T.; Hou, S.-H.; Chen, L.-N.; Zhang, C.-X. Association between dietary intake of saturated fatty acid subgroups and breast cancer risk. Food Funct. 2024, 15, 2282–2294. [Google Scholar] [CrossRef]
- de Lorgeril, M.; Salen, P. Helping women to good health: Breast cancer, omega-3/omega-6 lipids, and related lifestyle factors. BMC Med. 2014, 12, 54. [Google Scholar] [CrossRef]
- Espinosa-Neira, R.; Mejia-Rangel, J.; Cortes-Reynosa, P.; Salazar, E.P. Linoleic acid induces an EMT-like process in mammary epithelial cells MCF10A. Int. J. Biochem. Cell Biol. 2011, 43, 1782–1791. [Google Scholar] [CrossRef]
- Serna-Marquez, N.; Diaz-Aragon, R.; Reyes-Uribe, E.; Cortes-Reynosa, P.; Salazar, E.P. Linoleic acid induces migration and invasion through FFAR4- and PI3K-/Akt-dependent pathway in MDA-MB-231 breast cancer cells. Med. Oncol. 2017, 34, 111. [Google Scholar] [CrossRef] [PubMed]
- Durán-Jara, E.; Vera-Tobar, T.; Lobos-González, L.D.L. Lactadherin: From a Well-Known Breast Tumor Marker to a Possible Player in Extracellular Vesicle-Mediated Cancer Progression. Int. J. Mol. Sci. 2022, 23, 3855. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, J.; Song, Q.; Zhu, K.; Yu, X.; Tian, Y.; Zhang, J. Reduction in milk fat globule-EGF factor 8 inhibits triple-negative breast cancer cell viability and migration. Oncol. Lett. 2019, 17, 3457–3465. [Google Scholar] [CrossRef]
- Sørensen, E.S.; Christensen, B. Milk Osteopontin and Human Health. Nutrients 2023, 15, 2423. [Google Scholar] [CrossRef] [PubMed]
- Kovacheva, M.; Zepp, M.; Schraad, M.; Berger, S.; Berger, M.R. Conditional Knockdown of Osteopontin Inhibits Breast Cancer Skeletal Metastasis. Int. J. Mol. Sci. 2019, 20, 4918. [Google Scholar] [CrossRef]
- Guo, M.; Liu, M.; Li, W.; Wang, C.; Zhang, L.; Zhang, H. Osteopontin promotes tumor growth and metastasis and GPX4-mediated anti-lipid peroxidation in triple-negative breast cancer by activating the PI3k/Akt/mTOR pathway. J. Cancer Res. Clin. Oncol. 2024, 150, 155. [Google Scholar] [CrossRef]
- Panahipour, L.; Stähli, A.; Haiden, N.; Gruber, R. TGF-β activity in cow milk and fermented milk products: An in vitro bioassay with oral fibroblasts. Arch. Oral Biol. 2018, 95, 15–21. [Google Scholar] [CrossRef]
- Shukla, N.; Naik, A.; Moryani, K.; Soni, M.; Shah, J.; Dave, H. TGF-β at the crossroads of multiple prognosis in breast cancer, and beyond. Life Sci. 2022, 310, 121011. [Google Scholar] [CrossRef]
- Urseler, N.; Bachetti, R.; Biolé, F.; Morgante, V.; Morgante, C. Atrazine pollution in groundwater and raw bovine milk: Water quality, bioaccumulation and human risk assessment. Sci. Total. Environ. 2022, 852, 158498. [Google Scholar] [CrossRef]
- Wang, M.; Chen, J.; Zhao, S.; Zheng, J.; He, K.; Liu, W.; Zhao, W.; Li, J.; Wang, K.; Wang, Y.; et al. Atrazine promotes breast cancer development by suppressing immune function and upregulating MMP expression. Ecotoxicol. Environ. Saf. 2023, 253, 114691. [Google Scholar] [CrossRef]
- Ranjbar, F.; Movassaghghazani, M. Cypermethrin, deltamethrin, and hexachlorobenzene contents in milk and dairy products in Tehran, Iran. Int. J. Environ. Stud. 2023, 80, 1808–1819. [Google Scholar] [CrossRef]
- El-Danasoury, H.M.; Khozimy, A.M. Toxic Effects of Administration of Cypermethrin, Vitamin E, Zinc and Their Mixtures on the Hormonal Levels of Thyroid, Kidney Functions and some Biochemical Parameters in Male Mice. J. Appl. Plant Prot. 2020, 9, 39–49. [Google Scholar]
- Kara-Ertekin, S.; Yazar, S.; Erkan, M. In vitro toxicological assessment of flumethrin’s effects on MCF-7 breast cancer cells. Hum. Exp. Toxicol. 2021, 40, 2165–2177. [Google Scholar] [CrossRef] [PubMed]
- Miret, N.V.; Pontillo, C.A.; Zárate, L.V.; de Pisarev, D.K.; Cocca, C.; Randi, A.S. Impact of endocrine disruptor hexachlorobenzene on the mammary gland and breast cancer: The story thus far. Environ. Res. 2019, 173, 330–341. [Google Scholar] [CrossRef] [PubMed]
- Bøhn, T.; Millstone, E. The Introduction of Thousands of Tonnes of Glyphosate in the food Chain—An Evaluation of Glyphosate Tolerant Soybeans. Foods 2019, 8, 669. [Google Scholar] [CrossRef]
- Muñoz, J.P.; Araya-Osorio, R.; Mera-Adasme, R.; Calaf, G.M. Glyphosate mimics 17β-estradiol effects promoting estrogen receptor alpha activity in breast cancer cells. Chemosphere 2023, 313, 137201. [Google Scholar] [CrossRef] [PubMed]
- Ridley, W.P.; Sidhu, R.S.; Pyla, P.D.; Nemeth, M.A.; Breeze, M.L.; Astwood, J.D. Comparison of the Nutritional Profile of Glyphosate-Tolerant Corn Event NK603 with That of Conventional Corn (Zea mays L.). J. Agric. Food Chem. 2002, 50, 7235–7243. [Google Scholar] [CrossRef]
- Stur, E.; Aristizabal-Pachon, A.F.; Peronni, K.C.; Agostini, L.P.; Waigel, S.; Chariker, J.; Miller, D.M.; Thomas, S.D.; Rezzoug, F.; Detogni, R.S.; et al. Glyphosate-based herbicides at low doses affect canonical pathways in estrogen positive and negative breast cancer cell lines. PLoS ONE 2019, 14, e0219610. [Google Scholar] [CrossRef]
- Alaboudi, A.R.; Osaili, T.M.; Alrwashdeh, A. Pesticides (Hexachlorocyclohexane, Aldrin, and Malathion) Residues in Home-Grown Eggs: Prevalence, Distribution, and Effect of Storage and Heat Treatments. J. Food Sci. 2019, 84, 3383–3390. [Google Scholar] [CrossRef]
- Liu, H.; Sun, Y.; Ran, L.; Li, J.; Shi, Y.; Mu, C.; Hao, C. Endocrine-disrupting chemicals and breast cancer: A meta-analysis. Front. Oncol. 2023, 13, 1282651. [Google Scholar] [CrossRef]
- Pogurschi, E.N.; Zugravu, C.A.; Ranga, I.N.; Trifunschi, S.; Munteanu, M.F.; Popa, D.C.; Tudorache, M.; Custura, I. Determination of Acrylamide in Selected Foods from the Romanian Market. Foods 2021, 10, 2110. [Google Scholar] [CrossRef] [PubMed]
- Mihalache, O.A.; Dall’asta, C. The burden of disease due to dietary exposure to acrylamide in Italy: A risk assessment-based approach. Food Chem. Toxicol. 2024, 188, 114699. [Google Scholar] [CrossRef] [PubMed]
- Bellicha, A.; Wendeu-Foyet, G. Dietary exposure to acrylamide and breast cancer risk: Results from the NutriNet-Santé cohort. Am. J. Clin. Nutr. 2022, 116, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Atabati, H.; Abouhamzeh, B.; Abdollahifar, M.-A.; Javadinia, S.S.; Bajestani, S.G.; Atamaleki, A.; Raoofi, A.; Fakhri, Y.; Oliveira, C.A.; Khaneghah, A.M. The association between high oral intake of acrylamide and risk of breast cancer: An updated systematic review and meta-analysis. Trends Food Sci. Technol. 2020, 100, 155–163. [Google Scholar] [CrossRef]
- Besaratinia, A.; Pfeifer, G.P. A review of mechanisms of acrylamide carcinogenicity. Carcinogenesis 2007, 28, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Lara-Castor, L.; Micha, R.; Cudhea, F.; Miller, V.; Shi, P.; Zhang, J.; Sharib, J.R.; Erndt-Marino, J.; Cash, S.B.; Barquera, S.; et al. Intake of sugar sweetened beverages among children and adolescents in 185 countries between 1990 and 2018: Population based study. BMJ 2024, 386, e079234. [Google Scholar] [CrossRef]
- Romanos-Nanclares, A.; Collins, L.C.; Hu, F.B.; Willett, W.C.; A Rosner, B.; Toledo, E.; Eliassen, A.H. Sugar-Sweetened Beverages, Artificially Sweetened Beverages, and Breast Cancer Risk: Results From 2 Prospective US Cohorts. J. Nutr. 2021, 151, 2768–2779. [Google Scholar] [CrossRef] [PubMed]
- Debras, C.; Chazelas, E.; Srour, B.; Druesne-Pecollo, N.; Esseddik, Y.; Szabo de Edelenyi, F.; Agaësse, C.; De Sa, A.; Lutchia, R.; Gigandet, S.; et al. Artificial sweeteners and cancer risk: Results from the NutriNet-Santé population-based cohort study. PLoS Med. 2022, 19, e1003950. [Google Scholar] [CrossRef]
- Ye, X.; Zhang, Y.; He, Y.; Sheng, M.; Huang, J.; Lou, W. Association between Consumption of Artificial Sweeteners and Breast Cancer Risk: A Systematic Review and Meta-Analysis of Observational Studies. Nutr. Cancer 2023, 75, 795–804. [Google Scholar] [CrossRef]
- Keller, A.; Bucher Della Torre, S. Sugar-Sweetened Beverages and Obesity among Children and Adolescents: A Review of Systematic Literature Reviews. Child. Obes. 2015, 11, 338–346. [Google Scholar] [CrossRef]
- Picon-Ruiz, M.; Morata-Tarifa, C.; Valle-Goffin, J.J.; Friedman, E.R.; Slingerland, J.M. Obesity and adverse breast cancer risk and outcome: Mechanistic insights and strategies for intervention. CA Cancer J. Clin. 2017, 67, 378–397. [Google Scholar] [CrossRef] [PubMed]
- Garlapati, C.; Joshi, S.; Bhattarai, S.; Krishnamurthy, J.; Turaga, R.C.; Nguyen, T.; Li, X.; Aneja, R. PLK1 and AURKB phosphorylate survivin differentially to affect proliferation in racially distinct triple-negative breast cancer. Cell Death Dis. 2023, 14, 12. [Google Scholar] [CrossRef]
- Izadi, S.; Nikkhoo, A.; Hojjat-Farsangi, M.; Namdar, A.; Azizi, G.; Mohammadi, H.; Yousefi, M.; Jadidi-Niaragh, F. CDK1 in Breast Cancer: Implications for Theranostic Potential. Anti-Cancer Agents Med. Chem. 2020, 20, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Manousakis, E.; Miralles, C.M.; Esquerda, M.G.; Wright, R.H.G. CDKN1A/p21 in Breast Cancer: Part of the Problem, or Part of the Solution? Int. J. Mol. Sci. 2023, 24, 17488. [Google Scholar] [CrossRef]
- Anwar, S.; Shamsi, A.; Shahbaaz, M.; Queen, A.; Khan, P.; Hasan, G.M.; Islam, A.; Alajmi, M.F.; Hussain, A.; Ahmad, F.; et al. Rosmarinic Acid Exhibits Anticancer Effects via MARK4 Inhibition. Sci. Rep. 2020, 10, 10300. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Cai, Y.; Zhang, L.; Liu, S.; Li, P.; Li, X. Promoting Apoptosis, a Promising Way to Treat Breast Cancer With Natural Products: A Comprehensive Review. Front. Pharmacol. 2022, 12, 801662. [Google Scholar] [CrossRef]
- Sun, X.; Wang, M.; Wang, M.; Yao, L.; Li, X.; Dong, H.; Li, M.; Li, X.; Liu, X.; Xu, Y. Exploring the Metabolic Vulnerabilities of Epithelial–Mesenchymal Transition in Breast Cancer. Front. Cell Dev. Biol. 2020, 8, 655. [Google Scholar] [CrossRef]
Bioactive Dietary Compounds | Food Sources | In Vitro and In Vivo Models | Effects on Molecular Biomarkers/Signaling Pathways | Effects on Biopathological Processes | Role in BC |
---|---|---|---|---|---|
Sulforaphane | Organo-sulfur compound obtained from broccoli/broccoli sprouts, kale, cabbage, cauliflower, garden cress, mustard [112,113] | MDA-MB-231 and MDA-MB-157 [116] | Targets MAPK/ERK [116]; downregulates NF-κB, AKT, and KEAP1; affects histone deacetylases involved in chromatin remodeling, and NRF2 antioxidant signaling [113] | Inhibits cell proliferation; causes apoptosis and cell cycle arrest; has antioxidant activities [113]; suppresses TGF-β1-induced migration, invasion, and metastasis of TNBC cells [116] | Chemoprotective [116], putative potential for BC treatment [113] |
Allicin | Organo-sulfur compound from garlic (Allium sativum) [119] | MCF7 and HCC-70 [155], MCF7 and MDA-MB-231 [120] | Downregulates caspase 3/8/9 and Bcl-XL; upregulates NOXA, p21, and BAK expression [155]; induces p53 activation [120] | Decreases BC cell proliferation and viability and increases apoptosis, induces cell cycle arrest [120,155], improves DOX sensitivity [118] | Antitumor [155] |
Quercetin | Flavonoid from fruits, vegetables (cruciferous vegetables, grapes, apples, tomatoes, blueberries), and herbal products (Hypericum perforatum, Sambucus nigra) [156] | 4T1 and xenograft mouse model [125]; MCF-7 and MDA-MB-231 [124] | Suppresses IL-6/JAK2/STAT3 pathway [125], modulates the expression of caspase-3/8/9 [124] | Suppresses TNBC progression (proliferation, migration, and invasion) [125], induces apoptosis [124] | Potential anti-BC agent [124]; potential adjuvant for immune therapy in TNBC [125] |
Luteolin/luteolol/ digitoflavone | Flavonoid from carrots, broccoli, celery, perilla mint leaves and seeds, apple skin, cabbages, parsley, onion leaves, thyme [157,158,159] | MDA-MB-231, BT549, and mouse model [157]; MDA-MB-231, MDA-MB-486, 4T1, BT549 [158]; MDA-MB-453 and MCF7 [160] | Reverses EMT through the suppression of β-catenin and VIM; stimulates E-cadherin and claudin; downregulates N-cadherin, Snail, and Slug; reorganizes F-actin [157]; inactivates AKT/mTOR and downregulates MMP9 through H3K27Ac and H3K56Ac [158]; upregulates miR-203, inhibits Ras/Raf/MEK/ERK, downregulates Bcl-2, upregulates Bax, impedes TGFβ1-induced EMT, decreases VIM, ZEB1, and N-cadherin, and increases E-cadherin [160] | Inhibits migration and invasion of TNBC cells [157], inhibits proliferation and metastasis, and promotes apoptosis of AR+ TNBC cells [158] | Chemopreventive and potential therapeutic agent for TNBC [157], including AR+ TNBC [158] |
Hesperetin | Flavanone glycoside from Citrus fruits (oranges and lemons) [161] | MDA-MB-231 [161]; MCF7, including mammospheres [162,163,164] | Inhibits the Fyn/paxillin/RhoA signalling pathway [161]; activates the ASK1/JNK pathway, initiates the accumulation of ROS [162]; modulates the expression of p53, PPARG, and Notch1 [163]; downregulates CDK2/4 and cyclins, and upregulates p21Cip1 and p27Kip1, stimulates the binding of CDK4 to p21Cip1 [164] | Inhibits the migration and invasion induced by TGF-β1 [161]; exerts cytotoxic and proapoptotic effects [162]; inhibits BCSCs, exerts cytotoxicity on mammospheres, inhibits mammospheres, colony formation and migration, modulates cell cycle and induces apoptosis [163]; suppresses proliferation and stops the cell cycle in G1 [164] | Potential anti-BC agent, especially for TNBC [161] |
Hesperidin | Flavanone from citrus fruits [165] | MCF7 cells [165], MDA-MB-231 [166], mammospheres [167], MDA-MB-231 [168], Wistar rats [169] | Suppresses AKT and NF-kB signalling, inhibits PD-L1 [166], increases p53 [167], binds to MCL-1 receptor [168], attenuates Ki67 [169] | Suppresses cell proliferation [165], inhibits cell migration and growth [166], suppresses mammospheres and colony formation, induces apoptosis [167], exerts cytotoxic effects [168] | Anti-BC activity [165,167], protective against DMBA-induced BC [169] |
Naringenin | Flavanone glycoside from grapefruits, apples, onions, tea [170,171] | MDA-MB-231, Wistar rats induced with BC by DMBA [170], C57BL/6J mice induced with BC through a transplant of E0771 cells [172], Balb/c mice induced with BC through a transplant of transduced 4T1-Luc2 cells [173], MCF-7 [174] | Modulates mitochondrial-mediated pathway, upregulates caspase-3/7 [170], increases AMPK, decreases cyclin D1 [172], inhibits PKC, inhibits secretion of TGF-β1, causing its intracellular accumulation [173], inhibits PI3K and MAPK [174] | Inhibits cell proliferation and cell cycle, induces apoptosis, reduces the incidence of BC tumors [170], decreases cell viability in vivo, suppresses cell cycle progression [172], inhibits lung metastasis, increasing the survival rates of the mice [172], suppresses proliferation, impairs glucose uptake [174] | Antineoplastic agent [170], putative therapeutic option for TGF-β1 modulation [173], antiproliferative agent [174] |
Naringin | Flavanone glycoside from tomatoes, grapefruits, and other Citrus fruits [175] | MDA-MB-231, MDA-MB-468, BT-549 [175] | Increases p21, decreases survivin/BIRC5, suppresses β-catenin pathway [176] | Inhibits cell proliferation, stimulates apoptosis [176] | Potential treatment agent for BC [176] |
Apigenin | Flavone from parsley, onions, chamomile, oranges, wheat sprouts [177], celery, green peppers [178], thyme [179] | MDA-MB-453 and BT-474 [177], SK-BR-3 [177,178], MCF-7 [177,180], HBL-100 [177], MCF7-T, MCF7-F [179], MDA-MB-231, A549, SK-Hep1, nude mice [181] | Depletes HER2/neu and disrupts HER2/neu-GRP94 complex [177], modulates CDK1, p21Cip1, and p53 [178], induces degradation of ERα and AIB1 [179], blocks PI3K/AKT pathway [177,181] and β4 integrin function, inhibits pAKT, inhibits cell motility, migration, and invasion [181], inhibits AKT/FOXM pathway, suppresses FOXM1, and modulates ER signalling [180] | Suppresses BC cell growth, induces apoptosis [177], inhibits proliferation [180], ref. [177], activates p53-induced apoptosis [177], inhibits growth of ERα+ BC cells [179], inhibits metastasis [181] | Potential anticancer treatment [177] |
Tangeretin | Flavone from lemons, oranges [182], other Citrus fruits [183] | MCF7, MDA-MB-468, MDA-MB-231, nude mice injected with MDA-MB-231 cells [182,184], Sprague-Dawley rats induced with DMBA [185], Wistar rats induced with DMBA [183] | Inhibits STAT3 and SOX2 pathways, decreases STAT3-DNA binding, reduces STAT3 in BCSCs [182], induces CYP1A1/CYP1B1 activity [184], decreases ROS and pro-inflammatory factors, protects against LPO [185], upregulates p53/p21, suppresses MMP2/9 and VEGF, reduces PCNA and COX2 [183] | Inhibits proliferation [182,183,184] and metastasis [183], inhibits BCSC formation, induces apoptosis, inhibits mammospheres and colony formation [182], decreases tumorigenicity and OS levels, boosts antioxidant levels [185] | Anti-BC effects |
Daidzein | Isoflavone from fruits, nuts, soy beans and soy-based products [85] | MCF-7 [85,86,186], MDA-MB-453 [85], T47D [186], MCF-10DCIS [87] | Induces cell cycle arrest, inhibits cyclin D, CDK2/4, increases p21Cip1 and p57Kip2 expression, increases caspase-9 activity [85]; generates ROS, disrupts mitochondrial function [86]; inhibits TNF-α and suppresses hedgehog/Gli1 signalling [87]; upregulates Bax and downregulates Bcl-2, induces apoptosis and lowers ERα/β ratio and ROS outbursts [88] | Inhibits cell proliferation, induces apoptosis [85,86]; inhibits migration and invasion [87] | Anti-BC potential [88] |
Genistein | Phytoestrogenic soy (Glycine max)-derived compound [81] from soy nuts, soy powder, soy milk, tofu, miso, natto [187], lupin, fava beans, kudzu, and psoralea [80]; exerts tyrosine kinase-modulating activities [84] | MCF-7 [79,81,82]; MCF7 and MDA-MB-435 transfected with human HER2 [84]; PDX mouse models for TNBC [80] | Suppresses IGF-1R/p-AKT and decreases Bcl-2/Bax [81]; downregulates NF-κB/Bcl-xL/TAp63, influences key epigenetic associated genes, genomic DNA, and histone methylation [80]; upregulates PI3K and MAPK signalling, downregulates p27 Kip1 levels in ER+/HER2+ BC cells [84] | High concentrations kill MCF7 BC cells [79] or delay TNBC tumor growth [80]; inhibits proliferation/differentiation, induces apoptosis [81,82]; inhibits angiogenesis [83]; induces tamoxifen resistance and growth in ER+/HER2+ BC cells and inhibits growth of ER-/HER2+ BC cells [84] | Exhibits anticancer effects on various cancers [188]; chemoprevention in terms of BC carcinogenesis is concentration-, exposure time-, and BC subtype-dependent |
Genistin | A glucoside form of genistein, readily absorbed in the intestine, found in soy beans and soy-derived foods, some legumes, and vegetables [187,189] | MCF-7, MDA-MB-231 [189] | Docks to ERα, ERβ, lowers CA 15-3 levels [190]; induces negative regulation of ERα signalling pathway, suppresses expression of oncogenic biomarkers [189] | Stimulates cell cycle arrest and apoptosis, reduces BC cell growth, proliferation, and angiogenesis [189] | Chemoprevention and therapy in terms of ER+ BCs [189]; useful for potential new drug discovery for BC management and treatment [190] |
Lycopene | Major carotenoid found in tomatoes, red fruits, red carrots, watermelons, grapefruits, papayas [127] | MCF7, SK-BR-3, MDA-MB-468 [129] | Inhibits pAKT and mTOR signalling pathways, upregulates Bax [129] | Inhibits cell proliferation and cell cycle progression, initiates apoptosis [128] | Chemopreventive for TNBC [129] |
Gallic acid | Hydroxybenzoic acid in fruits, vegetables, medicinal plants, such as grapes, gallnuts, pomegranates, hawthorn, tea leaves, capers [191,192,193], honey [194] | MCF7 [191], HCC1806 [195], MDA-MB-231 [196] | Suppresses PI3K/AKT/EGFR, nuclear accumulation of β-catenin [191,195], activates mitochondrial apoptosis pathways [195] | Inhibits survival of acidity-adapted BC cells and reduces metastatic characteristics induced by acidity [191], suppresses proliferation, promotes apoptosis [195] and ferroptosis [196] | Promising therapeutic agent for metastatic BC [191], antioxidant [193], suppresses TNBC progression [195] |
Vanillic acid | Hydroxybenzoic acid in medicinal plants (e.g., Angelica sinensis), olives, cereals, whole grains, fruits, green tea, juices, berries, wines [197] | MCF7 [198] | Affects ROS pathway [198] | Generates ROS, promotes apoptosis [198] | Antiproliferative effects [198] |
Protocatechuic acid | Hydroxybenzoic acid in olives (Olea europaea)/olive oil, hibiscus, white grape (Vitis vinifera) wine [199], purple rice bran extract [200], edible mushrooms (Hydnum repandum) [201], potatoes, onions, wheat [202] | MCF7 [199] | Reduces IL-6, IL-8, and suppresses VEGF [199] | Induces apoptosis and limits invasion and metastasis [199] | Potent anticancer agent [199], antioxidant [202] |
Syringic acid | Hydroxybenzoic acid from olive oil, dates, grapes [203], foxtail millet bran (Setaria italica) [204] | MCF7, MDA-MB-231 [204] | Downregulates GRP78/SERBP-1/SCD1 signalling axis [204] | Antiproliferative activities [203,204] | Anti-BC agent [204], antioxidant [203] |
Ellagic acid | Hydroxybenzoic acid from fruits, seeds, nuts, pomegranates, raspberries, strawberries, black raspberries, almonds, and walnuts [205] | MCF7 [205] | Regulates TGF-β/SMAD3 signalling axis, inhibits CDK6, binds to ACTN4 and induces its degradation via ubiquitin–proteasome pathway, reduces VEGFR-2 [205] | Suppresses BC cell growth, migration, invasion, metastasis, stimulates apoptosis, inhibits angiogenesis [205] | Anti-BC activities [205] |
Caffeic acid | Hydroxycinnamic acid from fruits, green and roasted coffee, vegetables, tea, oils, spices [206,207], honey, and propolis extracts [194,208] | MCF7 [206] | Stimulates p53 and p21 genes, inhibits CDK2 [206], inhibits DNA methylation [208] | Induces apoptosis, cytotoxic effects, morphological changes in BC cells [206] | Putative antitumor agent [206] |
Cinnamic acid | Hydroxycinnamic acid from cinnamon, grapes, tea, cocoa, spinach, celery [209] | MDA-MB-231, HEK293 [209] | Increases TNF-α-TNFR1 apoptotic pathway and caspases 8/3 [209] | Increases apoptosis and DNA damage [209] | Anti-BC agent [209] |
p-Coumaric acid | Hydroxycinnamic acid from whole cereal grains, fruit, vegetables, Brazilian green propolis extracts [210] | MCF7 [210], BT20, BT549, MDA-MB-231, MDA-MB-436 TNBC [208] | Inhibits iNOS, COX-2, IL-1β, TNF-α, suppresses p-IκB, ERK1/2, blocks NF-κB and MAPKs pathways [211] | Reduces cell viability/cytotoxic effects, reverts the epigenetic silencing of the tumor suppressor RASSF1A [208], supports anti-inflammatory and immunomodulatory mechanisms [211] | Putative antiproliferative/anticancer agent [210,212] |
Ferulic acid | Hydroxycinnamic acid from plants: ferulic (Ferula foetida), angelica, jujube kernel, rice bran, wheat bran [213], nuts, seeds [214] | MDA-MB-231 [215], MCF7 [216] | Regulates EMT [215] | Decreases viability and proliferation, increases apoptosis via activation of caspase-8 and -9, suppresses migration and metastasis [215,216] | Antitumor agent [215], antioxidant agent that protects DNA from OS [214,217] |
Sinapic acid | Hydroxycinnamic acid from citrus fruits (oranges, grapefruits, lemons), berries; herbs (canola, mustard seed, rapeseed); cereals, wheat, rice, spices, oil seeds, vegetables, vinegar, Salvia officinalis, Myristica fragrans [218] | MCF7, T47D, MDA-MB-468, SK-BR-3 [219] | Downregulation of VKORC1 and KIF18B [219] | Induces apoptosis [219] | Cytotoxic agent in regard to luminal A BC cell lines [219] |
Rosmarinic acid | Hydroxycinnamic acid from medicinal plants, herbs, spices (Boraginaceae, Lamiaceae, Labiatae) [220] | MDA-MB-231, MDA-MB-468 TNBC [220] | Upregulates TNF, GADD45A, BNIP3, HRK, TNFRSF25, inhibits BIRC5/survivin, MARK4, hedgehog pathway and hippo signalling, decreases proliferation and migration via Bcl-2/BAX signalling pathway, inhibits NF-κB signalling [220,221] | Antiproliferation and migration/cell cycle arrest, apoptosis [220] | Anti-BC agent, antioxidant [220] |
Chlorogenic acid | Hydroxycinnamic acid from fruits (apples, plums), vegetables (potatoes, eggplants), olive oil, spices, wine, coffee beans [222,223,224], honey [194] | Subcutaneous tumor mouse model of 4T1 cells [222] | Inhibits NF-κB/EMT signalling pathways [222] | Induces apoptosis, inhibits pulmonary metastasis, and improves anti-BC immunity [222] | Potential candidate for therapy of BC [222] |
Avenanthramides (AVN-A, B, C) | Phenolic alkaloids found in oats (Avena sativa, Poaceae) [225] | MDA-MB-231 [226] | Activates caspase 3/7 [226] | Activates apoptosis and senescence, blocks cell proliferation, inhibits EMT and metastasis [225] | Anticancer effects [225] |
Cyanidins/cyanidin 3-O-glucoside | Water-soluble anthocyanins found in leaves, petals, flowers, red fruits, blackberries, cranberries, grapes, cherries, apples, raspberries, peaches, plums, beans, red cabbage, red onions, purple sweet potatoes, carrots, avocadoes, olives [227,228] | BT474, MDA-MB-231, MCF7 [228,229] | Increases the expression of p53, Bax, caspase 3, CYP1, CYP2, and decreases Bcl2 [228], blocks ERBB2/cSRC/FAK pathway [229] | Proapoptotic and cytotoxic effects [228], inhibits invasion and metastasis [230], anti-mutagenic and anticarcinogenic effects [231] | Anticancer agent [228] |
Delphinidin | Polyphenolic natural pigment occurring in berries, eggplant, wine [232] | MDA-MB-231, BT474 [233] | Induces protective autophagy via suppression of mTOR and activation of AMPK pathway in HER2+ BC cells [233] | Inhibits proliferation [108], promotes apoptosis and autophagy [233], exerts anti-mutagenic and anticarcinogenic effects [231] | Anticancer effects [233], antioxidant [232] |
Malvidin/ malvidin-3-O-glucoside | Abundant anthocyanin in red wine, red grapes (Vitis vinifera), the skin of colored fruits, blueberries (Vaccinium corymbosum), blackberries (Rubus sp.) bilberries (Vaccinium myrtillus), red raspberries (Rubus idaeus), black raspberries (Rubus occidentalis), cranberries (Vaccinium macrocarpon), strawberries (Fragaria ananassa) [234] | MCF7 | Increases p21, caspases 3/8/9, Bax/Bcl-2, inhibits NF-κB, PI3K, TNF-α, STAT3, MMP2/9, IL-6, WNT, Notch1, and cyclin D1 [234] | Induces cell cycle arrest, antioxidation, anti-inflammation, autophagy, and apoptosis; inhibits proliferation, metastasis/cell invasion [234] | Anticarcinogenic potential [234] |
Peonidin | Anthocyanidin found in purple sweet potatoes (Ipomoea batatas) [235], pigmented rice (red, black, dark purple) [230] | In silico [235] | Inhibits the overexpression of HER2 protein [235] | Proapoptotic, antiproliferative, anti-metastasis role [230] | Anti-BC activity [235] |
Resveratrol | Non-flavonoid polyphenol from blueberries, grapes, red wine, raspberries, mulberries, apples, pomegranates, soy beans, peanuts | MDA-MB-231 [135] | Modulates PI3K/AKT, NF-κB, and Notch signalling pathways [133,134] | Induces Bax-dependent, but p53-independent, apoptosis [135] | Chemopreventive and putative therapeutic agent [236] |
Curcumin | Polyphenol derived from turmeric (Curcuma longa) | MCF7 [137,138], MDA-MB-231, and Hs 578T [147] | Modulates NF-κB [137]; downregulates oncogenic RAF-1, suppresses telomerase, upregulates TNF-α and IL-8 genes [138]; inhibits EMT through downregulation of mTOR and PI3K/AKT signaling [147] | Inhibits cell stemness [148], proliferation, and promotes apoptosis [137]; suppresses motility and metastasis in TNBC [147] | Chemopreventive agent [137], anticancer and cytotoxic properties [138]; potential therapeutic agent [147] |
Epicatechin | Flavan-3-ol from green tea, cocoa, grapes, apricots, green algae [237] | 4T1 [237], [238], TNBC mice model [150], MCF-7 [239] [240], MDA-MB-468 [153], MDA-MB-231 [240] | Increases Bax/Bcl-2 ratio, increases the expression of CDH1, MTSS1, PTEN, BMRS, FAT1, and SMAD4 [237], modulates the AMPK and Akt/mTOR pathways [238] | Decreases cell growth [150,238], inhibits metastasis-associated proliferation, reduces migration [150], cytostatic effects at lower concentrations [239], inhibits proliferation [238], proapoptotic [153,240] | Antiproliferative agent, similar effects to doxorubicin in terms of tumor growth inhibition and survival rates [238], could be used as an inhibitor for BC progression (anti-metastatic, anti-migratory, anti-invasion) [150] |
Catechins | Flavan-3-ols found in black grapes, strawberries, cider, red algae, green algae, red wines, kiwis, green tea, gooseberries [241,242] | 4T1 [241] | Downregulates EGFR, APP, Bcl-2, DNMT, HIF1a, and PSMB5; upregulates caspase 3 and GADD45b [241] | Suppresses proliferation, stimulates apoptosis [241] | Antiproliferative agent [241,242] |
Epigallocatechin gallate | Flavan-3-ol from green and black tea, apples, cherries, red algae, other fruits and vegetables [151,208,242] | BT20, BT549, MDA-MB-436, MDA-MB-231, MCF7, T47D, Hs 578T, allograft Balb/c model [151,208] | Downregulates mTOR, PI3K/AKT, p53/Bcl-2, EGFR, VEGF, STAT3, NF-κB, SCUBE2, TIMP3, DNMT, ERα; activates JNK, caspases 9/3 [151,208] | Decreases cell growth, increases apoptosis, prevents DNA damage and proliferation, inhibits invasion, reduces cell viability, has cytotoxic effects [208] | Antiproliferative and anti-invasion agent, hypomethylating agent [208] |
Theaflavin | Antioxidant polyphenol found in black tea [152,243] | T47D, MDA-MB-231 [244], MCF-7, ZR-75-1 [245] | Upregulates Fas/caspase 8, downregulates pAKT/pBAD pathway [244]; increases p53, Bax, activates caspase 6/7/9, increases ROS, stimulates p53, downregulates MMP2 and MMP9, inhibits the translocation of NF-kB/p65 to the nucleus [245] | Induces apoptosis [244], probably in a p-53-dependent manner [152], reduces cell viability, inhibits cell migration, could induce p53 phosphorylation of the Ser15 residue [245] | Proapoptotic agent [244] |
Theaflavin-3-gallate | Polyphenol from fruits and veggies | MCF-7, MCF-10A [246] | Downregulates HSP90, MMP9, VEGFA, and SPP1 genes [246] | Inhibits cell proliferation, no cytotoxic effects on non-malignant breast cells (MCF-10A), induces apoptosis by stopping the cell cycle in the G2/M phase, decreases migration and colony formation [246] | Potentiate other BC therapies [246] |
Phlorizin | Bioactive chalcone found in Asteraceae, Ericaceae, Saxifragaceae, Proteaceae, Rosaceae, Rutaceae, Fabaceae, Lamiaceae, Plantaginaceae, Pyrus communis [247] | MDA-MB-231, T47D [248], MCF7 [249] | Inhibits ERα signalling pathway, increases apoptotic caspase 3 via p53 [249] | Stimulates apoptosis, induces cytotoxicity/genotoxicity [248,249], antioxidant, anti-inflammatory, affects the composition of gut microbiota and development [250] | Anti-BC potential [247] |
Kaempferol | Flavonoid from plants, fruits, vegetables, onions, apples, berries, tea [124,251] | MCF7 [252,253,254], MDA-MB-231, xenograft models [124,255] | Suppresses cyclin D1, p21, TWIST, and p38 MAPK [252], downregulates SNAI2, PLAU, CSF1, inhibits IGF1/IGF1R-mediated EMT [255] | Induces apoptosis, inhibits growth, migration, and proliferation of BC cells [124,252,256] | Anticancer effects [124,252], potentiates sensitivity to chemotherapy drugs [253,254] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neagu, A.-N.; Josan, C.-L.; Jayaweera, T.M.; Weraduwage, K.; Nuru, N.; Darie, C.C. Double-Edged Sword Effect of Diet and Nutrition on Carcinogenic Molecular Pathways in Breast Cancer. Int. J. Mol. Sci. 2024, 25, 11078. https://doi.org/10.3390/ijms252011078
Neagu A-N, Josan C-L, Jayaweera TM, Weraduwage K, Nuru N, Darie CC. Double-Edged Sword Effect of Diet and Nutrition on Carcinogenic Molecular Pathways in Breast Cancer. International Journal of Molecular Sciences. 2024; 25(20):11078. https://doi.org/10.3390/ijms252011078
Chicago/Turabian StyleNeagu, Anca-Narcisa, Claudiu-Laurentiu Josan, Taniya M. Jayaweera, Krishan Weraduwage, Niyogushima Nuru, and Costel C. Darie. 2024. "Double-Edged Sword Effect of Diet and Nutrition on Carcinogenic Molecular Pathways in Breast Cancer" International Journal of Molecular Sciences 25, no. 20: 11078. https://doi.org/10.3390/ijms252011078
APA StyleNeagu, A. -N., Josan, C. -L., Jayaweera, T. M., Weraduwage, K., Nuru, N., & Darie, C. C. (2024). Double-Edged Sword Effect of Diet and Nutrition on Carcinogenic Molecular Pathways in Breast Cancer. International Journal of Molecular Sciences, 25(20), 11078. https://doi.org/10.3390/ijms252011078